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Weighted spaces of holomorphic functions on Banach spaces

by
D. GARCIA, M. MAESTRE and P. RUEDA (Valencia)

Abstract. We deal with weighted spaces HVy(U) and ‘HV(I7) of holomorphic func-
tions defined on a balanced open subset U of a Banach space X, We give conditions on
the weights to ensure that the weighted spaces of m-homogeneous polynomials constitute
a Schauder decomposition for them. As an application, we study their reflexivity. We also
study the existence of a predual. Several examples are provided.

Weighted spaces of holomorphic functions on a balanced open subset
of C* arise naturally in partial differential equations, complex analysis and
spectral theory. The one variable case has been extensively studied by Rubel
and Shields {28], Williams [34], Bierstedt and Summers [10] and Bierstedt
and Bonet [6]. Bierstedt, Meise and Summers [9] studied a projective descrip-
tion of weighted inductive limits of holomorphic functions on open subsets of
C". Recently Bierstedt, Bonet and Galbis [7] achieved significant advances
in the knowledge of these spaces on balanced domains U in C7.

Weighted spaces of holomorphic functions on C*, n € N, appear in a nat-
ural way as the Fourier-Laplace transform of spaces of ultradistributions.
In the infinite-dimensional case they constitute a generalization of the al-
gebra M, (X) of holomorphic functions of bounded type on a Banach space
X, which has recently received much attention; see e.g. [4, 5]. The spaces
considered here are relevant to Schauder decompositions of spaces of hole-
morphic functions [13, 18, 27, their locally convex properties [3, 13, 15] and
linearization and biduality [6, 10, 18, 27], among other topics.

The fixst section of [7] has been our starting point in order to extend their
results to the setting of Banach spaces. Although several of our results are
based on the ones proved there, when moving to infinite dirnensions we lose
local compactness and, consequently, the fact that the elements of the topo-
logical dual of HVy () have an integral representation ([10], Theorem 1.1b,
or [33]). Actually, this is one of the main tools used in Theorem 1.5(d) of
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[7] to obtain the biduality (HVo(U)y)y, = HV(U). The proof also makes use
of general theorems about biduality [6], which require building a topologi-
cal predunal of HV (). So, we follow a different approach: in Section 1 we
assume “reasonable” conditions on the families of weights V in order that
the families of weighted m-homogeneous pelynomials (PV{™X))2_, and
(PVa{™X))2_, are Schauder decompositions of the Fréchet spaces HV (U)
and H1,(U) respectively. As an application we deduce that HV (U) (resp.
HVL{U)) is a reflexive Fréchet space if and only if (PV(™X))%_, (resp.
(PVo{™X))°_o) is a sequence of reflexive spaces. Moreover, by connecting
the topologies 7 and 7, we prove that if V is a sequence of rapidly de-
creasing weights then the Fréchet space HV(X) is reflexive if and only if
each element of the sequence (P(™X), | - ||)2°_y is reflexive. This approach
was used by Prieto [27] for the space Hu(X), and so our results can also be
considered as a generalization to weighted spaces (see Corollary 13).

Section 2 is devoted to examples. These are chosen in order to emphasize
the importance of dealing with the spaces PV (™X) and PVp(™X) instead
of the space P("™X) of all continuous m-homogenecus polynomials, even
if X is a finite-dimensional space of dimension greater than one. Exam-
pies 18 and 19 show that, when X is an infinite-dimensional complex Banach
space, one faces situations that are meaningless in the finite-dimensional set-
ting.

In Section 3 we obtain a predual of the space HV(X) which has the
structure of an (I.B)-space. One of the reasons for this study is that building
a “good” predual of a given space of holomorphic functions is a process of
linearization (see for example [24], [25], [30], [16]). This allows cne to see
those spaces as some kind of very big duals (like tensor products linearize
bilinear mappings) and it has revealed to be a very useful tool in the theory
(see especially S. Dineen’s book [14]). Another reason, connected with the
former, was to try to obtain a theorem of biduality of spaces of weighted
holomorphic functions like the one given in [7], [6] or [10] described above.

1. The spaces HV(U) and HV (U). Throughout this paper X denotes
a complex Banach space and U a balanced open subset of X. Also, we always
consider countable families of continuous non-negative weights V = {v :
U — [0,00[ : for each = € U there exists v € V such that v{z) > 0}. We

define the space HV(U) as the space of all holomorphic functioris f on U
such that

Po(f) = sup{v{z)|f(z)|:z2 €U} < foralveV.

We recall that a subset A of U is U-bounded if it is bounded and its
distance to X \ U is greater than 0. A function g : U — [0,00] is said to
venish ot infinity outside U-bounded sets if for each € > 0 there exists a
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U-bounded set A satisfying g(z) < & for all z € U \ 4. We define
HV(U) :={f e HV(U): for each v € V,
v| f| vanishes at infinity outside U-bounded sets}.

Both spaces are endowed with the weighted topology v generated by
the family (py)yey of seminorms. Let us remark that if X is a Banach space
of finite dimension the elements A in the definition of HV,(U) are considered
to be compact, but any compact subset of an infinite-dimensional Banach
gpace hag empty interior, hence every g: U — [0, oo[ continuous on U and
vanishing at infinity outside compact subsets of U is identically 0.

The space Hy, (U) (see [4], [16], [17]) is the space of holomorphic functions
on I7 which are bounded on U-bounded subsets of U, endowed with the
locally convex topology Ty of uniform convergence on U-bounded subsets
of U. As usual, we denote by P(™X) the space of continuous m-homogeneous
polynomials endowed with the norm [|P| = sup{|P(z}| : z € X, [jz]] < 1}.
Given f € Hy(U), S50y P f denotes the Taylor series expansion of f at the
arigin. For each m & Ny := NU {0} we define PV (™X) := P("X)NHV(U)
and PVp(mX) 1= P(™X) N HVp(U) endowed with the restriction of the
topology Tv. Since the space P,(™X) of all m-homogeneous peolynomials
(not necessarily continuous) is complete when endowed with the topology of
pointwise convergence on X, the spaces PV (™X) and PVp(™X) are closed
subspaces of HV(U) and HVo(U) respectively. It is well known that the
restriction of 7, to P(™X) coincides with the norm topology for all m =
0,1,... fACUand f:U — C we write

| £lia :=sup{|f(x)| :z € A} € 0, 00].

If the family of continuous weights has a unique element V' = {v} such
that v{z) > 0 for all z € U, then HV(U) and HV(U) endowed with
the norm || - |lu := P, are Banach spaces (and are denoted by Hu(U) and
Hug(I7) respectively). These spaces have been studied in [29]. Moreover, if
v = 1, then Ho(U) = H®(U). On the other hand, V can be chosen so that
HV(U) = Hyp(U) (see Example 14). Accordingly, weighted spaces of holo-
morphic functions can be considered as a generalization of the space H*(U')
of holomorphic bounded functions or as a generalization of the space Hy(U)
of holomorphic functions of bounded type. In this paper we adopt the second
point of view (see Remark 9).

DEFINITION 1. A family V' of non-negative continuous weights deﬁr.led
on U satisfes Condition I if for each U-bounded subset A of U there exists

v in V such that inf{v(z):z € A} > 0.

PROPOSITION 2. Let U be a balanced open subset of a Banach space X.
The topology Tv is stronger than the restriction of the morm topology fo
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PV(™X) and to PVo(™X). If the family V satisfies Condition I then the
space HV (U) is a subset of Hu(U) and the topology v is stronger than
the restriction of T, to HV (U), and moreover, the spaces HV(U), HVy(U),
PV(™X) and PVo(™X) (m =0,1,...) are Fréchet spaces.

Proof. The first statement follows from [13], Lemma 1.13. The rest is
easily checked. =

Let us remark that PV (™X) and PVo(™X), m = 0,1, ..., are Fréchet
spaces even if Condition I does not hold. To prove this it is enough to use
the first part of Proposiiion 2.

A weight v defined on a balanced open subset I of a Banach space X is
said to be radial if v(tz) = v(x) for all z € X and all t € C such that |t| = 1.

ProrosITioN 3. If U is o balenced open subset of a Banach space X,V
is a family of radial weights and f € HV{(U) (resp. HVo(U)), then P, f €
HV(X) (resp. Pmf € HVo(X)) for every m € N. Moreover, py(Pm(f)) <
Pu(f) for each v € V and each m € Ny.

Proof. Consider f € HV(U). Since each v € V is a radial weight and U
is balanced, we apply the Cauchy inequalities and the maximum modulus
principle, to conclude

sup v(@}|Pr(f)(2)| £ supv(z) sup |Pr(f)(t2)]
zel el Itl<1

< sup v{z) sup | f(tz)]
el 1t|<1

= sup v(x) sup |f(tx)| = sup sup v(tz)|f(tz)]
oel [t]=1 zell jt|=1

= sug'u(wﬂf(:c)] =py(f) forallm=01,...
ze

Moreover, given a balanced U-bounded set 4, if z € U\ 4 and ¢ € C with
t| = 1, we have tz € U \ A, so that

ngI\JA v(z)| P () (2)| < 32}‘1}{,4”(:”) 12!11:131 | f(tz)} = yggI\JAv(y)if(y)l-

Hence if f € HW(X), then P f e HVp(X) forall m=0,1,... =

A consequence of Proposition 3 is that if the weights are radial, the
projections from HV(U) (resp. HVy(U)) on PV(™X) (resp. PVo(™X)) are
continuous for all m = 0,1,... If moreover for each function f & HV (I
(resp. f € HVo(U)) the Taylor series expansion at 0 of f converges to f for
the Ty topology, then (PV(™X))%2.., (resp. (PVo(™X))%_,) is said to be a
Schauder decomposition of HV(U) (resp. HVo(U)) {see [13], Definition 3.7).
However, this last condition is not satisfied in general. For example, if we con-
sider V' = {v}, where v : C — 0,00, v(z) = e"*" (p € N), then it is obvi-
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ous that the series 3, 2P™ /m! dois not converge to e*” in H{e " }{C).
Moreover, for every p € N there is a funetion in H{e™1*"" }5(C) such that its
Taylor series expansion does not converge for the 7 topology (see [22], The-
orem 2.3). On the other hand, in [11], Lemma 1.2(b), the authors prove that
given a sequence (b,) of complex numbers such that imy e |0n]| I (/2 +
1) = 0, we have g(2) i= Y o _obmz™ € H{e *I"}(C) and from their
proof one can easily deduce that the series 3 ~_ b,,2™F converges to g in
H{e 1" }5(C). Nevertheless, we can prove the following proposition.

PROPOSITION 4. Let U be a balonced open subset of ¢ Banach space X
and V' be o family of redial weights on U that are bounded on U-bounded
subsets of U. Suppose V satisfies Condition I. Then the polynomials that
belong to HVo(U) are 7y -dense in HVy(U).

Proof If f £ HW(U), then f € Hp(U) by Proposition 2. Since U is
balanced, the series }_.-_, Pmf converges to f uniformly on each U-bounded
subset of U, i.e., if we define §; = Y h_o Pif for all 1 = 0,1,..., then the
sequence (||S;— f||a); converges to 0 in R for every U-bounded set A. Hence
the sequence (33 Yo7 ISt — flla),, of arithmetic means also converges
to 0. Consider the Cesaro means

n {
1
Cuf(z) = E"ﬁg; (kgpkf(w)), zel, neN.
By Proposition 3, (Cr )52, C HV,(U). Moreover,
Cof@)| < max|FO0), n=12.., 56T

([24], Proposition 5.2 or [7], Lemma 1.1). Now each v € V is radial and
lvlla < oo, thus

[o(Crf — Ay = max{|[v(Cnf — Hllnas 0(Cnf — F)lla}
max{2l[vf|lo\as [[v]l 4l (Cnf = £l 4}

e {2 o ol (55 30 15 71 )
1=0

From the above chain of inequalities we conclude that (Cyn f)a2; Tv-conver-
gesto f. m

I

IA

Proposition 4 is a generalization and a slight improvement of {[7], Propo-
sition 1.2, parts {b)-(d)) for balanced open subsets of CV . The argument in
our proof is clearly an adaptation of the one given there.

COROLLARY 5. If U is o balanced open subset of CV, N> 1, and V is
a family of continuous radial weights, then HVy(U) has the approximation
property.
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Proof. This is immediate from the proof of Proposition 4 since U-
bounded sets are relatively compact subsets of I/ and weights are continuous
onlU. m

This corollary is Theorem 1.5(a) of 7] without the additional hypothe-
sis on HVo(U7) of containing all the polynomials on C¥. When U = C this
hypothesis is quite natural. In fact, in [6] it is pointed out in a remark after
Proposition 10 that if for a given k € N, z* ¢ HV(C) (resp. HVp(C)) then
HV(C) C span{l,z,...,2* "'} (resp. HWGH{C) C span{l,z,...,2z""*}). But
the situation for a general Banach space is different, as shown by Exam-
ples 16 and 19 below.

In [7] it is stated in a remark after Lemma 1.1 that the hypothesis of all
polynomials being contained in HV;(CY ) means exactly that each v € V is
rapidly decreasing (that is, v(z)||z|™ is a bounded function on X for each
m € Ny). This can be generalized to Banach spaces.

ProrosiTiON 6. Let V be a family of radial weights on a Banach space X,

(a) If for a givenm € N, P(™X) is contained in HV (X), then P(™1X)
is contained in HVp(X).

(b) Each element of V is rapidly decreasing if and only if P(™X) is
contained in HV(X) for all m € Ny. In that case the topology Tv coincides
with the norm topology on PV (™X) for all m € Ny.

Proof. (a) Let m € N be such that P(™X) = PV(™X) algebraically.
By Proposition 2 the norm topology 7. is weaker than v |p(mx), but
(P(™X), - 1) is a Banach space and by Proposition 2, (P{™X), 7y |penx))
is a Fréchet space, thus the open mapping theorem implies that both topolo-
gies coincide. Given y € X, y s 0, by the Hahn—Banach theorem we can
find a continuous linear map w, on X such that ¢, (y) = ||yl and ||, = 1.
If @ € P(™*X), then Py(2) = ¢, (z)Q(z), z € X, belongs to P(™X), and
1Pyl < lloy Q1 = [|Ql for all y € X. Hence {P, : y € X} is a 7. ~bounded
set. Since 7. = Tv|p(mx), for each v € V' we have

M := sup sup v(z)|@y, ()Q(z)] < cc.
yeX zeX
In particular, sup,ex v(z)||%(||Q(z)| < M. Then, for each & > 0, v()|Q{z)|
< e forall z € X such that ||z|| > Me™!. Thus @ € PVp(™~1X).

(b} If we assume that every v € V is rapidly decreasing, then given
P e P(™X) we have

v(@)|P(e)| = v(@) P(z/|z|)] =™ < [Pllv@)llz{™ forallz € X,
hence P € PV("X).

Conversely, if P(™X) is contained in HV (X) for all m & Ny, we consider
the family {10y : y € X} defined in part (a). Then {7 : y € X} C P(™X)

icm

Weighted spaces of holomorphic functions 7

and ||| = 1, forally € Y. This set is 7-j-pounded and hence Ty/-bounded.
Thus

sup v(z)||z
zeX

foralmeN =

I™ = sup v(2)|6 ()] < sup sup v{a) | ()| < o0
zeX yeX xeX

We are going to introduce an additional condition on the weights to en-
sure that the spaces of weighted m-homogeneous polynomials are a Schauder
decomposition of the space of weighted holomorphic functions.

DEFINITION 7. Let U be an open balanced set in a Banach space X, and
V a family of continuous radial weights. We say that V satisfies Condition IT
if for each v in V there exist R > 1 and w in V such that
1
Pu(Pnf) < p=pulf)  forall f e HV(V), m=0,1,...
Since the weights are radial, by Proposition 3 Condition II is equiva-
lent to

1
Po(Pmf) < R—mpw(me) for all f € HV(U), m=10,1,...
When dealing with entire functions, Proposition 8 below gives a condition
that implies Condition IT and that is easier to check.

PROPOSITION 8. Let X be o Banach space and V be a family of contin-
uous radial weights. If for each v in V there exist R > 1 and w in V such
that

(Condition IT') v(z) S w(Rz) foralizeX,
then the family V satisfies Condition I1
Proof. Given f in HV(X), since all the elements of V are radial, by
Proposition 3, Pnf € PV(™X), m=0,1,..., and
Rmp'u(me) = R™ sup v(w)lpmf(m)i
zeX

= sup v(z)|Pmf(Rz)| < sup w(Bz)| P f(Rz)|
e X rzeX

= sup w(Y)| P f (1) = pu(Prnf) < pul(f) =
yeEX

RaMaARK 9. If V is a family of radial weights defined on an open balanced
gubset U7 of a Banach space X and satisfies Conditions I and II, then the
Fréchet space HV (U) is a Banach space if and only if there exists a natural
number myg such that PV(™X) = {0}, m > mg, and each (PV(™X),7v) is
a Banach space. Indeed, suppose that there exists a continuous norm ||| - ||
on HV(U) generating the Ty-topology and a strictly increasing sequence
{my)2., of natural numbers such that PV (™* X} # {0}, k = 1,2,... Choose
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P e PV X)) with [||Pll| =1, k=1,2,... Given v € V, by Condition II,
we can find R > 1 and w € V such that

Pu(Pr) S BT py(Pe), k=1,2,...

Since (Fy)72, is a bounded set, this inequality implies that (P;)$2, 7y-
converges to 0, a contradiction. Conversely, if PV(™X) = {0}, n > myg, then
(RV (D), 1v) = B, (PV(™X)}, 1), and the latter space has a Banach
space structure if and only if (PV(™X)},7v), m = 0,...,my, are Banach
spaces.

LemMMA 10. If V is a family of radial weights defined on an open balanced
subset U of a Banach space X and satisfies Conditions I and II, then the
topology v on HV(U7) is generated by the family of seminorms such that
2(f) = 3o P(Pn(f)) for all f € HV(U), and plpy (= x) is Ty -continuous
on PV(™X), forall m=0,1,...

Proof. Consider a seminorm p as above. Since {f e HV (U) : p(f) <1} =
Mieolf € HV(U) : S8 _ p(Pnf) < 1} is a closed absolutely convex ab-
sorbing set in the Fréchet space (HV{U),7y), it is a neighbourhood of 0,
and p is Ty-continuous. Conversely, given v € V, we apply Condition II to
get A > 1 and w € V such that

p(Pm(f)) < Rimpw(f) for all f € HV(U), m=0,1,...
Hence

> piPnf) € 3 gpelf) = gl

me==0)

Thus if we define g, on HV (U) as

2 (F) == Y _pu(Puf) foral f e HV(U)

m=0

we find that ¢, is ry-continuous and p, < g,. »

It is clear that a similar description of the topology 1 can be stated for
the space H15(U).

The S-absolute y-complete decompositions are a useful tool in Infinite-
Dimensional Holomorphy in order to lift properties from spaces of polyno-
mials to spaces of holomorphic functions (see for instance [13], Chapter 3,
[27], 18]). In particular, the fact that (PV{™X)),, is such a decomposition
of HV(U), under some assumptions on the weights (Theorem 11 below),
leads to characterizing the reflexivity of HV(U) in terms of the reflexivity
of PV(™X), m & N (Corollary 13).

A Schauder decomposition (E,) of a locally convex space E is said to be
-complete if given T, € By, n = 0,1,..., such that (37 ,)% , is
bounded, the series 3 72 ; z, converges ([20], Definition 3.1). '
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TurorREM 11. If U is o balanced open subset of a Banach space X and
V is a family of radial weights on U that satisfies Conditions I and I, then
the sequence (PV(™X))m (resp. (PVo(™X))m) is an S-absolute y-complete
decomposition of HV(U) (resp. of HVp(U)).

Proof. Asthe weights are radial, we apply Proposition 3 to deduce that
the projections Py, : f € HV (U} — P,.f € PV(™X) are well defined and
continuous. By the very definition, Lemma 10 says that (PV(™X),ry) is
an absolute Schauder decomposition of HV (U) (see [13], Definition 3.7). We
set S = {{am)m € CV : imsup,,_, o |am|?™ < 1}. Then (PV(™X), v ) is
an S-absolute decomposition if and only if

(i} g = 3°%° 0 am P f € HV{U) for all f € HV(U) and all (an) € S,

(i) g(f} = >omep lamlps(Pmf) < oo is well defined and continuous on
HV(U) for all v € V and all (o) € S.

Let v € V. By Condition IT there exist B > 1 and w € V such that
pu(Prmhb) < (1/R™)py(h) for all h € HV(U). Given (o) € & we can find
mgo € N such that |am|1/m < {1+ R)/2 for all m > mg. For ¢ > 0 large
enough we have |ay,| < c((1+ R)/2)™ for all m € Ny, and then

) 1R\
sup (&)lam P 0)] < hpu(F) < o 1) Pl

Since 0 < {1+ R}/(2R) < 1, we have g € HV(U) and

= 1
o(f) = mZ_jD Jampo(Ponf) < 77y Pef) for all F € V(D)
hence g is well defined and continuous.

Let QmeP(™X), m=0,1,..., be such that the sequence (3 _4 @m)n
is my-bounded. We verify that it is a 7y-Cauchy sequence in the Fréchet
space HV (U). By Lemma 10 it is enough to check this for continuous semi-
norms p on HV(U) such that p(f) = ¥.ro_oB(Pm(f)). But, for such p,
the sequence (P(Tormo @m)in = (m—oP(@m))n is bounded and hence

Eﬁﬂo p(Qm) < o0, .
For HVa(U) it is enough to apply Proposition 3 and the fact that this

space is a closed subspace of HV(U). m

COROLLARY 12. If V is a family of rapidly decreasing radial weights
on the Banach space X and satisfies Conditions I and II, then HV(X) =

HVa(X).

Proof. Since HVp(X) is a closed subspace of HV(X), the corollary
follows from Proposition 6 and Theorem 11. =
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COROLLARY 13. If V iz o faomily of radiol weights defined on an open
balanced subset U of a Banoch space X and satisfies Conditions I and 1I,
then

(a) HV(U) (resp. HVo(LN) is o reflexive space if and only if each space
of the sequence (PV(™X), 7v)m (resp. (PVo(™X), v )m) is reflezive.

(b) If U = X and the weights are rapidly decreasing, then HV(X) is
reflexive if and only if each element of the sequence (P(™X), || [m 4
reflexive Banach space.

Proof. By Theorem 11 the sequence (PV(™X), ry) is an S-absolute
decomposition of HV(U) and hence it is a shrinking decomposition ([13],
Corollary 3.14). Moreover, it is y-complete and then [20], Theorem 3.2, gives
the conclusion. An analogous argument works for HV(U). (b) follows from
Proposition 6 and part (a). w

This corollary is a generalization to weighted spaces of the one given by
Ansemil and Ponte in [3] for the space (H,(X),7,). (See also Prieto [27],
Corollary 2, which is the approach we follow.)

One example in which the hypothesis of Corollary 13(b) holds was given
by Alencar, Aron and Dineen in {2]. They proved in Proposition 4 and the
proof of Theorem 6 that the spaces of the sequence (P(™T*)),, are reflexive,
where T* is the original Tsirelson space. Now it is enough to consider the
family of weights given in Examples 16(c) and (d). (Conditions to ensure
that (P(™X))r, are reflexive can be found in [1].)

2. Examples. We present several types of examples of weighted spaces
of holomorphic functions defined on Banach spaces. In Examples 14-16 the
dimension of the Banach space plays no relevant role. Actually, the weights in
15 and 16 are obtained by composing the norm of the space with a continuous
function. On the other hand, the weights in 17 can only be defined in spaces
of dimension greater than 1. Finally, the examples in 18 and 19 only make
sense in the infinite-dimensional setting.

EXAMPLE 14. Let U be an open balanced subset of a Banach space X. The
sequence Wy, :={z € X : |2|| < n,dist(z, X\ U) > 1/n}, n=1,2,..., isa
fundamental system of U-bounded subsets of U. For each n in N consider
vy U — [0,1] defined as

_ dlSt(.’E,X \ Wn+1)
 dist(z, X \ Wihy) + dist(z, W)’

Then V = (un)n 15 an increasing sequence of continuous radial weights on U

such that HV(U) = My (U) algebraically and topologically and Conditions T
and II are satisfied.

'Un(x) : z el
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Proof. For each n in N we have supp v, C W41 and vp{z) = 1 for all
z in W,,, hence (v, )}, satisfies Condition I. If we take f to be a holomorphic
function on U then

1fllw,, < sup vn ()| F(@)] < [1f wa-
zel

Hence MV (U) = Hy(U) algebraically and topologically. Moreover, for e, =
n"3n 4+ 1) (L + &n)Wn € Woya, and then vn(z) € vpa2((1 + gn)z) for
alzin U andn=1,2,...

ExamPLE 15. Let U be a balanced open subset of a Banach space X
and o in |0,00] such that |z|| < « for all z in U. Let g : [0,af — |0, 00[
be a continuous function. Define v(z) = g(llz||) forz in U. Then v is a
radial weight, V = {v} satisfies Condition I and Ho(U) 1s o Banach spoce
contained in Hy(U).

EXAMPLE 16. (a) If v: X — ]0,00[ is a radial continuous weight such
that inf{v(z) : ||z|] < n} > 0 for all n = 1,2,... then the families of
continuous radial weights V 1= ()2, and W = (w,)32,, defined as
n(z) = v(((n+ 1)/n)z) end wa(z) :==v((1/n)x) forz in X, n=1,2,...,
satisfy Conditions T and IT and PV(™X) = Pu(™X) = PW(™X) alge-
braically and topologically.

(b) If additionally HV (X) 691’:1.:0 PV(X) forallk tn N and v(Az) <
v(z) for al A> 1 and z in X, then ‘

HW(X) ¢ He(X) & HV(X).

(c) A concrete example satisfying all the hypotheses of (a}, (b) 'ips v(x) =
Mo e X, p > 1, V = (e (DI W = (IR T
that case (P(™X), || -]} = (Puv(™X),n,) for all m = 0,1,... by Proposi-
tion 6.

(d) Another example satisfying only the hypothesis (a) z's. v(z) =
1/(1+ ||2]|?), p = 1. In that case (Pu(™X), ) = (P("X), |- ) if m < [p]
and (Po(™X), ) = {0} if m > [p].

Proof. It is immediate that Condition I holds for the families V' and W.
On the other hand,

Up () = Vn+1 (%m)» Wn(Z) = Wnit (n Z 1$)1

for all n € N and all z & X. By Proposition 8, Condition IT holds. Consider
now an m-homogeneous polynomial P : X — C. Then 0 < p, (P) =
(n/(n +1))™0y(P) < 00 and 0 £ Py, (P) = n™py (P} < oo for every n € N.
Hence PV{™X) = Pv(™X) = PW(™X) algebraically and topolhoglca,lly. If
we additionally assume that v{Az) < v(z) for all A > 1 and x in X, then
un (z) < v(z) < wy(z) for all z in X, hence HW(X) C Hu(X) € HV(X).
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By Example 15, Hv{X) is a Banach space. But, by Remark 9, under the
extra assumptions, HW(X) and HV(X) are Fréchet non-Banach spaces.
Now an application of the open mapping theorem completes the proof. m

The notation of v, V, W of Example 16 will be used again in the next
three examples.

ExaMpLe 17. Let Y be a complemented subspace of a Banach space X,
let Z be its complement and = : X — Y the projection of X onto Y. If
t:Y — 10,00 and u: Z — )0, 00] are two continuous radial weights as in
Ezample 16(a), then v : X — |0, 00 defined as v(z) := t(n(z))u(z — 7(z))
for all x in X is a continuous radial weight satisfying the hypothesis of
Ezample 16(a).

Concrete examples are:

(a) v: C* —10,c0c], v(z,y) = (1 + |z|)"Pe" ", p,q > 1. In that case
PV (C?) = Pu(mC?) = PW(™C?) = {X et pom Ua,) Y, G0 p) € C,
0 SO—’SP: CE.“BENU}.

(B) v : € — 0,00 w(w1,. . 2a) = [[joi(1 + |m)7%7, py = 1,
7= 1,...,n. In that case we have PV(™C") = Pu(™C") = PW(™C") =
{Ea1+...+an=m a(aln-"ian)xal v 'man’ a(a;,...,an) € C:’ 0 S aJ S pJ’ a-’f’ €
Mo, i=1,...,n}

EXAMPLE 18. Let X be an infinite-dimensional complex Banach space,
and let (z},)n be a sequence of continuous linear forms weak-star convergent

to 0 in X* with [|z1]| =1, n = 1,2,... The sequence of radial continuous
weights V = (vy,)22; defined by
1
velz) = zeX, n=1,2,...,

14 3okt n by (@)~

satisfies Conditions I and 11, v,(z) > 0 for all z in X and oll n in N, but
inf{vn(z) : [izl| <7} =0 for all r > n.

Proof. Fix z in X. Since the sequence (x*(x)), converges to 0 in C,
there exists ng in N such that |z}(z)| < 1/3 for all n > ng. On the other
hand, if y € X, [z —y|| < 1/3, we have j2}(y)| < |z} (y — 2)| + |25 (2)] <
lzplllz — ll + |ap{z)| < 2/3 for all n > ny, hence by the Weierstrass
M-criterion, the series 3,2, |z} (v)|¥ converges uniformly on the open ball
of center z and radius 1/3. Thus g(z) 1= 1+ 312, | (z){* is a continuous
radial function on X. Since |z}l = 1, n = 1,2,..., we have sup{g(z) :
[z]| < S} = oo for all § > 1, but sup{g(z) : ||| < s} < 1/(1 —s) for all
s < 1. The claim follows from the fact vn(z) = g~(z/n) for all & in X,
n=12,...m

The Josefson—Nissenzweig theorem ([12], Theorem 12.1) ensures the ex-
istence of sequences (;,)5%.; as in Example 18. The above example is clearly
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derived from the example of an entire function on an infinite-dimensional
Banach space which is not of bounded type ({13], Lemma 4.5).

ExAMPLE 19. Consider in £; the continuous weight v : £, — ]0,00[
defined as

V((Zy)n) = H (1 + W_nnl) - forallz = (z,) € 41.

el
Then KW (£1) C Hu(f) C HV (£1) and, for each m in N,
(1) PV(™8) = Pu(™) = PW(™4)
LY aeerrn:

aEN&N), |ex|=m

to = 0 whenever there exists 7 € N with oy > j}

::{ T g

e, |a|=m
0<o; <5, jEN

[ex]
sup |aa|R°‘—a < 0o for all R > 0}.

aENc()N): |@|=m ‘a||a[

Proof. Ryan [31] gives a complete description of the elements of the
space Hy(£1) (see also [23]) in terms of their monomial expansions at 0. In
particular, he proves (Theorem 3.3) that for everym e N, P € P(mllfl) if and
only if P(z) = EaeNg’N), lafmm Ga@® and SUD, o0 | oo | R Sy < o0
for all R > 0. :

First we prove that v is well defined and continuous on #;. Since the
sequence ((1 + A/n)™), is increasing and convergent to e* in R for all
A = 0, we have

o0 T
ellzll = Ty loal > H (1 + @) >1 forallz= (z:)n € £1.
n

n=1

Hence v is well defined and e~ #l < v(z) < 1 for all z € £5. The product
[In%y (14 |2a|/n)" converges if and only if the series Yome  nlog(l+|zn|/n)
does ({32], 7.27) and in that case eZn=: " 08(F2al/n) — TP | (14| | /m)™ =
v ({2n)n) for all (zn)n € 4. Now fix 2o € £1. We have

) o(e) ~ vlzo) = ofee) (25 1)

v(zg) -

g 1 14 ::8 [n
_—.v(ﬂzo)( L= ™08 i 1).

&
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Since log(1 + A) < A for all A > —1, we conclude
1+ |zal/n 4 feal/n ) (w;xnvn )
R e AT NSRS PP il VAL WV Y b i TY AL
”1°g(1+|w%|/n ™o8 { 1140/ S\ T @/n

|zal/n — |z3|/n
L+ fz|/n

Interchanging =, and %, we get

o (20

< [lznl = l231.

<z = 20| € lzn — 22|  foralln e N.

Hence
1+ |znl/n = 1+ |znl/n
®) Z”“’g(man) <2 ”1°g(1+|m°/n)

< Z\mn— zp| = [z — o]

From (2) and (3), v is continuous on X. Finally, since e~ 1l < o(z) <1 for
all z € £y, we get inf{v(z) : [[z| £ s} = e for all s > 0 and thus v satisfies
Condition I

To complete the proof of Example 19, we need two lemmas.
LemMMA 20. Let pe N and A > 0.

(&) The sequence ((1+ A/n)" P, en is decreasing to e* if (and only if)
0<A<2p.

{(b) 1/(1+ X/n)" < (1+ A/n)Pe™, 0 < X < 2p.
Proof. For 0 € A < 2p we write an = (1 +A/n)"" n = 1,2,... By

using
1 o0 —
10%(1—1:.) Z D ju| < 1,

we have

logan, = (n+ p)log (1+ %) = (n+p)log(

o0 A Zh~1 1
:2(”“’); (2n+A) % — 1

)\Qk—l \ = )\Qk—l
= 2p — .
g Gy TP ); (2n + N*=1(2% — 1)

142/ (2n+ A))
1= (2n+ 8

Since each term is decreasing, (logan )nen 15 a decreasing sequence, hence
(a) holds. (b) is immediate from (a). m

Weighted spaces of holomorphic functions 15

The above lernma and its proof are a generalization of Problem 1.172 in
[26], where it is proved for p = 1.

LeMMa 21. Let p € N and let J be a finite subset of {p+1,p+2,...}. If we
consider on C4) the norm || ||1, then the function fy : C24T) [0, oof
defined os

(Pones [2nl)?
[Toes (1 +lznl/n)P
attaing a marimum value at points of the closed ball of center 0 and radius

fal(Zp)nes) =

plp+1).

Proof. Let r := maxJ, ¢ := card{J). For each z € C° there exists

ng € J such that ||z||; < ¢|zp,|, hence
L5 < el < =[5
- —_ H

[nes (Lt lznl/m)P = (14 |2no| /no)? = (1 + [lzlla/(er))
thus f7{z) converges to 0 as ||z||; tends to infinity. By a standard argument,
f; attains a maximum value on €. Moreover, the function g((yn)nes) =
Ffi{y2)nes) attains the same maximum value on R°. Denote by A the family

of all points where this maximum is attained. Since g is differentiable, every
point in A is a critical point of g, and so, for every y € A,

3% =2 (y)

_ 2 Il5® 0 T e mpg (1 VA2 (L 4 93 /3Y (L + 7 /3) — II]13]
(nes (1 +v2/n)7)?

where | - ||z is the euclidean norm on R*. As 0 € A, f ¥ = (yn)nes € 4,
then either y; = 0 or p(1-+y2/5) = |yl§ and H = {j € J : y; # 0}, H # 0.

Hence
2)al = W3 =15 =>

ieJ JEH

0< fylz) =

=0

A Lyoe ) EJEHJ
- -1 =p="t"r
> (pnyuz s

JEH

The last inequality holds since  # H C {p +1,p+2,...} and A/{A —p) =
14+4p/A—p)<l+plordA>p+1l n

Now we prove (1). Let P be an element of Pv(™¢;), and a € Ny, o =
(a1,...,p,0,...) with @, # 0 and |a| = m. If we define P : C" — C,
ﬁ(ml,...,wr) = P(21,...,@0,0,...) and ¥ : C" — ]O,w[,j(ml,...,mr) =
15, (L4 |za|/n)~" for all (@1, ...,2,) € C", then clearly P & PH(C") and,

i

< plp+1).



icm

16 D. Garcia et ol

by Example 17(b),

B Y ot
GENr, |Bl=m
with ¢g = 0 if B; > §. By [31], aa = C(ay,....a,), DENCE Qo = 0 if there exists
j € K such that a; > j.

Conversely, consider a continuous m-homogeneous polynomial P =
ZaeNéN), ol anx® on £ such that a, = 0 for all o in N(()N) with o; > j for
some j. Since P lies in P(™¢1) if and only if 3. o 1, laol|z]™ < oo

G =

for all « in ¢; (see [23], Proposition 3.4, or [31], Theorem 3), given g > r >
m?+m we can write P{x) 1= Yer it 2,7 Py(2q, g4, ) where I' =
{y=(n, 71 N imt+. . Fraimmn <L <2, -1 £
min{m,q — 1}}, and P, is a continuous (m — |7v|)-homogeneous polyno-
mial on ¢;. To simplify the notation we write 7 : &1 — £y, 7{(Zn)nen) =
(Zgs Tgt1,--.) and Qy(z) = al*.. 2y"y' Py(n(z)) for all v € £;. Since
I' is a finite set, to show that P € P,(™¥;) it is enough to prove that
Q4 € Pu(™1) for each y € I'. As y; < §, M :=sup,»o 7% /(14+7/§) < o0
forg=1,...,¢~ 1. If we write M, <= M; ... M, 1, then

Vi P Pr(n(z))
Gl T et/ (@ = 1 Ty (LF 2l /)"
< M Py (r(a) oln(z)) < My Ix(@)] T o ()

forall z € £4.

We put ¢t == m — |y]. If £ = 0, then |Q,(z)|v(z) £ M, ||Pyljv(r(z)) <
M, || Pyl for all z € £;. If £ >> 0 then

1Q(z)u(z)| =

sup H'fr(w)lliv(ﬁ(m))=su§ sup [ln(z)|jv(m(z)) € 0,00,

@ 15’6
but
5 %
T
op m@livir(a) = sup  sup  opolnmelZnl)
lzlli <k 52g, $€N log k.t lza| <k [Inag(l + [Znl/n)"
< sup sup f{q,...,s}($q: e :-753)

924 (2gye.. x4 ) ECT7 T

= sup sup

Fig ot (@gr ooy 2a ).
82 |[(mgsm s ) o <2+t {g ,]-( q }

The last equality holds by Lemma 21. Now we have ¢ > r > m?+m > t% ¢,
hence we can apply Lemma 20 to |z,| < ||[(2q,...,zs)h < 82+ ¢ < 7,
n=4g,...,s toget

Weighied spaces of holomorphic functions 17
N . & £ 8 lﬁﬁ'n& r
wp [riltotra) <o op (S jal) [ (1412 ) et
el <k 524 (=g, msmadinSr g neq s

r |zal\"
< s eI (14 22 et
i (w)ila <r ,g, n

thus

sup [r(@)tvlr(e) < sup [n(@) (1+M) eI,
zEéy ' el <r Hl;bl__:‘[q i)

Since log(l + M) < A for all A > ~1,

S N _ 1
II (1 " ”_n) = [ eriestttenlin) < Biualr/mles!

m

n=q n=gq

< /D Eg loal = gr/alin(2)lly
for all & € £;. Finally, as r/g— 1 <0,
sup |Qy(z)v(z) < My||Py|| sup [|n(@){[1v(m(z)
=2} z&éy

§M7]1P7||| sup |(z)||jelr/a L=

[7{z} <

< M, |Py|| sup ||(z)|Lel/ DI < oo
el

forally el m

Examples 18 and 19 show some situations that are meaningless in the
finite-dimensional setting. Moreover, the fact that HW(X) ¢ Hu(X) &
HV(X) in Examples 16 and 19 emphasizes that asking for the polynomials
to be contained in the weighted space of holomorphic functions is much
more subtle for infinite-dimensional spaces than for finite-dimensional ones
as we noted after Corollary 5. We refer to (8] for other interesting (even
non-radial) examples of weights on an open subset of C* (n & N).

3. A representation of the (LB)-predual of HV(X). In this section
we deal with an increasing sequence V' = (Up)nen of continuous weights
satisfying Condition I, We consider the following topelogies on HV(X): let
7. be the topology of uniform convergence on compact subsets of GV (X),
let 1o be the compact open topology and let 7, the finest locally convex
topology that agrees with 75 on 7y-bounded sets.

For each @ = (an)nem, ¢n > 0, n €N, let

Do = {f € HV(U) : pu(f) == P, (f) < o for all n € N}

/N
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Since 19 < 7 and Dy is 7y-bounded, D, is Tp-bounded. Since 7o-conver-
gence implies pointwise convergence, Dy, is also Tp-closed. Hence, by Montel’s
theorem, it is To-compact. So, {D, e is a fundamental system of absolutely
convex hounded and To-compact sets (property (BBC) in [6]). It is not dif-
ficult to see that

(Vn,s = {f € HV(U) :oa(f) < E})neN, >0

is a O-neighbourhcod base of absolutely convex 7g-closed sets in (HV (U), 7v)
(property (CNC) in [6]). So, by Corollary 5 of [6],

GV(U) = {¢p € HV(U) : ¢|p, is To-continuous for all o = (an),an > 0},

endowed with the topology of uniform convergence on the sets Dy, is a
complete barrelled (DF)-space such that its strong dual is topologically iso-
morphic to (HV(U),rv). This duality allows us to consider the weak-star
topology on HV (U). In particular, when V = {v}, Gv(U) := GV(U) is a
Banach space whose strong dual is topologically isomorphic to the Banach
space Hu(U).

PROPOSITION 22. (i) 79 < Tha) = e < v on HV(X).
(i) (HV(X),7v)} and (HKV(X), a1} have the same bounded sets.
(iil) GV(X) = (HV(X), Tha)p-

Proof. We only prove the equality in (i). Since GV(X) is barreiled,
Thel i8 the finest locally convex topology which agrees with the weak-star
topology on equicontinuous sets. So, by ({21], 21.9(7)), Tha = 7c. m

Since each vy, is continuous, the set U, == {z € X : vu(z) > 0} (n € N}

open. We define 7, : HV(X) — Hun(Un), and for m > n, ram °
Hom(Um) = Hun(Un), by f — fly.. In a natural way we can show
that HV(X) = proj,Hv,(U,) algebraically and topologically. This pro-
jective limit is not reduced in general. For example, H(C) = Hp(C) =
proj, H*(nA), where A is the open unit disc in C, is not reduced.

Our main goal in this section is to prove that GV{(X) = ind,Gv,.(Un).
To do this we consider the transposed mapping rf : Hua(U,) — HV (X))

PROPOSITION 23. (i) 7% (Gu,(U,))} € GV (X).

(1) (rh]Gon(a))t = Tn-

(iil) If, in addition, each v, (n € N) s radial, vp(tz) > 0 for all t €C
with [t| < 1 whenever vp(z) > 0 and if HV (X) contains the polynomiais,
then 75| gu.(0,) 9 injective.

Proof. (i) For ¢ € Gua(U,) and C < HV (X} rv-bounded, we see that
7 (C) is bounded, so r}($)|lc = ¢orn|e = ¢l (c) is To-continuous, hence
rt(d) € GV(X).

icm
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(ii) For f € HV(X) and ¢, € Gu,(U,) we have

("ol ) ) (F)(@n) = F o vl | Gon ) (én)
= f(¢n 0mn) = (¢n 0 ra)(f) = ra(F)(¢n)-

(iil) We show that r,, has weak-star dense range. By assumption U,, is bal-
anced. Let f be a function in Hu,(U,). Since the Cesaro means Cr, (f) of the
partial sums of the Taylor series of f belong to HV(X) for allm =0,1,...
and the sequence (rn{Cwm(f)))m Toa-converges to f and (Hv,(Upn), ba) =

Gun (Uy), it follows that {ro(Ce(f)))m weak-star converges to f. m

In an analogous way, if we take the transposed mappings 75, . : Hor (Un)’
— Hum(Um)' {n < m) then ], satisfies 23(i)~(iii) with the obvious
changes.

So, by taking transposed mappings the commutative diagram

HV(X)
H'vm Um H’U‘n )
is transformed into
GV (X)
Ty ry,
G"-’m(Um) & G‘Un(Un)

Our next lemma contains all the conditions we need to get an (LB)-
structure on GV (X). All of them are very natural and are satisfied in the
usual cases (see Example 16(c)). Set By, := {f € Hun(Un) : || fllv. £ 1}

LEMMA 24. Let X be o Banach space and let V = (vn)n be an increasing
sequence of radial rapidly decreasing continuous weights which satisfies Con-
ditions I, IT and is such that for eachn € N, ifva(z) # 0 then v, (tz) # 0 for
allt € C with |t| < 1. Then for each e > 0 and eachn € N there exist m > n
and o = {t7);, o; > 0, such that every f € By has the decomposition

f :rm(Elef) + i Pif,
7=0 =N

where N is given by the conditions ram(3 jon Pif)
T3 Pif € (6/2)Ds

{e/2)B,, and
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Proof. By Proposition 6(b), HV(X) contains all polynomials. First
note that for each p € N the open set U, is balanced. Thus the Tay-
lor series expansion of each f € Muw,(U,) converges pointwise to f and

TP(E;V:D P;f) € Hup(Up), hence

o0 N
SoPif=f-r( Y Pif) € Hu(Uy) foralNeN.
i=N =0

On the other hand, for all f € Hu,(U,) and all p € N the following properties
hold:

(a) We have
o (Pi Fllv, = sup vp(2)|rp( P f)(z)] £ sup vp(2) Sup |P; f(tz)
< sup vp(z) sup |f(tz)]| = sup vp() sup If(tw)i
zelp It < z€V,

= sup sup v,(tz)|f(tz)| = 1|f||up-
2elp |i|=1

(b) Given n € N, we select m > n and ¢t > 1 according to Condition II.
Then

817 ( Py e, = ¢ S v (a)|ra (P; f) ()]

=t sup ve(2)|Psf(2)] < sup vm(@)|F; f(2)|

= sup 1fm( NEif (@) = llrm (B Fllo. £ 1 Fllom

EUm

for all f € Hum(Um).

Let f € By By (b), the series Y 52 rn(P;f) converges to 1y m(f) in
(Hun(Ua), | - ls,) and

|| Zm(f’ I Z Ira(Pslln < Z i <3 5

i N =N
which is less than /2 for N large enough.

Without loss of generality we may assume that infycp vi{z) > 0, where
B is the closed unit ball of X

By Proposition 6(b}, for each k € N, prlpx) is a continuous seminorm
on P(YX), hence there exists a,; > 0 such that px(P) < ax ;|| P| for every

P € P(*X). Moreover, since |P;f|| < cp1{P;f), where ¢ := 1/inf e g v (z),
it follows that

icm
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N -1 N-1 N--1
pe(Bif) < 37 ansIBifl < 3 awep(Fyf)
G=0 7=0 =0
N-1 N-1
< Z ak,_’pcp'um P f) Z QL JCHTTH P f)”'um

=0
N—

N-1
< Z akgcll fllom < ) ange

=0

=

.

If we put o = (2/2)c E ‘—0 ap,; > 0 then (Z;\;—Dl P;if) <
Sice Pif € (6/2)Da, o= (on)i. m
PrOPOSITION 25. Under the hypotheses of Lemmao 24,
DN r(An) C ey (Aim),
where Ay is the closed unit ball of Gui(Uy) for all k € N and Dy, is the
polar of Dy in GV(X).
Proof Let ¢ € DS Nri(A,) and ¢ € A, be such that ¢u = r&{dn).

We put ¢ =75 n(@n) € G (Un). Then ¢ = 78 (@) = 7t (vt T (fn)) =
r (ém). To conclude it suffices to show that ¢, € EA . By Lemumna 24,

szm(Eij) + i P f
poard =

(e/2) g, thus

with Z o Pif € (e/2)Dq and Ty 2 e ij) € (¢/2) B, Hence
N (=}
[#n() = I (@) = [ 0 P (7 SR +2 Bif)|
j=0 J=

= qbn(rn(]:;jpjf)) +¢n(rn,M(§ijf))}

COROLLARY 26. Under the hypotheses of Lemma 24 for eachn € N there
egists m > n such that GV (X) and rf,Gum(Um), endowed with the induced
topology via %, induce the same topology on 73 (An).

THEOREM 27. Under the hypotheses of Lemma 24,
GV{X) = ind, Gun(Un)

holds algebraically and topologically. This inductive limit 45 boundedly re-
tractive,
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Proof. Let A C GV(X) be a bounded set. So, its polar A° in HV (X} is
a O-neighbourhood in GV'(X), = HV(X). Since HV(X) = proj,Hvn(Ux)
there exists a finite set F C N such that

N{f € HV(X) :pi(f) e} € a°
JEF
for some & > 0. If n:= max;ep j, then
M e HV(X) :pi(f) S e} = {f € HV(X) : pu(f) L€} =77 (eBn),
jEF
and
£(rilGu, (U, (An))° = (("meun(un))t)_l(ﬁx‘l%) =7l (eBa) C A°,

where the first polar is in HV(X) and the second in Hvn(Uy), and A, is
defined as in Proposition 25. Taking polars in GV(X} and using the bipolar
theorem, we get

ao 1 oo l——
ACA”C E(TE\GUn(Un)(An)) = ~r7(4n) v,

By Corollary 26, there exists m > n such that GV(X) and rf G, (Us)
induce the same topology on rf(A,). Since rt Guy (Uy,) is complete with
the topology induced via 7t , we have

(An)TGV(_X) _ T;(An)"raneum(nmn

%
L

and so
l————
AC ETTt’L(An) T{@Em Em)) o ?“tm (Gum(Un))-

Thus each bounded subset of GV(X) is contained in some rt, (Gum (Us,))
and bounded there. Hence

GV(X) = U T‘:LG'Un(Un)
n=l
and the spaces GV (X) and ind,rGuv,{(U,) induce the same topology on
each bounded subset of GV(X). In fact, if A ¢ GV(X) is bounded, there
exists n € N such that A is contained and bounded in 7} (Gu,(Us,)), and
there exists m > n such that GV(X) and 7%, (Gum(Up,)) induce the same
topology on A. On the other hand, if 1,4 denotes the inductive limit topol-
ogy then Tidla < Trs (Gum(Unm)) |4 and since

Tet (Gom (Um)14 = Tavnyla < Tindla € T (Gun(@m)y| 45

it follows that ind;r} (G, (Us)) and rf, (Gum(Us)} induce the same topology
on A.
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Finally, since GV (X)) is a (DF)-space, a theorem of Grothendieck {[19],

Thm. 3) guarantees that the identity mapping GV (X) — ind,, rf (Gun(U.))
is continuous. =

The next corollary can be obtained as a consequence of the above the-
orem and Corollary 5(d} of [6]. (It also follows from Theorem 11, Proposi-
tion 6(b) and [15], Theorem 3.1).

COROLLARY 28. Under the hypotheses of Lemma 24, HV (X) is a quasi-
normable Fréchet spoce.
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On operator ideals related to
(p, o)-absolutely continuous operators

by

J. A LOPEZ MOLINA and E. A. SANCHEZ PEREZ (Valencia)

Abstract. We study tensor norms and operator ideals related to the ideal Pp o,
1<p<oo,0<e <], of (pa)-absolutely continuous operators of Matter. If @ is the
tensor norm associated with Pps (in the sense of Defant and Floret), we characterize the
(a’)t—nuclear and (a’)t~ integral operators by factorizations by means of the composition of
the inclusion map L™ (i) — L (1) +LP () with a diagonal operator By : L% (u) — L7 (p),
where r is the conjugate exponent of p' /(1 - &). As an application we study the reflexivity
of the components of the ideal Pp,q.

1. Introduction. The ideal P, of {p, o)-absolutely continuous oper-
ators was introduced by Matter [8] in order to get a classification of the
absolutely continuous operators previously defined by Niculescu [10]. Since
Py 18 a maximal ideal, it is interesting to study the tensor norm o (or
the transposed o) associated with P, and the properties of the opera-
tor ideals naturally related to o. The results obtained could be applied to
study the metric properties of o as well as some topological properties of
the components of P, . As far as we know, this work has not been done
yet. Concretely, the main questions can be reduced to the following:

1. Find the tensor norm o such that (E®.F) = Ppq(F, E') for every
pair of Banach spaces E and F.
9. Characterize the q-nuclear and o-integral operators.

Tn this spirit, we have characterized in [6] the tensor norm gy .o which
solves question 1. In the present paper we give o full answer to problem 2.
Although this can be done without any reference to tensor products (Def-
initions 2 and 4 below have a meaning in the context of purely operator
ideals), we have chosen the tensorial approach for two reasons. The first one
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Key words and phrases: tensor norms, operator ideals, (p,o)-absolutely coptinuous
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