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Tauberian theorems for Cesaro summable
double integrals over }Rﬁ_

by
FERENC MORICZ (Szeged)

Abstract. Given f € L (B), denote by s(w, ) its integral over the rectangle
[0,w] % [0,2] and by o{u,v) its (C,1,1) mean, that is, the average value of s(w, z) over
[6,u] x [0, %], where u,v,w,2z > 0. Qur permanent assumption is that (*) o(u,v) — A4 as
u,v — 00, where A is a finite number.

First, we consider real-valued functicns f and give one-sided Tauberian conditions
which are necessary and sufficient in order that the convergence (#x) s(u,v) — A as
u, v — oo follow from (*). Corollaries allow these Tauberian conditions to be replaced
either by Schmidt type slow decrease (or increase) conditions, or by Landau type one-sided
Tauberian conditions.

Second, we consider complex-valued functions and give a two-sided Tauberian con-
dition which is necessary and sufficient in order that (#x) follow from (x). In particular,
this condition is satisfied if s(v, v) is slowly oscillating, or if F(2,y) obeys Landau type
two-sided Tauberian conditions.

At the end, we extend these results to the mixed case, where the (€, 1,0) mean, that
is, the average value of s(w,v) with respect to the first variable over the interval [0, 4], is
considered instead of o11(u, v} := o(u,v).

1. Summability (C,1,1) of double integrals over R2 . We remind the
reader that a complex-valued function f(z,y) is said to be locally integrable
over R3, := [0,00) X [0, 00), in symbols f & L, (B2 ), if for all 0 < u,v < oo
the integral

u v
S(’u.,’l)) = S S fla,y)dz dy
00

2000 Mathematics Subject Classification: 40B05, 40E05.

Key words und phrases: improper double integral, convergence in Pringsheim’s sense,
Cesiro summability (C,1,1), (C,1,0), and (C,0,1), one-sided and two-sided Tauberian
conditions, Schinidt type slow decrease (or increase), slow oscillation, Landau type Taube-
rian conditions.
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exists in Lebesgue’s sense. We set

1
o(u,v) = o lu,v) = o s(w,2)dwdz, w,v>0.

O s B
[ )

We recall (for single integrals, see e.g. [1, p. 11} or [6, p. 26]) that the (formal)
integral

o0 QO
(1) [ § fe.v) dady
00
is said to be (Cesdro) summable {C,1,1) to a finite number A if
(1.2) lim o(u,v)=A4
U U—+ 00

‘We use the notion of convergence in Pringsheim’s sense, that is, in (1.2)
and (1.3) below, both » and v tend to co independently of each other.

It is plain that if the limit
(1.3) lim s(u,v) =

u,U—00
% flz,y)dady
converges) and if the function s(u,) is bounded on B3, then the limit {1.2)
also exists. The converse statement is not true in general, even if s(u,v) is
bounded on R% .

However, if the fanction f(x,y) is of constant sign on R?2 , then the limit
(1.2) exists if and only if the limit (1.3) exists, which in turn is equivalent
to the boundedness of s{u, v) on R?f' This follows immediately by Fubini’s
theorem:

exists (in other words: the double improper integral S;m

olu,v) = ul_véé dwdzgéf(a:,y)dwdy

uw
= {1 —2/w)(1 = y/v)f(,v) du dy.
0o
It is also plain that summability (C,1,1) of the integral (1.1) does not
depend on the values of f(x,y) assumed on any finite rectangle (0,ug) X
(0,v0), where up, vp > 0 are fixed.
We refer to [4], where the reader can find the basic notions and results

on the interrelation between convergence and Cesdro summability (C, 1) of

integrals over R, .

2. Main results. First, we consider the special case where the function f
assumes only real values. In Theorem 1, we give one-sided Tauberian con-
ditions which are necessary and sufficient in order that convergence follow
from summability (C,1,1).
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'THEOREM 1. If a realvalued function f € Li (R%) is such that the

integral (1.1) is summable (C,1,1) to a finite number A, then we have (1.3)
if and only if

Au Av
2.1 sup lim inf 3
1) A>Ii fgﬂr&o (A —u)(Av — v) 181 5 [s(z,y) — s{u,v)]dxdy >0

and

(2.2) sup liminf

u oy
DAL B0 00 ('u,w)\u v — Av) )\S AS'” (u, v} - s(z, )] dz dy > 0.

If conditions (2.1) and (2.2) are satisfied, then we necessarily have

1 Au Au

(2.3) u,Li—I—I}Do SR Y ‘ S [s(z,y) — s{u,v)]dzdy =0
for every A > 1, and
U Y
(2.4) uiiglm = )\u o = ) S S (s(u,v) — s(z,y)]dredy =0
)\u Av

for every 0 < X < 1.
A few comments are appropriate here.

(i) A real-valued function s(u,v) defined on R} is said to be slowly
decreasing with respect to the first variable if

(2.5) Eﬁo]inuliguglg\ fs(z,v) — s{u,v)] 2 0

In other words, this means that for every ¢ > 0 there exist ug > 0 and A > 1
such that
s(z,v) — s{u,v) > —¢ whenever up <u <z < A and ug < v.
The term “slowly decreasing” was introduced by Schmidt [5] for single se-
quences of real numbers, (See also [1, pp. 124-125].)
Analogously, a function s(u,v) defined on R2 is said to be slowly de-
ereasing with respect to the second variable if

o . _ N
(2.6) ym liminf min [s(u,y) — s(u,v)] 2 0

(ii} We prove that condition (2.5) is equivalent to the following:
(2.7 lim liminf min [s(u,v) — s(z,v)] 2 0.

A L) D00 AuLo<u
In fact, if for some A > 1 we have

lim inf min)‘ [s(z,v) — s{u,v)] =L

w00 yLwLiu



44 F. Méricz

where I is a finite number, then

<
2%1—1&{ e 1121(11 [s(z,v) — s(w,v)] £ L

Conversely, it is also true that if the latter lower limit equals some L, then
the former cannot exceed L.

Condition (2.8) can be reformulated in an analogous manner.

In Corollary 1, we give Tauberian conditions, in terms of Schmidt type
slow decrease, sufficient for convergence to follow from summability {C, 1, 1).

COROLLARY 1. If o real-valued function f € LL (R2) is such that the
integral (1.1) is summable (C,1,1) to a finite number A, and the function
s(u,v) is slowly decreasing in each variable, then we have (1.3).

(iii) In particular, condition (2.5) is satisfied if there exist constants
H > 0 and =g > 0 such that
o
(2.8) mS Flz,2)dz > —H for almost every (z,v) € R with z,v > zq.
0
Similarly, condition {2.6) is satisfied if
w
(2.9) yS flw,y)dw > —H for almost every (u,y) € ]Ri_ with u,y > xg.
0
For single sequences of real numbers, an analogous condition was introduced
by Landau [2].
In Corollary 2, we give Landau type one-sided Tauberian conditions suf-
ficient for convergence to follow from summability (C, 1, 1).

CorOLLARY 2. If a real-valued function f € Li (R%) is such that the
integral (1.1} is summable (C,1,1) fo a finite number A, and conditions
(2.8) and (2.9) are satisfied, then we have (1.3).

(iv) The symmetric counterparts of conditions (2.1) and (2.2) read as
follows:
Au v

1
2.10 inf I - :
(2.10) 55 ﬁli%f (Au ~ u)(Av — ) i E s(@,y) — s(v,v)dwdy <0

and

U

(2.11) O‘mf lim sup s(u,v) — s(z,y)] dedy < 0.

<A<LY ww—co (’Lt. - )\u)(v - )\U )\S )\Sv

Now, Theorem 1 remains true if conditions (2.10) and (2.11) are sub-
stituted for (2.1) and (2.2). The proof runs along the same lines as that of
Theorem 1. In particular, it follows that if the integral (1.1) is summable
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(C,1,1) to a finite number and conditions (2.10) and (2.11) are satisfied,
then conditions (2.1) and (2.2) are also satisfied; and vice versa.

(v) Accordingly, we may say that a function s(u,v) defined on R? is
slowly increasing with respect to the first varieble if
(2.12) lnlri limsup max [S(m,'u) - s(u,v)] €0

upoe 2L

(cf. (2.5)), or equivalently, if for every € > 0 there exist ug > 0 and A > 1
such that

s(z,v) — s(u,v) <& whenever up < u < < luand uy < v.
(vi) Analogously to (2.7), condition (2.12) can be reformulated as follows:

lim hmsup)\max [s(u,v) — 5(z,0)] €0

A—1-0 uu—oa AU

(cf. (2.7)). Furthermore, the existence of constants H > 0 and zo > 0 such
that
v
T S fz,2)dz < H for almost every (z,v) € R: with z,v > g
0
is a Landau type condition sufficient for the fulfillment of (2.12).

The slowly increasing property as well as a Landau type condition with
respect to the second variable are defined in an analogous manner.

In this way, one can formulate the symmetric counterparts of Corollar-
ies 1 and 2 by substituting “slowly increasing” for “slowly decreasing” and
conditions (2.12) and its symmetric counterpart with respect to v for (2.8)
and (2.9), respectively,

Second, we consider the general case where the function f assumes com-
plex values. In Theorem 2, we give a two-sided Tauberian condition which is

necessary and sufficient in order that convergence follow from summability
(C,1,1).

THEOREM 2. If o comples-valued function f € LL (R2) 1s such that the
integral (1.1) is summable (C,1,1) to a finite number A, then we hove (1.3)
if and only if

Au Ay
1
i i 3 ,y) — s(u,v)| dedy| = 0,
(2.13) 0(;)1;15’1; %ﬁlmp D 00w U)ii[s(w y) — s(u, v)| dz dy

in which case we necessorily have (2.3) for every A > 1, and (2.4) for every
0< A<l

Again, one can make similar comments as in the real case above. In
addition, Theorem 2 can be extended to functions with values in ordered
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linear spaces over the real numbers. We do not enter into details. Instead,
we formulate two corollaries of Theorem 2.

In Corollary 3, we give Tauberian conditions, in terms of Schmidt type
slow oscillation, sufficient for convergence to follow from summability
(C,1,1).

COROLLARY 3. If a complea-valued function f € L (R}) is such that
the integral (1.1} is summable (C,1,1) to a finite number A,

2.14 lim 1 - -
(234 i fmsup, e el v) = st o)
and

. =0
(2.15) yim limsup max |s(u,y) — s(u,v}} =0,

then we have (1.3).

We recall that a complex-valued function s(u,v) defined on RZ is said
to be slowly oscillating with respect to the first variable if condition (2.14) is
satisfied. In other words, this means that for every ¢ > 0 there exist ug > 0
and A > 1 such that

|s(z,v) — 8(u,v)| <& whenever up <u<z < Auandyy <v.

Analogously, s(u,v) is said to be slowly oscillating with respect to the
second vaeriable if condition (2.15) is satisfied.
Again, it is not difficult to check that (2.14) is equivalent to the following
condition:
lim i - = 0.
D U U0 R, fotee) —slm ) =0
Condition (2.15) can be reformulated in an analogous manner.

In Corollary 4, we give Landau type two-sided Tauberian conditions
sufficient for convergence to follow from summability (C,1,1).

COROLLARY 4. If a complez-valued function f € Ll (R%) is such that
the integral (1.1) is summable (C.1,1) to a finite number A, and there ewist
constants H > 0 and zo > 0 such that

v

(2.16) |ch Fz, 2) dz‘ <H forae (z,v) € R with z,v > o,
0

and

(2.17) ‘y S flw,y) dw| < H forae. (u,y) € ]R:r"l_ with u, y > T,
0

then we have (1.3).
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3. Proofs. We begin with the following auxiliary result, which is inter-

esting in itself.

LEMMA 1. If the integral (1.1) is summable (C, 1,1) to a finite number A,
then for every 0 << A < oo, A # 1, we have

1

Au v

(3.1) lim

U,U—00 ()\U“"'U')()\‘U—-rv) S S S(m,y} dxdy = A.

Proof. CASE A > 1. By definition,

1 Au Av
Tu—0) (e =) 5 S s(z,9)
Au Av o Au

= g(Au, Av) +

+ Ay, Au) ~

1
PEsiid

1
. 1[0()\10, Av) —

dx dy

a{Au,v) —

Now, (3.1} follows from (1.2).

o(u, Av) + a(u,v))].

oM, v)] + ml—[ (A, Av) — o(u, Av)]
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Case 0-< A < 1. This time, we have

1
(v — Au)(v — Av)

u v

S S s{z,y) dz dy
Au Ay

1 1 1 Auwv
+1__A(1- 14)% S Ss(m,y)dmdy

[o(Au, v) ~o{Au, dv)]+

[o(u, Av)—o (Au, Av)] + o (Au, Av).

1-2 1-A
Again, (3.1) follows from (1.2). =

Proof of Theorem 1. Necessity. Assume (1.2) and (1.3). By Lemma 1,

1 Ay Ay
u%inw (Au u)( U) S S [S(m!y) - S(’LL,’U)] dz dy
Au Av
= lim ! S S s{z,y) dx dy

U, U—O0 (A’h’, — 'Ll)()\'U' - ’U)

™ou

— lim s{u,v)=A-A=0.
WU—00

This proves (2.3) in case A > 1, and (2.4) in case 0 < A < L.

Sufficiency. Assume (1.2), (2.1), and (2.2). We have to prove that (1.3)
is also satisfied. To this end, let £ > 0 be given. By (2.1) there exists Ay > 1
such that
Aru Av

| § [s(z.0) - s(u,v)] dedy > —,

U Kl

2
(32} i e v = 9)
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and by (2.2) there exists 0 < Ay < 1 such that

1 o
3 li ) -
(3 ) JI??JIDIO (u Aou) (v — )\2'0) A§ )\S [S(U,U) S(-’L‘;y)] drdy > —c¢.
U Ay

By (1.2) and Lemma 1, for every A > 1 we have
1 Au v

1351-{%5 (Au = u)(Av — v} 5 § [s(z, ) ~

s(u, v} dz dy = A — limsup s(u, v);

U,V s OO

while for every ) < A < 1,

1 U v
A W T A }u }v[S(u, v) = sz, y)l de dy = lixa inf s(u, v) -

Thus, (3.2) and (3.3} are equivaleni to the following:
A—e< Lqufl_l.rég s(u,v) < limsups(u,v) <A+e.

As € > 0 can be arbitrarily small, (1.3) follows. =

Proof of Corollary 1. We show that conditions (2.5) and (2.6) imply (2.1)
and (2.2) in Theorem 1. In fact, by the obvicus estimate

1 A Au

Ot = 2) (3w — ) Vs ) -

u v

s{u,v)] dz dy

> min [s(z,y) -

uLeAu
v<yLAv

we find that (2.5) and (2.6) are sufficient for (2.1) to hold.
In an analogous way, one can deduce (2.2) from {2.5) and (2.6). w

Proof of Corollary 2. It is plain that conditions (2.8) and (2.9) imply
(2.5) and (2.6), respectively, and Corollary 1 applies. u

s(u,y)] + vggv[s(u7 y) - S(un 'U)]:

Proof of Theorem 8. Tt also relies on representations (3.1) and (3.2),
and is modelled after the proof of Theorem 1. We leave the details to the
reader. w

Proof of Corollary 8. We show that conditions (2.14) and (2.15) imply
condition (2.13) in Theorem 2. Indeed, it is plain that

Au Ay
S S [8{z,y) ~ s{u,v)] dz dy

W

1
(Au —~w){Av — )

< max ls@) = s(wy)|+ max lstuy) - s(u, v}
vEySA

Thus, (2.14) and (2.15) are sufficient for (2.13) to hold. w
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Proof of Corollary 4. It is obvious that conditions (2.16) and (2.17) imply
(2.14) and (2.15), respectively, and Corollary 3 applies. =

4. Summability (C,1,0) of double integrals over RZ. Given a
complex-valued function f € Li, (K% ), we set

c1o(u,v) == %Ss(w,v)dw =SS (1 - Z)f(m,y)dmdy, u, v > 0.
0 0o

We recall that the integral (1.1) is said to be { Cesaro) summable (C, 1,0) to
a finite number A if

lim op(u,v) = A
2, u—+ 0O

Analogously to summability {(C,1,1), one can develop the theory of
sumnmability (C,1,0) of double integrals over R2 . Because of similarity, we
only sketch it without detailed proofs.

First, we consider the real case. In Theorem 3, we give one-gided Taube-
rian conditions which are necessary and sufficient in order that convergence
follow from summability (C1,0).

THEOREM 3. If o real-valued function f € L1 (R3) is such that the
integral (1.1) s summable (C,1,0) to a finite number A, then we have (1.3)
if and only if

Au

(4.1} sup lim inf S [s(x,v) — s(u, v} dz > 0
A1 U0 AU — Y "

and

(4.2) sup liminf 1 S [s(u,v) — s{z,v)] dz = 0.

o<rcrwv—os (u = Au) )

If conditions (4.1) and (4.2) are satisfied, then we necessarily have

1 Au
lim S [¢{z, v) — s{u,v)]dz =0

U, V00 Au — U
w

for every A > 1, and

lim
Uy u—00 1 — Al

Jorevery 0 < A< 1.

Corollaries 5 and 6 allow these Tauberian conditions to be replaced either
by a Schmidt type slow decrease condition, or a Landau type one-sided
Tauberian condition.
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. COROLLAR}’ 5. If a real-valued function f € LL (R2) is such that the
integral (1.1) is summable (C,1,0) to a finite number A and the function

s(u,v) is slowly decreasing with respect to u, then we have (1.3)

COROLLARY 6. If a real-valued function f & L (R%) is such that the

integral (1.1) is summable (C,1,0) to a finite number A and condition (2.8)
is satisfied, then we have (1.3).

Second, we consider the complex case. In Theorem 4, we give a two-
sided Tauberian condition which is necessary and sufficient in order that
convergence follow from summability (C, 1, 0).

THEOREM 4. If a compler-valued function f € L} (B2 ) is such that the

integral (1.1} is summable (C,1,1) to a finite number A, then we have (1.3)
if and only if

Au
nf I _ =
O%\Iifl 1;1;1&1;1}3 — X [s(z,v) — s{u,v)] dz| = 0,

in which case we necessarily have (4.1) for every A > 1, and (4.2) for every
0< A<l

Corollaries 7 and 8 allow these Tauberian conditions to be replaced either
by a Schmidt type slow oscillation condition, or by a Landau type two-sided
Tauberian condition.

COROLLARY 7. If a complen-valued function f € Li (R) is such that
the integral (1.1} is summable (C,1,0) to a finite number A and condition
(2.14) is satisfied, then we have (1.3).

COROLLARY 8. If a comples-valued function f € Li, (R3) is such that
the integral (1.1) 1s summable (C,1,0) 0 a finite number A and condition

(2.16) is satisfied, then we have (1.3).

The proofs of Theorems 3 and 4 are based on the following auxiliary
result, which is a partial counterpart of Lemma 1.

LeMMA 2. If the integral (1.1) 48 summable (C,1,0) to a finite number A,
then for every 0 < A < 00, A5t 1, we have

Au
u,i;lﬂ}m S 5 s(z,vide = A.

‘We close our paper with two remarks.

REMARK 1. The (Cesaro) summability (C,0,1) of the integral (1.1) is
defined by the convergence of the mean
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u U v

oor(u,v) = 1&5 (u, z) dz;”(l — g)f(w,y)dmdy as u,v — 00,
Yo 0o v

Fach of Theorems 3, 4 and Corollaries 5-8 has a symmetric counterpart

when summability (C,0, 1) is considered in place of summability (C,1,0) of

the integral (1.1).

REMARK 2. Analogous results were proved in [3] for double numerical
series with rectangular partial sums s;z, j,k = 0,1,2,... Making use of the
method of this paper, we are now able to improve some of those results.
For example, [3, Corollary 1] remains valid if we drop the condition of slow
decrease in (1,1) sense. Likewise, condition (2.3) in [3, Corollary 2] and
condition (5.1) in [3, Corollary 5] are superfluous.
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Vector series whose lacunary subseries converge
by
LECH DREWNOWSKI (Poznad) and IWO LABUDA (University, MS)
Abstract. The area of research of this paper goes back to a 1930 result of H. Auerbach
showing that a scalar series is (absolutely) convergent if all its zero-density subseries

converge. A serles ), ¥n in a topological vectar space X is called L-convergent if each of
its lacunary subseries }; @n, (ie. those with ngy — ns — oo) converges. The space X

" is said to have the Lacunary Convergence Property, or LCP, if every L-convergent series

in X is convergent; in fact, it is then subseries convergent. The Zero-Density Convergence
Property, or ZCP, is defined similarly though of lesser importance here. It is shown that
for every L-convergent series the set of all its finite sums is metrically bounded; however,
it need uot be topologically bounded. Next, a space with the LCP contains no copy of
the space cg. The converse holds for Banach spaces and, more generally, sequentially
complete locally pseudoconvex spaces. However, an F-lattice of measurable functions is
constructed that has both the Lebesgue and Levi properties, and thus contains no copy
of ¢y, and, nonetheless, lacks the LCP, The main {and most difficult) result of the paper
is that if & Banach space F contains no copy of ¢y and A is a finite measure, then the
Bochner space Lo (A, F) has the LCP. From this, with the help of some Orlicz—Pettis type
theorems proved earlier by the authors, the LCP is deduced for a vast class of spaces of
(scalar and vector) measurable functions that have the Lebesgue type property and are
“metrically-boundedly sequentially closed” in the containing Ly space. Analogous results
about the convergence of L-convergent positive series in topological Riesz spaces are also
obtained. Finally, while the LCP implies the ZCP trivially, an example is given that the
converse is falge, In general.

1. Introduction. We first recall a few more or less standard definitions
and facts. As usual, a series in a topological vector space X is said to be con-
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