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u U v

oor(u,v) = 1&5 (u, z) dz;”(l — g)f(w,y)dmdy as u,v — 00,
Yo 0o v

Fach of Theorems 3, 4 and Corollaries 5-8 has a symmetric counterpart

when summability (C,0, 1) is considered in place of summability (C,1,0) of

the integral (1.1).

REMARK 2. Analogous results were proved in [3] for double numerical
series with rectangular partial sums s;z, j,k = 0,1,2,... Making use of the
method of this paper, we are now able to improve some of those results.
For example, [3, Corollary 1] remains valid if we drop the condition of slow
decrease in (1,1) sense. Likewise, condition (2.3) in [3, Corollary 2] and
condition (5.1) in [3, Corollary 5] are superfluous.
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Vector series whose lacunary subseries converge
by
LECH DREWNOWSKI (Poznad) and IWO LABUDA (University, MS)
Abstract. The area of research of this paper goes back to a 1930 result of H. Auerbach
showing that a scalar series is (absolutely) convergent if all its zero-density subseries

converge. A serles ), ¥n in a topological vectar space X is called L-convergent if each of
its lacunary subseries }; @n, (ie. those with ngy — ns — oo) converges. The space X

" is said to have the Lacunary Convergence Property, or LCP, if every L-convergent series

in X is convergent; in fact, it is then subseries convergent. The Zero-Density Convergence
Property, or ZCP, is defined similarly though of lesser importance here. It is shown that
for every L-convergent series the set of all its finite sums is metrically bounded; however,
it need uot be topologically bounded. Next, a space with the LCP contains no copy of
the space cg. The converse holds for Banach spaces and, more generally, sequentially
complete locally pseudoconvex spaces. However, an F-lattice of measurable functions is
constructed that has both the Lebesgue and Levi properties, and thus contains no copy
of ¢y, and, nonetheless, lacks the LCP, The main {and most difficult) result of the paper
is that if & Banach space F contains no copy of ¢y and A is a finite measure, then the
Bochner space Lo (A, F) has the LCP. From this, with the help of some Orlicz—Pettis type
theorems proved earlier by the authors, the LCP is deduced for a vast class of spaces of
(scalar and vector) measurable functions that have the Lebesgue type property and are
“metrically-boundedly sequentially closed” in the containing Ly space. Analogous results
about the convergence of L-convergent positive series in topological Riesz spaces are also
obtained. Finally, while the LCP implies the ZCP trivially, an example is given that the
converse is falge, In general.

1. Introduction. We first recall a few more or less standard definitions
and facts. As usual, a series in a topological vector space X is said to be con-
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vergent (resp. bounded) if the sequence of its partial sums is convergent (resp.
bounded) in X. Tt is called subseries convergent (resp. subseries bounded)
in X if each of its subseries is convergent (resp. bounded). A strictly in-
creasing sequence (ny) of positive integers, or the set {n1,ng,...}, is called
lacunary if limpg (ngiq —nx) = oo, and of density zero if limg (k/ng) = 0. The
lacunary subseries (resp. zero-density subseries) of a given series are those
corresponding to lacunary secuences of indices (resp. sequences of indices of
density zero).

As is well known, a subseries convergent series is unconditionally con-
vergent, and the converse holds in sequentially complete spaces. Next, the
range of a subseries convergent series, that is, the set of sums of all its (fnite
and infinite) subseries, is compact. Also, a series Is subseries bounded iff it
is perfectly bounded, i.e., the set of all its finite sums is bounded.

Our point of departure is a 1930 result of Auerbach [Au, Hilfsatz], ob-
tained already in 1923 (Ioc.cit., Footnote 1), originally stated for series with
positive terms:

(A) A scalar series is subseries (or unconditionally, or absolutely) con-
vergent provided each of 115 zero-density subseries converges.

Without mentioning Auerbach, this result reappeared in a 1947 paper
by Agnew [Ag, Thm. 1], a 1986 paper by Estrada and Kanwal [EK, Thm. 1],
a 1989 paper by Noll and Stadler [NS, Lemma on p. 116] and, in a stronger
form, in the already mentioned paper by Agnew [Ag, Thm. 2], and a 1981
paper by Sember and Freedman [SF, Prop. 2]:

(B) A scalar series is subseries convergent provided each of its lacunary
subseries converges.

Some other extensions of (A) can be found in Pastéka [P] and Drewnow-
ski, Florencio and Paxil [DFP]. We note that the proofs given by the authors
mentioned so far are essentially variations of Auerbach’s; in fact, Auerbach’s
original proof is also a proof of {B).

On the other hand, also without any reference to Auerbach, in 1965
Orlicz studied the questions of boundedness or convergence of those series
in Banach spaces whose zero-density subseries were bounded or convergent.
In particular, he proved the following two results (O, Thm. 2’ and Thro. 3.B]:

(C) A series in o normed space is subseries bounded provided it has a
“large” set of bounded zero-density subseries.
(D} A series in o weskly sequentiolly complete Banach space is subseries

convergent provided it hos o “large” set of convergent zero-density
subseries.

Orlicz used Baire category methods, and the “large” sets of subseries
in the statements above correspond to the second Baire category sets in a
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suitable metric space of zero-density sequences; see the remark at the end
of Section 3 below. He also considered similar questions for the convergence
and boundedness in measure of series of measurable functions, but did not
arrive at conclusive results.

It seemed natural to examine to what extent the results of the above
types were valid for series (or some special series, e.g. those with positive
terms) in more general spaces. Working in this direction, we have recently
proved in [DL1] the following.

(E)  For o finite measure ), a series in the F-space Lo()\) is subseries
convergent provided each of ils lacunary subseries converges.

In this paper we not only generalize all the previous results mentioned
so far, but also give a more systematic, comprehensive account of our in-
vestigations arising in connection with the lacunary convergence of series in
abstract spaces.

Throughout, we use the abbreviations TVS and TRS for Hausdorff topo-
logical vector space and Hausdorfl locally solid topological Riesz space, re-
spectively. As a rule, we follow [J] and [AB] in the terminology concerning
such spaces.

We introduce the following definitions.

Let £ denote the family of all lacunary subsets of N, We shall say that
a series is L-convergent (resp. L-bounded) if each of its lacunary subseries,
or L-subseries for short, is convergent (resp. bounded). We shall say that a
Tv$ X has

¢ the Lacunary Convergence Property, LCP, if every L-convergent series
in X is convergent;

e the Lacunary Boundedness Property, LBP, if every L-hounded series
in X is bounded.

If X is a TRS and the above requirements concern positive series only, we
obtain

o the Positive LCP, and the Positive LBP.

The following two facts are easily verified and will be used without explicit
reference:

1) If a series is L-convergent (resp. L-bounded), then each of its L-
subseries is subseries convergent {resp. subseries bounded), and each of its
subseries is L-convergent (resp. L-bounded).

2) If a TvS X has the LCP (resp. LBP), then every L-convergent (resp.
L-bounded) series in X is subseries convergent (resp. subseries bounded).
Likewise for the Positive LCP and the Positive LBP when X is a TRS.
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Similar definitions apply, and similar facts hold, if £ is replaced by the
family Z of all subsets of density zero in N. In this case we speak about the
Zero-Density Convergence (vesp. Boundedness) Property. Since L is a proper
subclass of 2, the lacunary properties are stronger than their zero-density
counterparts. Although in many cases these two properties are equivalent,
it is not so in general (see Example 11.4).

We now describe briefly the content of the paper. We start with two
basic though relatively easy results. First, we prove that

(1) Buvery L-bounded (in particular, L-convergent) series in a TVS is sub-
series metrically bounded.

‘We recall that a sequence or set A in a Tvs X is sald to be mefrically
bounded (or additively bounded) if every continuous F-seminorm in X is
bounded on A, or equivalently, if for every neighborhood U of zero in X
there is n such that A € U + ...+ U {n summands). Note that if X is a
TRS, then it is enough to use continuous Riesz {or monotone) F-seminorms
(and solid neighborhoods of zero).

QOur second result shows that there is a natural limitation on the class
of spaces enjoying the Lacunary Convergence Properties:

(2)  If a TVS has the LCP, then it contains no copy of co. If a TRS has
the Positive LCP, then it contains no positive copy of co.

It is seeking various converses to the latter statement that will talke most
of our effort in this paper. In view of the known results characterizing the
spaces without copies of ¢g, the case of locally pseudoconvex spaces is easy:

(3)  If o sequentially complete locally pseudoconvexr TVS contains no copy
of cg, then it has the LCP. If a sequentially complete locally pseudo-
convex TRS contains no positive (or lattice) copy of co, then it has the
Positive LCP.

In our approach to the non-locally pseudoconvex case, the following two
results about Lg spaces of measurable functions, with the topology of con-
vergence in (sub)measure, are of primary importance. They may be viewed
as the main results of the paper.

(4)  For each order continuous submeasure p, the space Lo(u} has the
Pogitive LCP,
(5)  For each finite measure A and every Bonach space E conlaining no

copy of co, the space Lo(X, E) of E-valued A-measurable functions has
the LCP.

As in [DL1], where the scalar case (E) of (5) has been established, we
prove (4) and (5) by intertwining, roughly speaking, combinatorial argu-
ments of Auerbach’s type with standard measure-theoretic arguments in-
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volving Egoroff’s theorem., However, in contrast to the self-contained proof
of (4), in proving (5) we crucially depend on a result essentiaily due to
Kwapien and Hoffmann-Jgrgensen which is a vector-valued form of the Or-
licz Theorem used in [DL1].

Actually, the two regults just stated, in particular (E), hold true for the
larger classes of locally order continuous submeasures p, and locally finite
measures A of type (5C), ie. those whose Ly space is sequentially com-
plete.

‘We then apply (4) and (5) to those TRSs and suitable Tvs’s X that
can be continuously embedded in an Ly space of one of the above types.
Qur idea is the following: Consider a positive (resp. arbitrary) L-convergent
series in X. Then it is also L-convergent in Ly whence, by (4} or (5), sub-
series convergent in L. Now, suppose we know that () the Lg-sums of all
the subseries are in X. Then our series is subseries convergent in X pro-
vided that X is a o-Lebesgue TRS {resp. X has the Orlicz—Pettis property
relative to Lg), and we are done. As we see it, the most essential point
in this approach is (). To ensure (x), we introduce some conditions on
X that are strongly motivated by (1) and, therefore, are metric in charac-
ter.

Tn the case of positive series in TRS’s, we use a strengthening of the famil-
iar disjoint Levi property. We say that a TRS X has the digjomnt metric Levi
property if cvery disjoint positive sequence in X with metrically bounded
partial sums has a supremum in X. Combining (1) and (4) with a represen-
tation theorem (Theorem 2.3) yields our most general result about positive
series:

(6) If aTrs X 18 Dedekind complete, Lebesgue, and has the disjoint met-
ric Levi property, then it has the Positive LCP.

The other type of spaces considered is that of topological vector spaces X
of Bochner measurable functions with values in a Banach space E, a class
recently introduced and studied in [DL4]. In this case we impose on X the
requirement that X C Lo(A, E) continuously and is metrically-boundedly
sequentially closed there. That is, the sequential closure of a metrically
hounded subset of X, taken in Lo(), E), is again a set in X. This is a
metric version of a similar topological condition used in [DLA4]. Then, by
combining (1) and (5) with an Orlicz-Pettis type theorem (Theorem 2.5),
we obtain the following.

(1) Let the Banach space E contain no isomorphic copy of co, the measure
X be of type (SC), and assume that a TVS X of E-valued A-measurable
functions is continuously included in Lo(\ E). If X is A-continuous
and metrically-boundedly sequentially closed in Lo(X, E), then it has
the LCP.
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Towards the end of the paper, we construct in Example 11.1 a Lebesgue
Levi F-lattice (of measurable functions) failing both the Positive Lacunary
Convergence Property and the Positive Lacunary Boundedness Property.
In fact, it contains a Z-convergent positive series all of whose subseries of
nonzero density are unbounded.

2. A few basic notions and results. We collect here some notions
and results that will be of primary importance in what follows, or at least
are worth noting for the sake of clarity.

Following Ortlicz (see e.g. [MO]), a Tvs X is said to have

e Property (O) if every subseries (or perfectly) bounded series in X is
gubseries convergent.

X is said to contain a copy of ¢ if there exists a linear homeomorphism from
the Banach space ¢y onto a subspace of X. Evidently, if X has Property (O),
then it contains no copy of ¢p. Also the following is obvious.

2.1. PROPOSITION. In ¢ TVS with Property (O), the Lacunary Conver-
gence Property ond the Lacunary Boundedness Property are eguivalent.

Since a TRS is o-Lebesgue g-Levi iff every bounded positive series con-
verges, we also have a “positive” analogue of the above proposition.

2.2. PROPOSITION. In a o-Lebesgue o-Levi TRS, the Posilive Lacunary
Convergence Property and the Posilive Lacunary Boundedness Property are
equivalent,

We now briefly recall some terminology from [DL4] concerning submeas-
ures and spaces of Bochner measurable functions; the reader is referred to
[DL4] for more details. Thus a triple (S, X, u) is called a submeasure space
if S is a set, ¥ is a o-algebra of subsets of S, and g : & — R,. is a submeas-
ure (i.e., p is nondecreasing, subadditive, and p(P) = 0) that is assumed
throughout to be null-complete and locally order continuous. To explain the
latter condition, denote by I (u) the class of all sets B € X such that
f(B) > 0 and p is order continuous on B; that is, u(B,) — 0 whenever
B, € X, B, C B and B, | 0. Now, the assumption that u is locally order
continuous means that each A € & with u{A) > 0 contains a B € I, (1)

Let (S, &, u) be a submeasure space. We denote by Lo{u) = Lo(S, 2, 1)
the vector lattice (Riesz space) of all u-equivalence classes of measurable
scalar functions on 5. It is equipped with the locally solid vector topology

of convergence in submeasure y on all sets in I, (x). The submeasure y is
said to be of

o type (C) (resp. (SC)) if the Tvs Lo(u) is complete (resp. sequentially
complete).
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By a TRS of u-measurable functions we mean a solid subspace X of Lo (1)
equipped with a Hausdorff locally sclid topology.

Let now B be a Banach space. As in [DIL4], a function f : § — E is
called (Bochner) p-measurable if it is essentially separably valued and Borel
measurable. (For another possible definition, sce Remark 3.3 in [DI.4].) We
denote by Lo(u, E) = Lo(S, X, u; E) the space of all p~equivalence classes of
E-valued pi-measurable functions on S, equipped with the Hausdorff vector
topology of convergence in submeasure p on sets in I} (u). We say that a
subset V' of Lo(pe, B) is D-solid if

Va={laf:feV}cCV forallAc X,

By a 1vs$ of E-valued p-measurable functions we mean a Y-solid sub-
space X of Lo(u, E) equipped with a Hausdorff vector topology 7 such that

1) 7 has a base of Z-solid neighborhoods of zero;
2) each A € X7, (p) contains a B € It () such that 7|Xp is weaker
than the topology of p-a.e. uniform convergence on B.

Such a space X is said to be p-continuous (resp. sequentially p-continu-
ous) if f = v-lim; 14, f for every f € X and every net (resp. sequence) (4;)
in X' with 4, 7 5.

All of the above applies in particular when in place of a submeasure space
we arc given a measure spece {5, X, ), with a positive countably additive
measure A that is agsumed throughout to be null-complete and locally finite
(Le., each 4 € ¥ with A(A4) > 0 contains a B € ¥ with 0 < A(B) < o0)
instead of being locally order continuous. Note that in this case 2} ()) is
simply the class of sets of finite positive A measure.

The following is a somewhat specialized and modified form of the Rep-
resentation Theorem 2.7 in {L2]; for the universal completions, see [AB].

2.3. THEOREM. If o TRS X is Lebesgue, then there ewists a type (C)
submeasure space (S, X, u) such that X is continuously included as an or-
der dense sublattice in Lo(y). In consequence, the vector lattice Lo(u) 45 a
nwndversal completion of X.

The noxt result is an extension of the Orlicz Theorem used in [DL1]. It
is tmplicit in the works of Kwapied [Kw] and Hoffmann-Jgrgensen [HJ]; for
an explicit formulation and proof see [L3, Thm. 2.11]; see also Theorems 6.1
and 9.1 in [DL4].

2.4, THEOREM. If (5, £, 1)) is a measure space of type (SC) and E is o
Banach space contatning no copy of co, then Lo(X, E) has Property {0).

The following is an Orlicz—Pettis type theorem from [DL4].

2.5. THEOREM. Let (S, X, u) be o submeasure space, B a Banach space,
and X o p-continuous TVS of p-measurable E-valued functions. If a series
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in X is subseries convergent in the topology induced from Lo(p, E), then it
is also subseries convergent in the original topology of X.

Throughout, if A is a set, then F(A) stands for the family of all finite
subsets of A, and P(A) for the power set of A.

3. The lacunary and zero-density subsets of N. We begin by mod-
ifying the definitions of the families Z and L so that they include the finite
subsets of N. Here and in the sequel, we write | F| for the number of elements
of a finite set F. A set A C N is said to be

o of density zero (A€ Z) if

limd,(A) =0, where d,(A)= [AN{L,...,n}|
m ke

3

s r-rare, where r € N, if |m — m/| > r for all distinct m, m’ € A;
e lacunary (A € L) if for every r € N there is n € N such that the “tail”
set

An):=An{n,n-+1,...}
is r-rare.
3.1. PROPOSITION. (a) For every A C N and r € N the sets
A;j=An{j+(k— 1)k eN},
form a partition of A into r-rare subsets.

(b) An infinite set A C N is lacunary iff it is the union of a sequence (A, )
of finite subsets of N such that each A, is r-rare end max Ap+r < min 4, 1.

3.2. PROPOSITION. A set A C N is of density zero if and only if
]iinlAﬂ Agl/2k =0,

j=1,...,‘7‘,

where Ay = {n € N : 28 < n < 2501} for k= 0,1,2,... {Note that
| Ay = 2%.)

Proof Define [ ={j e N:1<j< 2"} for k=0,1,...If 4 € 2,
then

27MAN ARl S 27HAN L = (2- 279) I YAN | = 0 as k — oo,

Couversely, assume that the condition stated in the proposition is satis-
fied. Given n € N, let m be the greatest integer with 2™ < n. Then
m
dn{4) S 27 AN L) = > 26 R A 0
k=0
from which (by using a simple direct argument or the Silverman--Toeplitz
summability theorem) it follows that A € 2. w
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Identifying P = P(N) with the Cantor cube {0,1}¥ via the map A — 14
makes P a compact metric space. Indeed, P is a commutative metric group
(with the symmetric difference A as addition) whose topology can be defined
by the group norm g given by the formula

=1
e(4) = 271A(“)-
n=l
Clearly, A =+ o(A) is also a submeasure (in fact, a o-additive measure) on P.
Consider also two other submeasures on P, d and 4, defined by

d(A) = limsupd,(4), 4(A)=supd,(4).

Clearly, Z is precisely the null ideal of d. Furthermore, we have
3.3. PROPOSITION. Z is a first Baire category subset of the space (P, 0).
Proof In view of the definition of d, it is not difficult to see that

oQ oQ o [aa)
r={Ae?:dA)=0=J U AP :dal) < (1-g")r "}
r=1 k=1 g=1 ne=k
Since the functions d,, are continuous on {P, p), it follows that Z is an Fps
subset of {P, g}, On the other hand, Z is a proper subgroup of P, so it has
to be of the first Baire category by the Banach theorem [B, Ch. I, Th. 2]. =

A similar relationship can be displayed between L and Z. But now,
following Orlicz [O], the submeasure 6 is used to convert P into a complete
metric group (P, ) in which Z is a closed subgroup. As is easily seen, the
d-topology is stronger than the g-topology.

3.4. PROPOSITION. The ideal L in P generated by L is o first Baire
category subset of the space (Z,6).

Proof. Note that £ = Uy L, where Ly, is the class of sets that can be
written as the union of at most & lacunary sets. From a result in {DL5] it
follows that each Ly is an Fys subset of (P, ¢). In consequence, Lis an Fyge
subset of (P, p) and, a fortiori, of (Z,4d). Moreover, L is a proper subset of
Z. The theorem of Banach applies again. =

REMARK. As mentioned in the introduction, Orlicz uses Baire category
methods in [O] which are connected to the techniques of so-called Saks spaces
developed by him in several papers. (Orlicz works with the metric spaces H
and H* of zero-one sequences which correspond to (P, ¢) and (Z, §), respec-
tively.) The two propositions above, besides being of interest in themselves,
show that no results about the convergence or boundedness of Z-convergent
or Z-bounded series can be reduced to the “second category results” of Or-
licz in P and, likewise, no results about the convergence or boundedness of
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L-convergent or L-bounded series can be reduced to the “second category
results” of Orlicz in Z (compare [O] for the exact statements).

4. L-convergence and boundedness in terms of finite r-rare sets.
As is well known, a series ¥, zn, in a sequentially complete Tvs X is sub-
series {or unconditionally) convergent iff it satisfies the following Cauchy
type condition:

e For every neighborhood U of zero in X there exists m € N such that
Y onep Tn € U for all F € F(N) with min F 2> m.

We will see below that L-convergence and L-boundedness admit similar
characterizations. For m,r ¢ N, let

F(m,r) = the family of all finite r-rare sets F' C N with min F > m.

4.1. PROPOSITION. A series y . &n in o sequentially complete Tvs X is
L-convergent if and only if

(LC)  for ewery neighborhood U of zero in X there exist m,r € N such
that

> z.€U fordl FeFm,r).

ner

Proof “Only if”: Suppose (LC) is false for some U. Then we can con-
struct a sequence (A,) in. F(N) such that each A, is r-rare, max A, +r <
minAyi1and 3 o4 T & U. Then the union A of the A,'s is lacunary and
the series Ene 4 & 18 nOt convergent.

“If": Let A € L. Take any neighborhood U of zero in X and next choose
m and r according to (LC). Since A is lacunary, there is k > m such that
the tail set A(k) is r-rare. In view of (L.C), for every finite subset F of A(k)

one has 37 p@p € U. Thus the subseries 3 _, 2, is (unconditionally)
Cauchy. w

The next two propositions are established by a similar argument.

4.2, PROPOSITION. 4 series 3.z, tn a TVS X is L-bounded if and
only if

(LB)  Jfor every neighborhood U of zero in X there exist m,r,s € N such
that

2 Tn €U for all F € F(m,r).
neFr
For a series in a TVS, the properties of being metrically bounded, subseries
metrically bounded, and L-metrically bounded are defined in an obvious way.
As is easily seen, a series is subseries metrically bounded iff it is perfectly
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metricolly bounded, i.e., the set of all its finite sums is metrically bounded.
(This will be generalized in Corollary 4.6 below.)

4.3. PROPOSITION. A series >, 2y, in o TVS X is L-metrically bounded
if and only if

(LM)  for every neighborhood U of zero in X there exist m,r,s € N such
that

Z Tp €U+ ...+ U (s summands) for all F € F(m, 7).
ngl

Also perfect boundedness can be expressed in similar terms; note, how-
ever, the difference between (LB) and condition (PB) below.

4.4. PROPOSITION. A series 3, ©n in a TVS X is perfectly bounded if
and only if

(PB)  there exists r @ N such that for every neighborhood U of zero in X
there epist m, s € N such that

Z @ €U for all F € F(m,r).
neF
Proof. “Only if” holds trivially with r = 1.
“If”: Take any neighborhood V' of zero and next a balanced neighborhood
U of zero such that U ++...+ U C V (r + 1 summands). Choose m,s € N
according to (PB). Let t > s be such that > _pzn € tU for all FF C
{1,...,m}. Now, if F ¢ F(N), define Ffy = Fn{l,...,m} and choose a
partition Fy,...,F, of F'\ Fy into r-rare subsets (see Proposition 2.6(a)).
Then

Swn=3. Y @ €tUF(sU+...+sU) CHU+... +U) OV,
nelt i=0 neFy

where the last two sums have r + 1 summands. This completes the proof. m

4.5. PROPOSITION. Let ¢ : F(N) — Ry be o subadditive set function.
Suppose that

{*) sup(AN{l,...,n}) <oco forevery AeL.

Then ¢ is bounded, that is, sup{p(F) : F € F(N}} < oo.
Proof We first show that
(##)  there exist m,7,s € N such that o(F) < s for all F' € Flm, 7).

Suppose (x+) is false. Then we can construct a sequence (A.) in F(N)
such that each A, is r-rare, max A, +r < minArp ajnd cp(A,»)_ > r. Then
the union A of the A,'s is lacunary and condition () is not satisfied for A.
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Now, take any F € F(N). Let Fy = Fn{l,...,m}, and choose a partition
Fyi, ..., F of F\ Fy into r-rare subsets. Define t = sup{(E) : max F < m}.
Then, by (++), @(F) < Z;:o @(F;) € t+rs, and the assertion follows.

4.6. COROLLARY. If a series in a TVS is L-metrically bounded (in par-
ticular, L-convergent), then it is perfectly metrically bounded.

Proof. This is an easy consequence of Proposition 4.3 or 4.5. If the
series in question is L-convergent, Proposition 4.1 can be applied as well. m

REMARK. For an example of an L-convergent series that is not perfectly
(topologically) bounded, see Example 11.1 below.

A 7vs is said to be locally pseudoconves if its topology can be defined by
a family of F-seminorms each of which is an r-seminorm for some Q < r <1

{see [J, §6.5]).

4.7. COROLLARY. A TVS in which metrically bounded sets are bounded
has the Lacunary Boundedness Property. In porticular, every locally pseu-
doconvez TVS has the Lacunary Boundedness Property.

REMARK. Proposition 4.5, applied to (F) := 2 ner |on, gives the result
(B) quoted in the Introduction.

5. Lacunary Convergence Property and copies of ¢y, We start
with the following.

5.1. PROPOSITION. If 6 TVS X has the Zero-Density Convergence Proy-
erty, then it contains no copy of cp.

Proof. It suffices to construct a Z-convergent series in ¢y which is non-

convergent. Let (e, )} be the sequence of unit vectors in ¢o. Define a sequence
(zn) in ¢y as follows:

Tp =2_’°ek+1 forme€ Ag, k=0,1,2,...,
where Ax = {n € N:2¥ < < 2%M}. Then for any A CN,

o
nEANA

From this, and in view of Proposition 3.2, it follows easily that the series
> mea®n converges if Ac 2. u

Since the proof of the next proposition appeals directly to (B) of the
introduction, we decided to state it separately; it will be generalized in
Theorem 5.3.

5.2. PROPOSITION. A Banach space (more generally, a sequentially com-

plete locally conver space) has the Lacunary Convergence Property iff it
contains no copy of eg. .
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Proof. In view of Proposition 5.1, we only have to verify the “if”
part. Assume a Banach space X contains no copy of cp, and let Y onTn
be an L-convergent series in X. Then applying (B) it is easily seen that
3o 3% (@n)| < oo for all * € X*. Hence, by a well-known result of Bessaga
and Petezyniski [BP, Thm. 5], the series > Tn converges in X. w

In a locally pseudoconvex space, every perfectly bounded series is con-
vexly bounded (cf. [R, Thrn. 3.6.11]). This fact combined with Corollary 4.7,
Proposition 5.1, and [DL3, Prop. 1.3] yields the following.

5.3. THEOREM. For a sequentially complete locally pseudoconver TvS X,
the following are equivalent.

(a) X contains no copy of cg.
(b) X has the Zero-Density Convergence Property.
(¢) X has the Lucunary Convergence Property.

We say that a TRS X contains a positive copy of cq if there is a positive
linear homeomorphism from the Banach lattice ¢g onto a subspace of X,
and that it contains o lattice copy of ¢y if there is a homeomorphic Riesz
isomorphism from ¢y onto a sublattice of X.

Since the series in ¢ constructed in the proof of Proposition 5.1 is posi-
tive, that proof also shows the following.

5.4. PROPOSITION. If a TRS X has the Positive Zero-Density Conver-
gence Property, then it contains no positive copy of cq.

By [DL3, Thm. 2.4], a sequentially complete TRS X is o-Lebesgue and
o-Levi iff it contains no positive (or lattice} copy of cp. Hence also the
following “positive” version of Theorem 5.3 is true:

5.5. THEOREM. For a sequentially complete locally pseudoconver TRS X
the following are egquivalent.

(a) X contains no positive (or lattice) copy of eg.

(b) X has the Positive Zero-Density Convergence Property.

(¢) X has the Positive Lacunary Convergence Property.

6. Positive Lacunary Convergence Property in Lo{u) spaces. We
4 [14
refer the reader to Section 2 for the exact meaning of the term “submeasure
gpace”. The main result of this section is the following.

6.1. THEOREM. If (8, X, u) is a submeasure space, then Lo(fu.) has t'he
Positive Lacunary Convergence Property. Thus whenever a positive series
Yo Fa in Lo(p) s such that, for all Z € L, Sonez fnls) < 0 ae in S,
then 3 oo fu(9) < 00 ee. in S.
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Clearly, in proving this we may (and will} assume that the submeasure
4 is order continwous. We first show the following.

6.2. LEMMA. Let 0 < f, € Lo(u) be such that 3 ooy fu(8) = 00 a.e. in S.
Then for allm,r € N and £ > 0 there exists a finite subset K of N such that
1) m <minK, 2} K isr-rare, 3) p({s € S: 3. fi(s) <1}) <e.

Proof Forj=1,...,r lat

My={j+(k-1)r:keN}, D;j={ses:y fils) = o0}
iEMj
Clearly, S =D, U ... UD, (ae.).

By Egoroff’s theorem, there exists #1 € D; with u(Dq \ E1) < ¢/r such

that if Mi(n) :={i € My : m <1< n}, then
Z fi(s} — 00 as n — oo, uniformly for s € E;.
iEMl(n)

Hence there is ny > m so large that if Ky := Mj(n;), then

Z fi(s) 21 forall se By,

1€K

Let my; = ny + r. Since
Z fils)=oco for s € Dy,
m1<ie My

we can find as above a set Fy C Dy with (D2 \ E2) < ¢/r, and ng > mq so
that, writing Ky = {i € Mz : my <i < ny}, we have

> fils)21 forallse By

i€ Ky
We proceed by an obvious induction. Finally, set K = K3 U ... U K, and

E = EjU...UE,. Clearly, X satisfies conditions 1) and 2). Since u(S\E) < ¢
and 3, fi(s) > 1 for all s € E, also condition 3) is satisfied. m

Proof of Theorem 6.1. Suppose > 0 fu(s) = oo on a set E € T
with u(E) > 0. Then, of course, we may assume that £ = S. Applying

Lemma 6.2, we find a sequence (K,) of finite subsets of N and a sequence
(Ey) in % such that for every r,

K. is r-rare, maxK, +r < min Ky,

#(S\E) <27, 3 fi(s) =1 forall se E,.
PEKn
Let
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Then Z € L by Proposition 3.1(b), and S\ E)=0.1f s € E, then there is
r such that for every k > r we have s € Ej and, therefore, 3, X fils) > 1.

In consequence, 37, - fi(s) = oo, contradicting the hypothesis of the theo-
rem. s

7. Lacunary Convergence Property and Lacunary Boundedness
Property in Ly(), E) spaces. By Theorem 2.4, for every measure A of
type (SC) the space Lo()) has Property {0). However, as is well known, if
A is mot purely atomic, then Lg(A) is not locally pseudoconvex (see e.g. [R]).
Thus Theovem 5.3 is not applicable to Lo()). Nevertheless, as was shown
in [DL1], Lo(A) spaces behave very well as far as the lacunary properties
arc concerned. The main results of this section generalize those obtained in
[DL1] to the case of spaces of vector-valued functions.

7.1, THEOREM. If (S, X, \) is a measure space and I% is a Banach space,
then the space Lo(X, B} has the Lacunary Boundedness Property.

From this we easily deduce a much more interesting result:

7.2. THEOREM. If (S, X, )) is a measure space of type (SC) and E is
o Banach space containing no copy of g, then the space Lo(), E) has the
Lacunary Convergence Property.

Proof. By Theorem 2.4, Lo(A, E) has Property (O). Therefore, in view
of Proposition 2.1, the assertion is immediate from Theorem 7.1. u

We now start proving Theorem 7.1. Below, if g € Ly(A, E)}, then [|g]|
denotes the function s — |[|g(s)|| in Lo(A).

7.3. LEMMA. Let (5,X,)) be a measure space and E a Banach space.
(a) If a series ), gn in Lo(X, E) is subseries convergent (or Cauchy),
then
im supflg;f =0 dn Lo(A)
Tt 0O {e I
for every sequence (1) of finite subsets of N such that min I — co.
(b) If a series 3., gn in Lo(A, E) is perfectly bounded, then the sequence

sup HgtH! n=132...,
1<ign

is bounded in Ly(A).

Proof Assume, as we may, that A(S) = L. The topology of Lg(A, E)
is defined by the F-norm d given by d(f) = inf{a > 0: M||fl| > a} < a};
likewise for Lp()A). According to Sublemma 1(b) in [D1], for every finite
family (hi)icr in Lo(), B) there exists J C I such that d(3,c; k) =
2d{sup;ez ||hi)). From this the assertions follow immediately. =
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For the purpose of the rest of the proof we introduce some technical
terminology. Let K C N. An interval in K is a subset I = {k € K : m <
k < n}, where m,n € K and m < n. An interval partition of K is a (finite
or infinite) partition of K consisting of intervals in K.

Let 3°°° | fn be a series in Lg(A, H). Givenr € N and M > 0, we shall
say that a set B € X has

o Property {b,) if there exists an infinite r-rare subset K of N and an
interval partition (I,) of A such that

lim sup ” Z f@(s)” =oo forall s € B,

o Property (b,pr) if there exists a finite r-rare subset K of N and an
interval partition I1,..., I, of K such that

sup ” E fi(s)H >M foralseB.
lengal eT,

REMARK. By applying Egoroff’s theorem it is easily seen that if a set B
of finite A measure has Property (b.), then for every M it contains subsets
C having Property (bys) and such that A(C) is arbitrarily close to A(B).

The key technical ingredients of our proof of Theorem 7.1 are the fol-
lowing two lemmas. We shall say that a series Y. f,, in Lo(), E) is perfectly
bounded in measure on a set A € X if the series Yo fnla is perfectly
bounded in Lg(A, E).

7.4. LEMMA. Assume that a series 3. f. in Lo()\, E) is not perfectly
bounded in measure on o set A with 0 < MA) < co. Then for every r € N
there evists B C A with A(B) > 0 such that B has Property (b,).

Proof. Fix 7 € N. By the assumption and Proposition 4.4, condi-
tion (PB) is not satisfied for the series 3> fnla in X = Lg{), E). It follows
that for some &, > 0 we can find a sequence (I};) of finite 7-rare subsets of
N with max I +r < min ;1 and

A(Bg) > &, where Bj:= {s €4: “ Z f”(S)H > ksr}.
nely

Clearly, the set

oo 00
B .= ﬂ U By
n=1k=n
is of A measure > ¢,. Also, the set K := {Ji2 I, is r-rare, and (Ix) is an
interval partition of K. Moreover, if s € B, then || Yomer, Ja(8)|| 2 ke, for

infinitely many k. Hence lim sup, || Yoner, In(8)] = oo for all s € B. Thus
DB has Property (b,). m
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7.5. LemMMa. Let C € X, 0 < AMC) < o0, and assume that o series
Yon Jn in Lo(A, E) is perfectly bounded in measure on no subset A of C
with A(A) > 0. Then for allr € N, M > 0 and 5 > 0 there ewists D © ¢
with M(C'\ D) < n such that D has Property (b, M)

Proof Let B be a maximal disjoint family of subsets B of ¢ such
that A(B) > 0 and B has Property (b,). Then B is countable, say B =
{B1, B2, ...}. Moreover, by Lemma 7.4, \(C'\ lU; Bj) = 0. Fix k such that
AMC\ B) < n/2, where B = 2;;1 B;. Now, each B; has Property (b,),
hence there exists an infinite r-rare subset X ; of N, and an interval partition
(In(4)) of K; such that

sup | 3 fz-(s)H =0 forallseB;and N=1,2,...
a>N U, .

- i€ ln ()
By applying Egoroff’s theorem and proceeding by an easy induction, we can
find for j = 1,....% a set C; C By and a block {I,(j) : m; <n < n;} in
the sequence (I, (7)), where m; < n;, such that

ABNCy) <nf(2k) forj=1,... .k,
max I (j)+r<minln,,  (§+1) forj=1,...,k—1,

3 f,(s)” >M forseCyi=1,... .k

1€ (J)

sup
my NSy

Define
k k n;
D=Jc; E=J | LG
j=1 =1 n=my;
Then MC'\ D} < n, the set K is finite and r-rare, the family
{In(J)]-SJSka ijnSnj}:"{Ils'“:Iq}
{(properly arranged) is an interval partition of K, and

sup Z fi(s)H >M forallseD. m
lense e,

Proof of Theorem 7.1. We may and will assume that the measure A
is finite. Let 3, fn be an L-bounded series in Lg(A, E). Suppose it is not
perfectly bounded in Lg(A, E). Let A be a maximal disjoint family consisting
of sets A with A(A) > 0 such that our series is perfectly bounded in measure
on A. Then A is countable, and it is clear that the series is perfectly bounded
in measure on the union A of A. From this and the maximality of A it
follows that the set C := §\ Ap is of positive A measure and satisfies
the assumptions of Lemma 7.5. Now, applying Lemma 7.5, first with r =
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M =1 to the whole series > - . f, and then with r = M = 2,3,... to its
remainders Y>> f, with NN, increasing sufficiently fast, we construct

e sequences (K.) and (7,) of finite subsets of N,
# asequence 1 =p; <ps <...in N, and
¢ a sequence (D,) of measurable subsets of C

such that for every r:

¢ K, is r-rare and max K, +r + 1 < min K, 41, .
e the family {7, : p. <n < p,41} is an interval partition of X,
o A(D.) > (1 —2"A(C)

and

(s} = sup |lgn(8)]| 27 forall s € D,, where g, := Z fi-
P Sn<pri1 i€Tn

Set D =2, D,. Then A(D) > 0 and

T=1

(%) Yo(s)>r foralse Dandr=1,2,...

Moreover, Z := [J72, K, € L (by 3.1(b)) and the sequence (I,,) is an interval
partition of Z. By assumption, the series > icz fi 1s subseries (or perfectly)
bounded in Lg(A, E). Hence also the series 2 n 9n is subseries bounded in
Lo(A, E). Therefore, by Lemma 7.3(b), the sequence (v,) is bounded in
Lo(A), contradicting (x). =

REMARK. A direct proof of Theorem 7.2 would be an almost verbatim
repetition of the above proof, with some slight simplifications possible: We
would need Proposition 4.4 and Lemmas 7.3(a), 7.4, and 7.5 with M = 1.
Then, in the proof of Theorem 7.2, we would have to show that every L-
convergent series . fn in Lg(}, E) is perfectly bounded. To this end, we
would proceed exactly as in the present proof of Theorem 7.1, though with
M =1 for each r, arriving at a contradiction with Lemma, 7.3(a).

In the scalar case, that is, for the space Lo()), we could reach a contra-
diction in a different way: From condition (x), modified as indicated above,
it follows that

Dpg1—1

Z lgn(s)* > 1 forallse D and r= 1,2,...

n=pr

On the other hand, since the series > n 9n is unconditionally convergent, we
have 3, |gn(s}|* < oo for a.e. s € 5, by Orlicz’s Theorem. This is, more or
less, how we proved the scalar version of Theorem 7.2 in (DL1]

In the following two sections we shall assume that (9, Z, ) is a submeas-
ure space, in the sense of Section 2.
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8. Positive Lacunary Convergence Property and Positive Lacu-
nary Boundedness Property. Let X be a Lebesgue Levi TRS or, equiv-
alently, a complete TRS containing no positive (or lattice) copy of ¢y (see
[DL3, Thm. 2.5}). Ideally, we would like X to have the Positive LOP. Un-
fortunately, as shown in Example 11.1 below, there exists a Lebesgue Levi
F-lattice (of measurable functions) without the Positive LCP. Thus some
additional conditions on X in order to get this property are needed.

We shall say that & TRS X of y-measurable functions has

e the metric Levi (resp. o-Levi) property (in Lo{u)) if, whenever a net
(resp. sequence) (f;) in X is metrically bounded and 0 < f; T f, where
f € Lo(w), then f € X;

and that a general TRS X has

o the digjoint meiric Levi property if every metrically bounded positive
disjoint series in X has an order sum in X.

REMARK. Here and in what follows, by a disjoint series we mean one with
pairwise disjoint terms. Note that a disjoint series in a TRS of y-measurable
functions always has an order (= pointwise) sum in Lp(g), while such a
series in a general TRS always has an order sum in the universal completion
of the space.

8.1. PROPOSITION. 4 TRS X of p-measuroble functions has the metric
o-Levi property if (and only if) it has the disjoint metric Levi property.

Proof. Assume a sequence (fy,) C X is metrically bounded and 0 < f,, 1
feLo(p) Set By =0and B, ={s € 9:2f,(5) = f(8)} for n > 1. Since
fleg,_: < 2fn, it follows that 5> flg \g,_, is a metrically bounded
positive disjoint series in X converging to f in Ly(u). Hence f € X by the
disjoint metric Levi property. = :

By Theorem 2.3, if X is a Lebesgue TRS, then its universal completion
can be identified with Lg(u) for a submeasure p of type (C). Thus, for such
X, if the word “metrically” is omitted {or replaced by “topologically”) in
the above definitions, one obtains the familiar (and weaker) concepts of the
Levi, o-Levi, and disjoint Levi property, respectively. This motivates our
terminology.

Of course, for a TRS of measurable functions, the usual Levi properties
coincide with their metric counterparts provided the metrically bounded sets
are topologically bounded; e.g., it is so in locally psendoconvex spaces. It is
less obvious that also the Musielak-Orlicz spaces L, ()A) (see e.g. [Mul, [T],
[W]), in which metrically and topologically bounded sets do not coincide in
general, all have the metric o-Levi property. This follows from the fact that



72 L. Drewnowski and I. Labuda

L,(A), considered with its usual F-norm

£l =inf {r>0: o f(s)],5)dA(s) <7},
s
bas a fundamental system of F-norm-bounded sets that are closed in L ().

8.2. THEOREM. If o TRS X of u-measurable functions is c-Lebesgue and
has the metric o-Levi property, then it has the Positive Lacunary Conver-
gence Property.

Proof. Consider a positive L-convergent series > f, in X. Clearly, it
is L-convergent in Lp(u) and so, by Theorem 6.1, convergent in Lo{y) to
some f. Combining this with Corollary 4.6 and the metric o-Levi property
of X, we infer that f € X. Since X is o-Lebesgue, the series converges to f
inX. m

In view of Theorem 2.3, the preceding result has the following “abstract”
variant.

8.3. THEOREM. If a TRs X is Dedekind complete, Lebesgue, and has the
disjoint metric Levi property, then it has the Positive Lacunary Convergence
Property.

REMARK. One would like to assume in Theorem 8.3 that X is merely o-
Lebesgue. However, it is the Lebesgue property rather than the o-Lebesgue
property which was used in the proof of Theorem 2.7 in [L2].

If a Tvs X is continuzously included in a TvS Y, then we shall say that

e X is polar (resp. sequentially polar) in Y if X has a base of neighbor-
hoods of zero that are closed in the topology induced from Y.

8.4. THEOREM. If a TRS X of u-measurable functions is sequentially
polar in Lo(p) and has the metric a-Levi property, then it has the Positive
Lacunary Boundedness Property. In fact, if > on In 15 a positive L-bounded
series in X, then each of ils subseries is order convergent in X, and the set
§={3enfn: N €PN)} of all sums of the series is bounded in X.

Proof. It is clear that the series y_, £, is L-convergent in L {(14). Hence,
by Theorem 6.1, it is subseries convergent in Ly(x). Combining this with
Corollary 4.6 and the metric o-Levi property yields §  X. In consequence,
the vector measure m : P(N) — X associated with our series is countably
additive in the topology of Lo(u). As X is sequentially polar in ¥, we are
in a position to apply [L1, Thm. 3} and conclude that § = m(P(N)) is a
bounded set in X.

REMARK. Let X be a TRS of u-measurable functions. Then: X is polar
in Lo(u) Hf X has the Fatou property; and if X is sequentially polar in
Lo(p), then X has the o-Fatou property. All these properties coincide when
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the submeasure u is countably o.c.-decomposable, ie., § = U, S for a
sequence (S,) C TF (u).

9. Metric bounded closedness. Below, X = (X,7) is a TVs of E-
valued p-measurable functions, or a TRS of scalar p-measurable functions if
it is so stated explicitly, continuously included in a suitable Lg space.

In this section, we briefly investigate a metric version of a property used
in [DI4], viz., the property of X being “metrically-boundedly closed” in
Log(it, E). It will be applied in the next section in much the same way the
metric Levi property was in the preceding one.

‘We shall say that the space X is

o m-boundedly closed (resp. m-boundedly sequentially closed) in Lo(p, E)
if, for every metrically bounded subset of X, its closure (resp. sequen-
tial closure) in Lo(p, E) is a subset of X;

o digjointly m-boundedly closed if, for every metrically bounded disjoint
series in X, its sum in Lp(p, E) belongs to X.

Note that if X Is a TRS of y-measurable functions, then X has the disjoint
metric Levi property iff it is disjointly m-boundedly closed.

Before proceeding further, let us recall some notions and conditions from
[DL4] that will be used below. Let X’ stand for the family of countable unions
of sets in X' on which p is order continuous. A fundamental subspace of X
is one of the form

Xa={feX:f=14f}, whereAec L.

A projective net in X is any net (fa4 : A € £') in X such that fa = 1afg
whenever A, B € £’ and A ¢ B. The space X is said to be

o projectively complete if every projective Cauchy net in X has a limit
in X;

o projectively closed in Lo(p, E) if whenever a projective net in X has a
limit in Lg(p, &), the limit belongs to X;

o piecewise uniformly closed in Lo{p, E) if each set A € 2 with u(A4) > 0
contains a set B € X with u(B) > 0 and such that whenever (fy,) is a
sequence in Xg, f € Lo(y, B), and f — f uniformly, then f € Xp.

Note that if X is quasi-complete, then it is projectively complete and piece-
wise uniformly closed in Lg(y, E) (see [DL4, Prop. 5.4]). Also note that
every TRS of y~measurable functions is piecewise uniformly closed in Lo(g).

Trivially, if a TRS of y-measurable functions is m-houndedly closed (resp.
sequentially closed) in Lo(u), then it has the metric Levi (resp. o-Levi)
property. As for the converse; see the first proposition below. We omit the
proofs of Propositions 9.1 and 9.3 below; they are similar to those of [DL3,
Prop. 3.6] and [DL4, Prop. 5.6], respectively. Proposition 9.2 is easy.
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Note that a fundamental subspace of X is m~boundedly closed iff it is
m-boundedly sequentially closed.

9.1. PROPOSITION. Let X be o TRS of u-measurable functions.

(a) If X has the metric o-Levi property in Lo(i), then every fundamental
subspace of X is m-boundedly closed in Lo(p).

(b) If X has the metric Levi property in Lo(p), then X is m-boundedly
closed in Lo(ps).

9.2. ProprosITION. The space X is m-boundedly closed in Lo(u, B) iff
every fundamental subspace of X is m-boundedly closed in Lo{u, B), and X
15 projectively closed in Lo(u, E).

9.3. ProrosrTioN. A fundamental subspace X4 of the space X is m-
boundedly closed in Lo{yu, B iff X4 is piecewise uniformly closed in Lo(u, E)
and disjointly m-boundedly closed.

Combining Propositions 9.2 and 9.3, we derive the following.

9.4. THEOREM. The space X is m-boundedly closed in Lo(us, E) iff X is
piecewise uniformly closed in Lo(p, ), each of its fundamentel subspaces is
disjointly m-boundedly closed, and X is projectively closed in Lo(u, E).

9.5. COROLLARY. A TRS of yu-measurable functions is m-boundedly closed

in Lo{u) iff it is disjointly m-boundedly closed and projectively closed in
Lo(u).

9.6. COROLLARY. Let the space X be piecewise uniformly closed in
Lo(p, B), projectively complete, and sequentiolly u-continuous. If each fun-
damental subspace of X is disjointly m-boundedly closed in Lo(u, F), then
X i3 m-boundedly closed in Ly(u, E).

Proof. As X is sequentially p-continuous and projectively complete, it
is projectively closed in Lg(u, E). Apply Theorem 9.4. w

10. Lacunary Convergence Property and Lacunary Bounded-
ness Property in spaces of Bochner measurable functions. The first
two results below reveal the “abstract structure” of our main results stated
in the second part of this section.

If a Tvs X is continuously included in a Tvs ¥, then we shall say that

o X has the Orlicz-Pettis Property relative to Y if a series in X is
subseries convergent provided it is subseries convergent in ¥ and the
Y-sums of all the subseries are in X;

» X is m-boundedly closed (resp. m-boundedly sequentially closed) in Y

if, for every metrically bounded subset of X, its closure (resp. sequen-
tial closure) in ¥ is a subset of X.
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10.1. PROPOSITION. Let a TVS X be continuously included in ¢ TVS Y.
Assume that X is m-boundedly sequentiolly closed in Y and has the Orlicz—
Pettis Property relative to Y. Then, if ¥ has the Lacunary Convergence
Property, so does X.

Proof Let ) @, be an L-convergent series in X. Then it is also £-
convergent in Y, hence subseries convergent in ¥, by the LCP of V. In
view of Corollary 4.6, and as X is m-boundedly sequentially closed in Y,
the Y-sums of all the subseries are actually in X. Apply the Orlicz—Pettis
Property of X relative to V. m

10.2. PROPOSITION. Let a TVS X be continuously included in a TVS Y.
Assume that X is m-boundedly sequentially closed and sequentially polar in
Y, and that Y has Property (O). Then, if Y has the Lacunary Bounded-
ness Property, so does X. In fact, every L-bounded series in X is subseries
convergent in 'Y, and the set of all its ¥ -sums is o bounded subset of X.

Proof Let ), z, be an L-bounded series in X. Then it is also L-
bounded in Y, hence subseries convergent in Y, by the LBP and Prop-
erty (O) of Y. In view of Corollary 4.6, and as X is m-boundedly sequentially
closed in ¥, the Y-sums of all the subseries are actually in X. Therefore, the
associated vector measure m : P(N} — X, defined by m(N) =Y-3_ .y Zn,
is countably additive in the topology of ¥'. By [L1, Thm. 3], its range is a
bounded subset of X. m

Below, (S, ¥, ) is a (locally finite) measure space, E is a Banach space,
and X is a TVS of E-valued A-measurable functions.

10.3. THEOREM. Let the Banach space F contain no isomorphic copy of
co, the measure X be of type (SC), and assume that X C Ly(X, E) continu-
ously. If X is A-continuous and m-boundedly sequentially closed in Ly(A, E),
then it has the Lacunary Convergence Property.

Proof In view of Theorems 2.5 and 7.2, X has the Orlicz-Pettis
Property relative to Lo{), B), and Lo(), E) has the LCP. Apply Proposi-
tion 10.1. w

10.4. THEOREM. Let the Banach space E contain no isomorphic copy of
co, ond assume that X C Lo(X, E) continuously. If X is polar in Lo(\, E),
and each fundamental subspace of X is m-boundedly closed in Lo(2, E), then
X has the Lacunary Boundedness Property.

Proof. Let 3, fa be an L-bounded series in X Hirst consider the case
when ) is o-finite. Then, by Theorems 2.4 and 7.2, Lo{A, B) bas both P.rop-
erty (O) and the LCP, whence also the LBP. Since X is also sequentla,lliy
polar in Lo (A, E), applying Proposition 10.2 we see that the series 3, fn is
perfectly bounded. :
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In the general case, let X' denote the family of all sets in X of o-finite
A measure, upward directed by inclusion. By the previous case, for each
A€ I the set Ry = {3}, cplafn : F € F(N)} is a bounded subset of X.
From this and the fact that X' is a g-ideal it follows that also the union R
of all R4’s is bounded in X. Let R denote the closure of R in the space X
equipped with the topology induced from Lg(A, E). Using the assumption
that X is polar in ¥ it is readily seen that R is bounded in X. Finally, for
each F' € F(N) the net (3 .plafn : A € L) converges in Ly(\, E) to

Y oner fn- In consequence, {3 oo fn: F€FN)} CR. »

11. Examples and questions

11.1. ExAMPLE (A Lebesgue Levi F-lattice without the Positive Zero-
Density Convergence Property or Positive Boundedness Property). Let Lg
= the Ly space over the half-line [0, 0¢) with Lebesgue measure A. Define
Ii=[kk+1)for k=0,1,2,... For each f € Ly let

1Fhme = § min(L, (k+ 1™} dA  for kym =0,1,2,...
I

Note that || f||mx = [|(k + 1)™Fllo.s- Next, let
[ fllm = sup I fllme  form=0,1,2,...

Clearly, each ||-||m is a monotone FG-norm (in the sense of [D2]) on Lg.
Thus ||-[|m, is subadditive, vanishes only at zero, and || f||m < ||g/| Whenever

5rg E-LD. and |f| < |g]- Moreover, each ||||m is lower semicontinuous on L.
That is, if f, — f in L (i.e. in A measure on sets of finite measure), then

1l < lminf | o

This follows from the estimates || ||, < liminf, N fallme < liminf, || follm-

Note that ||k + 1) iz = | fllms, whence [[(k + 1)~ Fllmis >
| fllrm,6- Using this it is easy to see that for any f € Lg the following two
conditions are equivalent:

(%) 11_1}(1) ltfllm =0 for all m,
(*%) k]ingo Ifllmi =0 for all m.

Let X denote the solid subspace of L consisting of all f satisfying the
above conditions. By condition (+), (the restriction to X of) each -l is &
monotone F-norm on X. In what follows we equip X with the sequence of
F-norms ||| (m = 0,1,2,...), thus converting X into an F-lattice. Note
that the inclusion X C Lg is continuous. Also note that for each k, we have
Lo(Iz) C X, and all the F-norms |||, are equivalent on Lo(I3). Hence each
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of the spaces Lo(Jy) with its usual topology is a topological vector subspace
of X.

Using condition () it is easy to verify that X has the Lebesgue property.
Similarly, using condition () along with the lower semicontinuity of |||,
on Lg, one verifies that X has the Levi property. Thus X is a complete,
metrizable, Lebesgue, Levi TRS of A-measurable functions on {0, co). Hence,
by [DL3, Th. 5.5]), X contains no isomorphic copy of cp.

Fork=0,1,2,... let {H, :n=2% ..., 2%+1 1}, be the partition of the
interval I, into 2* subintervals of length 2-*. Let f,, denote the characteristic
function of H,. For A C N, let fa stand for the pointwise sum of the series
> nea fn- Then the following statements are equivalent:

(a) A€ Z.

(b) fae X.

(€) 2onea fn convergesin X.

(d) > nea fn is bounded in X.

To see this, observe that for each m

NFalime=2"FlAN{neN: 2" <n< 2"} for k=0,1,2,...
Hence fa € X, i.e. fa satisfies condition (%), iff A € Z (see Proposition 3.2).
Conditions (b) and (c) are equivalent by the Lebesgue property of X. Fi-
nally, it is easy to see that f4 € X, i.e. fa satisfles ()}, Ul condition (d)
holds.

Thus X has neither the Positive Zero-Density Convergence Property
nor the Positive Zero-Density Boundedness Property. In particular, it fails
to have both the Positive LCP and the Positive LBP. Also note that the
Z-convergent series ., fn above, while being perfectly metrically bounded
(by Corollary 4.6), is not perfectly (topologically) bounded. Finally, in view
of Theorem 8.2, the space X lacks the (disjoint} metric Levi property.

11.2. ExamMPLE (An L-convergent but non-Z-convergent series in cp). As
in Section 3, given A C N, let A(n) = An{n,n+1,...} forn=1,2,... et
Ey={neN:2% <n <2 +2%} for k=1,2,..., and define a sequence
(27, in ¢p as follows:

T = 27%e, ifneEg, k=1,2,...,
" 0 otherwise.
Then the series 3, @y, is not Z-convergent. Indeed, E := U, Bx € Z and
|5
nEBy

However, ), z, is L-convergent. Indeed, let A € L. Take any € > 0, and
next r € N with 2/r < &. Then there is m such that the set A(m) is r-rare.

=|lex]| =1 forall k.
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Choose k so that 22% > sn and 2 > r. Let B be a finite subset of A(2%F)
and let | be such that max B < 2% + 2'. Then

!

;,;:E Ex=max“§m’
HZ n H MU Rt "
nelB

j=k nEBNE; nEBNE;
BnNnE; ANE;
—max———l . JlSmaac--»«ww—l .”l,
ki<t W izk 21

and since there are at most 27 /r +1 elements of A in E; for j > k, we have
247 1 1 2
|2 a- =t
neB

< max < - <E,
r
Thus the subseries 3, ., T is unconditionally Cauchy.

2k 2r oy 2k

11.3. ExampPLE (Incomplete normed spaces with the Lacunary Conver-
gence Property). Let my denote the dense subspace of the Banach space
{5 consisting of all elements z = (¢;) having finitely many distinct terms.
It is known that every subseries convergent series >z, in my is finite-
dimensional, i.e., dimlin{z, : n € N} < co (see [BDV, Thm. 1] and [DDD,
Thm. 4(b)]). From this it follows easily that also every L-convergent series
in mp is finite-dimensional. In consequence, mp has the LCP. Note however
that £, which is a completion of mq, fails the LCP.

It is easy to coustruct even simpler examples to the same effect: Take
for instance any Banach space F with an unconditional basis (e,) such
that E contains no copy of ¢p. Then its (incomplete) subspace Ey = lin (e,,)
admits only finite-dimensional subseries convergent series (cf. [DL5]). Hence,
as above, Ej has the LCP.

11.4. EXAMPLE {Spaces with the Zero-Density Convergence Property
but without the Lacunary Convergence Property). Denote by L the ideal
in P(N) generated by L. Take any solid sequence F-lattice X containing all
the unit vectors e, that has the Zero-Density Convergence Property, e.g.,
X = £, for 0 < p < oc. Then its subspace

X(E) ={zxecX :suppwe E}
has the Zero-Density Convergence Property but lacks the Lacunary Con-
vergence Property, and even the Positive Lacunary Convergence Property.

We refer the reader to [DL5] for the (quite technical) proof of this assertion.
Unfortunately, all these spaces X (L) are incomplete.

11.5. QUESTIONS. (a) Does there exist an F-space that has the Zero-

Density Convergence Property but lacks the Lacunary Convergence Prop-
erty?
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(b) Does there exist a TVS (preferably an F-lattice) of measurable func-
tions which has the Lacunary Convergence Property but is not m-boundedly
sequentially closed in its Lo-space?

(¢) If 14 is an order coniinuous submeasure such that the space Lo{u)
has the Lacunary Convergence Property, is then p equivalent to a finite
measure?
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Extreme points of the complex binary trilinear ball
by

FERNANDO COBOS (Madrid), THOMAS KUHN (Leipzig)
and JAAK PEETRE (Lund)

Abstract. We characterize all the extreme points of the unit ball in the space of
trilinear forms on the Hilbert space C2. This answers a question posed by R. Grzaslewicz
and K. John [7], who solved the corresponding problem for the real Hilbert space RB*. Asan
application we determine the beat constant in the inequality hetween the Hilbert—Schmids
norm and the norm of trilinear forms.

Tt is well known that the extreme points of the unit ball in the space L(H)
of all bounded linear operators on a Hilbert space H are just isometries or
coisometries {see [8]). For real Hilbert spaces H, £(H) can be identified
with the space B{H, H) of all bounded bilinear forms on H. This leads in
a natural way to the problem of characterizing extreme points of the unit
ball of multilinear forms. In the case of trilinear forms on H = R? this
question was solved by R. Grzaglewicz and K. John [7]. The complex case,
where H = €2, was left there as an open problem (see [7], Remark 5).
Accordingly, we prove here such a result. As an application we compute the
exact value of the best constant d in the inequality ||T]l2 < d||T|| between
the Hilbert-Schmidt norm and the norm of a trilinear form 7" in the binary
case, thus complementing our previous results in [3] for the m-ary case,
where the asymptotic behaviour of these constants was investigated. For
more background material about trilinear forms we refer to [4].

Let B(H,H, H) be the space of all trilinear forms 7': H x Hx H = C
equipped with the norm

1] = sup{[T(2,9,2) ¢ 2]l = loll = el = 13-

Qur main results are the following.

THEOREM 1. For o trilinear form T : Hx Hx H — C on the Hilbert space
H = C? one has |T|| = 1 if and only if there are three orthonormal bases
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