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We conclude that M < 24 2b < 24+ 2(1/2)® = 9/4. Our considerations also
show that equality holds if and only if b, = by = bs = b = 1/2 (condition
for equality in the inequality between arithmetic and geometric means) and
—c? = |¢|2 = 4b® = 1/2, i.e. ¢ = £i/+/2. This proves that the maximum of
M (under the constraint F' = 1) is 9/4 and that the maximum is attained

at the points /111 i_i_
Y=z

and only there, and finally this yields d(2,C) =/9/4 =3/2. =

REMARK 8. Theorem 7 exhibits a significant difference between real and
complex trilinear forms. This is surprising in so far as the corresponding con-
stants for bilinear forms are d{n, K) = 1/n regardless of whether K = R or C.
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Applying the density theorem for derivations
to range inclusion problems

by
K.I BEIDAR (Taman) and MATEJ BRESAR (Maribor)

Abstract. The problem of when derivations (and their powers) have the range in the
Jacobson radical is considered. The proofs are based on the density theorem for derivations,

1. Introduction. In beth ring theory and the theory of Banach alge-
bras, there are a number of results showing that under certain conditions a
derivation (or its power) of a ring (algebra) must be zero or must map into
the Jacobson radical. The ring-theoretic results are often proved by combin-
ing Kharchenko's theory of differential identities with some elementary (but
clever) algebraic manipulations (see (3] for details about background and nu-
merous references). Many of the analytic results in this vein were obtained
as attempts to get noncommutative versions of the classical Singer—Wermer
theorem [23]. Their proofs usually combine analytic and algebraic tools. For
a more detailed discussion on this topic and bibliography we refer the reader
to the survey articles [16, 19] and our recent paper [2].

Tt is our aim here to present a new possible approach to these problems,
which works in both algebraic and analytic setting. It is based on an exten-
sion of the Jacobson density theorem, recently obtained in {2]. In order to
state this result we have to introduce some notation and terminclogy. Let A
e any ring and M be a simple left A-module. Recall that D = End{ 4M)
i a division ring by Schur's lemma. Let d be a derivation of A. We say
that d is M-inner if there exists an additive map T : M — M such that
aty = T'(uw) ~a(Tw) for alla € A, & € M (we shall always write derivations
as exponenﬁﬁ). The concept of M-innerness obviously extend's the Conce};?t
of (ordinary) innerness. Moreover, in case A is a primitive ring and 'M is
a faithful sinople module, every X-inner derivation (cf. [3]) is also M-inner,
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but not vice versa [2]. A derivation which is not AM-inner is called M-outer,
The main result of [2] considers compositions of M-outer derivations and au-
tomorphisms [2, Theorem 5.3]. We now state only its special case, sufficient
for the purposes of the present paper.

THEOREM 1.1. Suppose that d is M-outer. Let m be o positive integer
and assume that either char(D) = 0 or char(D) > m. Let xy,...,z, be
elements in M linearly independent over D and let y1,...,Yn, 21, .., 2,
be any elements in M. Then there emists o € A such that az; = Y and
a®ri =z foralli=1,...,n.

The simplest, but nevertheless a very important one, is the case when
m = 1. For this case the theorem was proved somewhat earlier [6], but only
for dense algebras of linear operators. We alse mention the papers [5, 22,
25] which already indicated that A-outer derivations behave nicely with
respect to the action on M.

Some rather straightforward applications of Theorem 1.1 (for m = 1)
were obtained already in [2]. The goal of the present paper is to give some
further evidence of its applicability by generalizing certain results exigting
in the literature, in particular, those in [25] and [4]. As we shall see, by using
Theorem 1.1 some problems on derivations can be reduced quite easily to
M-inner derivations. Arriving at an M-inner derivation d of 5 ring (algebra)
A, we have two options: either to study the operator inducing this derivation
or to reduce the problem to primitive rings and then apply the methods and
results of the theory of derivations on primitive {and prime) rings.

2. The results. The first, algebraic part of an interesting paper by Tur-
ovskil and Shul’'man [25] shows that a derivation whose powers satisfy some
special conditions must be, in cur terminology, M-inner (in particular, the
transitivity (but not density) of ranges of powers of M-outer derivations was
discovered). As an application they proved that for a derivation d of a Ba-
nach algebra A the following five conditions are equivalent: (1) A" ¢ F (A);
(2) A C T(A); (3) (AT C (A (4) AT C QLAY (5) AP is a thin
set [25, Proposition 2.2]. Here, J(,4) denotes the Jacobson radical of A and
Q(A) denotes the set of quasi-nilpotent elements in A. A subset T of aring A
s said to be thinif Tz # M for every simple left A-module M and every ele-
ment z &€ M. For instance, the set of left quasi-regular elements in 4 is thin.
Namely, if @ is any left quasi-regular element, i.e. such that o +a' +a’a = 0
for some o’ € A, then we clearly have az # —u for any nonzero z in a left
A-module M. In particular, the set of nilpotent elements in .4 is therefore
thin, and, in case 4 is a Banach algebra, the set Q{.A) is thin,

'The basic example illuminating the Turovskil-Shul’man result is the fol-
lowing: let o € A be such that a” = 0 and g"~! Agn-! # 0, and let d be the
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inner derivation induced by a. Then d**~' = 0 while d**~2 # 0. It is easy
to see that, in this case (A%")" = 0 (see the proof of Theorem 2.1 below). In
particular, every element in A9 is nilpotent.

This example suggests that it is natural to expect that the index of
nilpotence of a nilpotent derivation d (i.e., the least integer n such that
d" = 0) is an odd number. Indeed, this is true for any nilpotent derivation
on a 2-torsionfree semiprime ring [7]. In general, however, this does not
hold. Consider the following example. Let A4 be the ring of m x m upper
triangular matrices over a field, Set ¢ = e12 + €23 + ... 4 €2n-1,2n where
2n < m (here, ey;’s denote the matrix units). Note that o® = e g1 +
€o k2 oot amepan, b =1,...,2n — 1, and 0®™ = 0. Hence we see that
af A% = 0, k = 0,1,...,2n, which shows that d2® = 0 where d is the
inner derivation induced by a. However, d** ! # 0 (for instance, ed,  # 0).
Of course, A" ™" C J(A).

It is our aim now to examine the conditions in the Turovskii-Shul'man
result from the ring-theoretic point of view. It is immediate that Theorem 1.1
enables the reduction to M-inner derivations when considering these condi-
tions. Basically, such reduction, though using a different approach, _has been
done in [20] as well. What we would like to point out here is the utiilty of the
property that M-inner derivations obviously have: they leave the p{:n.mtwe
ideal ann(M) = {a € A | eM = 0} invariant. Therefore, when arriving at
an M-inner derivation it is not always necessary to carefully study proper-
ties of the element inducing this derivation (as in [25]), but one can consider
the induced derivation on the primitive ring A/ann(M}.

First we show that the first three conditions remain equivalent in a more
general setting.

THEOREM 2.%. Let n be a positive integer and A be aen clgebro over a
field K such that either char(K) = 0 or char(K') > 2n. Let d be a derivation
of A. The following conditions are eguivalent:

(1) A%" C J(A);
(2) A" T(A);
(3) (A% € J(A).

Proof. Let M be any simple left A-module. Theorem 1.1 clc?a.r_ly ghows
that d must be Me-inner whenever any of the three conditior.ls is satisfied.
Therefore, ann(A) is invariant under d and so d induces a derivation on 1':hfl
primitive algebra A/ann(M) satisfying the same COIIdIItL'OI'l as d Thus., W;lt
no loss of generality we may assume that A is a primitive; in particular,
J(A) = 0. o

| :issume first that d2" = 0. Then, since char(K) # 2 and A is prime, [7]
tells us that d?»~! = 0. Thus (1) and (2) are equivalent.
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Assume that (2) holds. Then there is ¢ € Qs(A), the symmetric ring of
quotients of A, such that ¢® = 0 and a* = [g,a] for all a € A; this could
be deduced from Kharchenko’s characterization of algebraic derivations of
prime rings [11], but more explicitly we have [12, Theorem 1]. Now, by
induction on k one shows easily that (A% )* € Ag¢* for any positive integer k.
Consequently, (3) kolds.

Finally, we show that (3} implies (2). Assuming (3) we see that there is
a nonzero element ag € A such that ag A% = 0. For any b,¢ € A we thus
have ag(be)?" = 0, that is,

(1) (T) agh®" et 4 (g) agh® et 4.+ (n " 1) agh%e?™ " +aghe® = 0.

We claim that agb?™ " c¢?"™" ™ =0for & =0,1,...,n. For k = 0 this holds by
the initial assumption. Assuming that our claim is true for some nonnegative
integer < k, we deduce by replacing b by b¥" ™" and ¢ by ¢¢° in (1) that
it is also true for k < 1. Thus, our claim is true indeed, and for & = n we
get ag A4 = 0. The primeness of A4 yields A*"™" = 0. The proof is
complete.

In the ring-theoretic setting, the condition (5) of the Turovskii-Shul' man
result is not equivalent to the first three conditions, not even for n = 1. The
simplest way to realize this is to consider the ring of real quaternions. Every
commutator in this ring is a quasi-regular element, and so the range of any
nonzero inner derivation d is a thin set. However, none of the conditions (i),
(ii) and (iii) is fulfilled. So, what can one expect in general if the range of a
derivation is a thin set? The next result is related to [2, Theorem 7.3] and
considers a more general problem. Following [2] we denote by J,.(.A), where
m is a positive integer, the ideal of A consisting of those elements o € A4
such that aM = 0 for every simple left .A-module M with dim(Mp) > m
where D = End(4M). Of course, J1(A) = J(A).

‘THEOREM 2.2. Let A be o ring and d be a derivation of A. Suppose
that there exist o nonnegative integer n and o thin subset T of A such that
a”a® € Ao+ T for every a € A. Then A% C J, 2(A).

Proof. Pick any simple left .A4-module M such that dim(Mp) 2 n+2
where D = End{ 4M); we show that A%M =0,

Assume first that d is M-outer. Choose any y € M and any P-indepen-
dent elements xi,...,%n41 € M. If 7 > 1, then applying Theorem 1.1
we see that there is ¢ € A such that ez, = Za, ar1 = 0, az; = @41,
i=2,...,M, alnpq1 = y. In the case n = 0, just pick a € A4 so that az; =0
and a%zy = y. In any case, since g"a? ¢ Ag + T, we see that there is
t € T such that tz; = y. But this means that 7 z1 = M, a contradiction.
Thus 4 is M-inner, i.e., there is an additive map T : M — M such that
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o' = T(az) — a(Te) for all @ € A, ¢ € M. Repeating the argument
given in the proof of [2, Theorem 7.2] we see that A?M # 0 implies that
there is £; € M such that z; and z3 = Tz are D-independent. Picking

any y € M and any elements z;, ¢ = 3,...,n + 2, so that z1,...,Tny2
are D-independent, and then applying the Jacobson density theorem to get
a € A satisfying az; = 0, oz = 2i31, 0 = 2,...,n+ 1, aznps = —y, we

again arrive at the contradiction Tz, = M. The proof is thus complete.

In particular, Theorem 2.2 shows that if the range of a derivation is
thin, then it is contained in J>{.A). Hence it follows at once that if the range
consists of nilpotent elements, then the derivation maps into J{A). This fact
is not new [8, Theorem 7], but the proof is. Another simple consequence is
that a derivation of a Banach algebra whose range consists of quasi-nilpotent
elements maps into J(A) (cf. [14, 17, 20, 25)).

We continue with another, less obvicus application of Theorem 2.2, con-
cerned with a certain Engel type condition. Define [b, a], where n is a posi-
tive integer as follows: [b,a]; = [b, a] and [b,a], = [[b,aln—1,a} for n > 1.

THEOREM 2.3. Let d be a continuous derivation of a Banach algebra A.
Suppose there is a positive integer n such that [a%, al, is quasi-nilpetent for
every a € A. Then A% C J(A).

Proof. Our assumption yields that a”a? € Aa + Q(A), a € A In view
of Theorem 2.2 it now suffices to show that A% annihilates modules of di-
mension at most n 4+ 1. Let M be such a module. Since d leaves ann(M)
invariant by Sinclair’s theorem [22], d induces a derivation on the quotient
algebra A/ann(AM) which also satisfies the condition of the theorem. As
A/ann(M) is a finite-dimensional primitive (complex) algebra, it is isomor-
phic to a matrix algebra M (C) with 1 < & < n+ 1. We have to show that
the induced derivation is zero.

Thus, there is no loss of generality in proving the theorem for the spe-
cial case when A = My (C). Of course, we may assume that k& > 1. It is
well known that every derivation of A is inner, so that a® = [ap, a] for some
ao € A. Thus, the initial assumption can be written as r([{. . . [[ag, al, a] . . ], al)
= 0 for every a € A, where r(-) denotes the spectral radius. Following {4]
we replace a by Aa + ag in this relation, where A € C, and arrive at

AlP([-- - [[@0 al, ao] - - )y aa] + .. + A7 H[. . [[ao, al, &] - ], a])} = 0.
Thus, the function
A r([[..  [lao,a], a0] - - ], @0] + ...+ AL [lacs a), 6] . ], a]))

equals O for every A # 0. However, since this function is subharmonic by
Vesentini’s theorem [1, Theorem 3.4.7], it must equal 0 at A = 0 as well.
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This means that
7{[[.. . {[ao, a], a0 .. J,a0]) =0 for every a € A,

ie., AT C Q(A) (of course, quasi-nilpotent matrices are just nilpotent
matrices). Now, the result of Turovskif and ShuP’man [25] mentioned above
implies that d>**t! = 0. As in the proof of Theorem 2.1 we now apply a result
on nilpotent derivations [12] (or more directly, [10] or [15]) to conclude that
there is a scalar matrix A such that the matrix ag — A is nilpotent. Since
a? = [ag,a] = [ag — A, a] there is no loss of generality in assuming that
ap is nilpotent., Also, we may assume that ag is in its Jordan canonical
form. Tn particular, it is then a sirictly upper triangular matrix. Suppose
that ag # 0. Permuting Jordan blocks, if necessary, we may then assume
that its upper left 2 x 2 block is [8 é] Let @ be the matrix whose upper
left 2 x 2 block is H g] and has zero entries elsewhere. By assumption, the
matrix [a?, a], is nilpotent. Since a is an idempotent matrix, we see that
either [a?, a]n = [ag, a] (if n is even) or [a%, a], = [[ag,a], ] (if n is odd). In
any case, [a%, a], has a nonzero upper left 2 x 2 block and has zero entries

elsewhere. The upper left 2 x 2 block is either [{ Z1] (if n is even) or [ 7} 1]

(if » is odd). But then [a%,a), is not nilpotent. This contradiction shows
that ag = 0.

For n = 1, Theorem 2.3 was proved in [4]. We also mention here a ring-
theoretic result of Lanski [13} which considers the condition [a%, a], = 0.

The continuity of the derivation in Theorem 2.3 has been used in the
proof at one point only, when using Sinclair’s result on invariance of prim-
itive ideals under continuous derivations. The problem whether the conti-
nuity in this result can be removed seems to be extremely difficult and is
known as the noncommutative Singer—Wermer conjecture. It is known to
be true in commutative Banach algebras, as shown by Thomas [24]. Actu-
ally, he proved that every derivation of a commutative Banach algebra A
maps into J(A), thereby extending the Singer—Wermer theorem to discon-
tinuous derivations and answering the classical Singer-Wermer conjecture.
The solution of the noncommutative Singer—Wermer conjecture would be
the most natural and certainly the most desirable extension of Thomas’
theorem. But there are other ways to get noncommutative versions of this
result [18, 21]. We conclude this paper with a result of that type, dealing
with (not necessarily continuous) derivations of {not necessarily commuta-
tive) Banach algebras whose range is a commutative set. We remark that
derivations having commutative range have also been considered in a pure
ring-theoretic setting by Herstein [9]. He showed, in particular, that the
existence of such a derivation on a prime ring A with char(A) # 2 forces
A to be commutative (actually, it takes just a few lines to verify this by
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an elementary computation). Let us now consider the case when A is an
arbitrary ring.

LEMMA 2.4, If the range of a derivation d of a ring A is a commutative
subset of A, then 24% C Jy(A).

Proof Let M be any simple left A-module M with dim{Mp) > 2
where D = End( 4M). We have to show that 242 M = 0. Suppose first that
dis M-outer. Pick any DP-independent elements 21,22 € M. Then, by The-
orem 1.1, there are a,b € A such that az; = xq, b%2; = 0 and b2g # 0.
But then b%a%zy # O while a®b®z; = 0, which clearly contradicts our as-
sumption that a®s% = b%a®, Thus, d is M-inner, which implies that ann(M)
is invariant under d and so d induces a derivation dona primitive noncom-
mutative (namely, dim(Mp) > 2) ring A/ann(M). Clearly, the range of d
is commutative. But then Herstein’s result mentioned above implies that
9d = 0, that is, 24%M = 0.

THEOREM 2.5. If the range of a derivation d of a Banach algebra A is a
commutative subset of A, then A% C J(A).

Proof. In view of Lemma 2.4 it suffices to show that A? annihilates
one-dimensional modules, or equivalently, that A% Yes in the kernel of each
multiplicative functional of A. Let ¢ be a multiplicative functional on A.

Let C be the closed subalgebra of A generated by A%. Since A¢ C C, the
restriction of d to C is a derivation of C. As Cis a commutg,tive Banach alge-
bra, C% € J(C) by Thomas’ theorem [24]. In particular, AT = (A4%)% C J(C),
which implies that A% consists of quasi-nilpotent elements. Consec%uently,
$(d2(A)) = 0 and so ¢(a?)? = ¢((a%)?) = 3¢((a*)* ~a®'a—aa®) = 0.
Hence ¢(a%) = 0 for any a € A and the proof is complete.

Tt should be mentioned that one can also prove Theorem 2.5 using a
different approach as developed in [18, 21]. The main goal of the -present
paper, however, is to illustrate how the new techniques can be applied.
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