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Topological classification of strong duals to nuclear (LF)-spaces
by
TARAS BANAKH (Lviv)

Abstract. We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-
space is homeomorphic to one of the spaces: R, R™, @ x R, R x R™, or (R™)¥,
where B = limR"* and Q@ = [—1,1]“. In particular, the Schwartz space D' of distri-
butions is homeomorphic to (R®°)*. As a by-product of the proof we deduce that each
infinite-dimensional locally convex space which is a direct Hmit of metrizable compacta is
homeomorphic either to R™ or to @ x R*°. In particular, the strong dual to any metrizable
infinite-dimensional Montel space is homeomorphic either to B™ or to @ x RB*.

In this paper we give a complete topological classification of strong
duals to nuclear (LF)-spaces. Recall that a locally convex space X is an
(LF)-space if X is a strict inductive limit of a sequence X, C Xy C ... of
Fréchet spaces (see [Sch, 11.§6]). A topological classification of (LF')-spaces
was given by P. Mankiewicz in [Ma]. This classification implies that each
infinite-dimensional separable (LF)-space is homeomorphic to one of the
spaces: RY, R, or R¥ x R*, where R¥ is the countable product of lines
and R® = @, 4R is a countable locally convex direct sum of lines. Note
that R is the strong dual to R and vice versa, R is the strong dual to B*.

Recall that the strong dual X' to a locally convex space X is the space
of all continuous linear functionals, endowed with the strong dual topology,
i.e, the topology of uniform convergence on bounded subsets of X.

Below @ = [—1,1]* is the Hilbert cube. Our principal result is

CLASSIPICATION THEOREM. Suppose X 45 an infinite-dimensional nu-
clear (LF)-space. The strong dual X' to X is homeomorphic o one of the
spaces: BY, R, @ x R, B x R™, or (R*)¥. More precisely, X' is hom-
eomorphiic to

(1) B* ff X is isomorphic to R>;

(2) R §ff X is isomorphic to R¥;
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(3) Q@ x R™ iff X is a Fréchet space not isomorphic to R¥;

(4) R xR*> §ff X is isomorphic to Y @R for some infinite-dimensional
Fréchet space;

(5) (R ) otherwise.

The Classification Theorem implies that D, the space of distributions on
an open set {2 in R™, is homeomorphic to (R*}¥, because D’ is the strong
dual to the space D of test functions on £2 which is known to be a nuclear
(LF)-space (see [Sch, ITL.§8]).

The definition of a nuclear space can be found in [Sch, II1.§7]. All we need
to know about nuclear spaces is that each nuclear Fréchet space is Montel
and is a projective limit of Hilbert spaces. Let us recall that a locally convex
space X is Montel if it is reflexive and each closed bounded subset of X is
compact (see [Sch, IV.§5]).

We say that a topological space X is a direct limit of metrizable compacta
if there is a fower X3 C X» C ... of metrizable compacta in X such that
X = Jo.; Xn and X has the direct limit topology lim X, (which consists
of subsets U C X = lim X,, with U N X, open in X, for every n). It is well
known that the topology of a locally convex direct sum on R™ = D,en R
coincides with the direct limit topology limR™ with respect to the tower
RcReRCRORGRC... A topological characterization of the space
R was given by K. Sakai in [Sal.

As a by-product of the proof we get

TREOREM. For an infinite-dimensional locally convez space X the fol-
lowing conditions are equivalent:

(1) X is a direct limit of metrizable compacta;

(2) X is homeomorphic either to R or to Q x R*®;

(3) the strong dual X' to X is a separable Préchet space and X coincides
with the dual X" to X', endowed with the topology of uniform convergence
on compact subsets of X'.

COROLLARY. The strong dual to any infinite-dimensional metrizable
- Moniel space is homeomorphic either to R® or to Q x R,

Proof. Let X be an infinite-dimensional metrizable Montel space. Then
X is a separable Fréchet space [Di]. Since the closure of each bounded subset
in X' is compact, the strong dual topology on X’ coincides with the topology
of uniform convergence on compact subsets of X. Because of the reflexivity,
the space X' satisfies the condition (3} of our Theorem, which implies that
X' is homeomorphic either to R® or to Q x R®. m

Proof of the Theorem. All maps considered in this paper are con-
tinuous; an embedding is a map which is a homeomorphism onto its image.
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To prove the Theorem we will need four results from infinite-dimensional
topology.

A. TOPOLOGICAL CHARACTERIZATION OF () x R* ([Sal). A topological
space X 1s homeomorphic to @ x R™ if and only if

(1) X is a direct limit of o sequence of metrizable compacta;
(2) for every metrizable compactum K every embedding f: B — X of a
closed subset B C K can be extended to an embedding f + K — X.

B. KELLER THEOREM ([Ke] or [BP, p. 100]). Any infinite-dimensional
conver metrizable compactum in a locally conver space is homeomorphic fo
the Hilbert cube Q.

A closed subset A of a topological space X is called a Z-set if any map
f: Q — X of the Hilbert cube can be uniformly approximated by maps
whose range misses A. An embedding f: A — X is called a Z-embedding if
F(A) is a Z-set in X.

C. ANDERSON THEOREM ([An] or [Ch, 11.2]). For every meirizable com-
puctum K every Z-embedding f : B — Q of a closed subset B C K can be
extended to an embedding f : K — Q.

D. CENTRAL POINT THEOREM ([BP, V.§4]). For every infinite-dimen-
sional symmelric convex metrizable compactum K in a locally convez space,
%-K is a Z-set in K.

To prove the Theorem we will verify the implications (1)=>(3)=(2)=>(1).

(1)=>(3). Suppose X = lim X, is a direct limit of a tower 0 € Xy C
X5 C ... of metrizable compacta with |J,_; Xr = X. First, we prove that
{X, : n € N} is a fundamental system of bounded subsets in X, that is,
every bounded subset B C X lies in X, for some n. Indeed, we first claim
that B C nX, for some n. Assuming the converse we find a bounded se-
quence {z,) in X such that 2. ¢ nX, for every n. Then n iz, & X,
n € N, and by the definition of the direct limit topology on X == lim X,
the set {n "'z, : n € N} is closed in X. Since this set does not contain the
origin, there is a neighborhood U of the origin in X such that n"lz, & U,
n € N. On the other hand, since the sequence (z,) is bounded, {n~"'x,)
converges to zero [Sch, 1.5.3], a contradiction. Hence B C nX, for some n.
Since nX, is compact, nXn C X for some m (assuming nX, ¢ X, for all
m we would find a closed discrete subset (2,) in nX, such that z,m & Xm,
m € N, which is impossible as nX, is compact).

Thus {X,, : n € N} is a countable fundamental family of bounded sub-
sets in X, This implies that the linear map E : X’ — [],—, C(X,) defined
by B : f = (f|Xn)2, for f € X' is a topological embedding. Here C(X.)

n=1 -
is the Banach space of all continuous real functions on X,. Using the fact
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that X has the direct limit topology limy X, we show that the image E(X")
is closed in ] ; C(X,,) (cf. Grothendieck Theorem [Sch, IV.6.2]). This im-
plies that X', being isomorphic to a closed linear subspace in [].2, C(X,),
is a separable Fréchet space (let us remark that the metrizability of the
compacta X, implies the separability of the Banach spaces C(X,,), see [En,
3.4.16]). Since X is infinite-dimensional, so is its dual space X'.

Next, we show that X coincides with the dual to X', endowed with the
topology of compact convergence. Since the closure of any bounded subset
in X is compact (being a subset of some X,,), [Sch, IV.5.5] implies that X is
semireflexive, i.e. X coincides with its second dual X" under the canonical
map X — X". Finally let us show that the direct limit topology on X coin-
cides with the topology of uniform convergence on compact subsets of X". By
[Sch, TV.6.3 and 5.2] the latter topology is the strongest topology inducing
the weak topology on each bounded subset of X. Since the weak topology
coincides with the original topology on each X, and every bounded subset
of X lies in some X,,, we conclude that the topology of uniform convergence
on compact subsets of X’ is the strongest topology inducing the original
topology on each X, i.e. it coincides with the direct limit topology lim X,

(3)=(2). Suppose the strong dual space X’ is a separable Fréchet space,
X is semireflexive and X = X" has the topology of uniform convergence on
compact subsets of X’. Let (U,)22; be a countable base of closed convex
symmetric neighborhoods of the origin in X’ such that U,y © 12U, for
each n € N. Since X', being Fréchet, is barreled (see [Sch, 11.§7]), the polars
Up ={z € X : |f(z)| < 1for each f € U,} form a fundamental system of
bounded sets in X (see [Sch, IV.5.2]). The inclusion U4y C iU, implies
U: c %Un"_,_l for each n. By [Sch, IV.17 and 5.2], each polar U? is a metriz-
able compactum with respect to the wealk topology on X. By [Sch, IV.6.3
and 5.2], the topology of compact convergence on X = X" is the strongest
topology inducing the weak topology on each polar U;. This means that X
has the direct limit topology with respect to the tower Up cUs C...of
metrizable compacta (endowed with the weak topology).

Now we show that X is homeomorphic either to R* or to QxR There
are two cases:

1. All polars U7 are finite-dimensional. In this case X is a direct limit
of finite-dimensional metrizable compacta and by [Ba], X is homeomarphic
{even isomorphic) to R>®.

2. One of the polars U? s infinite-dimensional. Without loss of general-
ity, dim U7 = co. Then all U? are infinite-dimensional. Since X is a direct
limit of metrizable compacta, to prove that X is homeomorphic to Q x B®
it suffices to verify the second condition of the Characterization Theorem, A.
Fix a metrizable compactum K and an embedding f : B — X = lim U
of a closed subset B C K. By compactness, f (B) C U for some n. Since
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U C §Us,1, by the Central Point Theorem D, Uy is a Z-set in Ug ;.
This implies f : B — U?,, is a Z-embedding. By the Keller Theorem B,
the infinite-dimensional convex compactum Ug +1 is homeomeorphic to the
Hilbert cube €. Thus the Anderson Theorem C is applicable and we can ex-
tend the Z-embedding f: B — U7, to an embedding f: K — U2, C X.
Thus the second condition of the Characterization Theorem A is satisfied,
and consequently X is homeomorphic to @ x Re.

The trivial implication (2)=-(1) completes the proof of the Theorem. m

A lemma concerning Fréchet nuclear spaces. We say that a map
f:Y = X between topological spaces is homeomorphic fo a trivial bundle if
there are a topological space F' and a homeomorphism h: ¥ — X x F such
that pro A = f, where pr : X x FF — X stands for the natural projection.
Evidently, all fibers f~(y) are then homeomorphic to F.

LemMA. If X is a closed linear subspace of a Fréchet nuclear space Y,
then the dual operator B’ :Y' — X’ to the embedding operotor E: X — Y
18 homeomorphic to a trivial bundle.

Proof. First note that Y, being a Fréchet nuclear space, is a Montel
space (see Corollary 2 from [Sch, II1.7.2] and [Sch, IV.5.6]). The Lemma
will be proven in three steps.

SteP 1. We show that for every compact subset K C X' there is a
continuous map g : K — Y such that E' o g = id.

By [Sch, IV.§1], the polar K° = {&x € X : |f(z)] < 1 for all f € K} is
a neighborhood of the origin in X. Because Y is a Fréchet nuclear space,
by [Sch, I11.7.3], there is a linear conmtinuous operator P : ¥ — H into a
Hilbert space H such that X N P~}(B) C K°, where B is the closed unit
ball in H. Denote by Hx the closure of P(X) in H and by Px : X — Hx
the restriction of P onto X. Let Pr : H — Hx be the operator of orthogonal
projection onto Hx. Hence we get a commutative diagram

x—Esy
u
Hy <2 H
which induces the dual diagram

Xl'.é_'—E-:.__—Y’

S

Ny
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Observe that the dual operator P} is injective (because Px (X') is dense in
Hx). Thus we may consider the map g = P/ o Pr’ o (P{) MK : K — Y.
Evidently, E' 0 g = id.

We claim that g is continuous. First, observe that X N P~1(B) c K°
implies (Px)~Y(K) C B%, where B is the dual unit ball of H). Since
K C X' is {weakly) compact, K = (P})~'(K) C B% is weakly closed and
bounded. As Hx is a Hilbert space, X endowed with the weak topology
is compact. Since P} is weakly continuous and the weak topology on K
coincides with the original one, Py : K- Kisa homeomorphism, This
implies that g : K — Y’ is continucus with respect to the weak topology
on Y. Consequently, g(K) is weakly compact in ¥'. Since ¥ is a Montel
space, 50 is its strong dual ¥ (see [Sch, IV.5.9]). Hence, g(K) is compact in
the strong dual topology of Y, which implies that the weak and the strong
topologies coincide on g(K'). Consequently, g : K — ¥/ is continuous with
respect to the strong dual topology on Y.

STEP 2. We construct a continuous map g: X' =Y such that B' o g=id.

Since Y is a metrizable Montel space, so is its closed subspace X . By the
Corollary, the strong dual X’ to X has the direct limit topology with re-
spect to a tower § = Ky € K1 C K» C ... of metrizable compacta in X'. To
construct the required map g : X’ — Y it suffices to construct a sequence
{gn : Ky — Y}, of maps such that g, 1|K, = g, and F o g, = id for
each n € N. Then the map g : X' — Y’ defined by g|K,, = g, n € N, will
be continuous and will satisfy B’ o g = id.

The sequence (g,) will be constructed by induction. Let g : Ko — ¥/
be a unique map (recall that Ky = §§). Suppose for some n > 0 the maps
9os- - -, gn have been constructed. As we proved in Step 1, there is a map
J: Kpy1y — Y’ with E' o f = id. Consider the map h: K,, — Ker(E') C Y’
defined by h{z) = gn{z) — f(z) for z € K.

Since the kernel Ker(E') C Y” of E' is a locally convex space and K, is
metrizable, by the Dugundji Theorem [BP, I1.§3], the map h can be extended
toamap h: Ky — Ker(E'). Then the map gpia : Kpe1 — Y7 defined by
gn+1() = h(x) + f(z) for z € K, extends g, and satisfies B’ o Inpl =
E'c f =id. Thus g,11 is constructed, which completes the inductive step.

STEP 3. We define o homeomorphism h: Y' — X' x Ker(E') such that
proh=E' where pr: X' x Ker(E') — X' is the projection.

Let g: X' — Y’ be a map with E'og = id constructed in Step 2. Define a
homeomorphism b : V' — X’ x Ker(E') letting h{y) = (E'(y),y — g o B' ¥)
for y € Y. Evidently, pro h = FE'. Since h has a continuous inverse b~
defined by h™* (2, 2} = g(z) + = for (=, ) € X' x Ker(E'), h is a homeomor-
phism between the operator E' and the trivial bundle pr.- =
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Proof of the Classification Theorem. Suppose X is an infinite-
dimensional nuclear (LF)-space. We consider five cases.

1. X is isomorphic to R, Then X' is homeomorphic (even isomorphic)
to R¥.

2. X is isomorphic to B¥. Then X' is homeomorphic {even isomorphic)
to R™.

3. X is a Fréchet space, not isomorphic to R¥. Since X is nuclear, it is
Montel. Then the Corollary yields that X' is homeomorphic either to R*
or to @ x R*°. Assuming that X’ is homeomorphic to R* and applying a
result of [Ba], we see that X' is isomorphic to R®. Then X is isomorphic
to R¥, a contradiction, which shows that X’ is homeomorphic to @ x R®.

4, X is isomorphic to ¥ ® R® for some infinite-dimensional Fréchet
space Y. Then Y, being a closed linear subspace of a metrizable Montel
space X = Y @R, is metrizable and Montel. (Here “2” means “is isomor-
phic to”, and “x” means “is homeomorphic to”). By the Corollary, Y’ is
homeomorphic either to B® or to @ x R™®, Then X', being isomorphic to
(YOR®) = Y'®R¥, is homeomorphic either to R xR or to QxR xR,
Tn the first case the proof is complete. In the second, we use the homeomor-
phy of B¥ and @ x R® (see [BP, p. 319]).

5. X is not isomorphic to Y @ R, where Y is a Fréchet space, Write X
as a strict inductive limit ind X, of a sequence {0}=XCc X CXpC...
of Fréchet spaces. Without loss of generality, we may assume that each Xn
has infinite codimension in X,, 11 (otherwise X is isomorphic either to X, or
to X,, x R for some n). By [Sch, ITL.7.4] the spaces X, are nuclear as closed
linear subspaces of the nuclear space X. Next, the X,’s, being metrizable
and nuclear, are Montel.

By the duality between inductive and projective topologies, the strong
dual space X’ can be identified with the projective limit lim X, of the dual
sequence

(0} =X 2 x1 B oxp B xp
where B!, : X!, — X, are the dual operators to the embedding operators
E.: X, — Xnj1. By the Lemma, each E}, is homeomorphic to the trivial
bundle pr : X! x Ker(E,) — X/. This implies that the projective limit
lim X7, is homeomorphic to []2, Ker(Ey,)-

We have to prove that this product is homeomorphic to (R>*)*. Since
each X, has infinite codimension in Xn1, we conclude that cach X, n > 1,
is infinite-dimensional and dim Ker(E.) = oo for n > 0. By the Corollary,
the strong dual X!, to each Xn, n > 1, is a direct limit of metrizable comn-
pacta. Then Ker(E,), being closed in Xj,_,, is also a direct limit of metriz-
able compacta. By the Theorem, each Ker(E},) is homeomorphic to B> or
to Q x R*. This implies that the product ]2, Ker(Ey) is homeomorphic
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either to (R*)“ or to @ x (R*™)“. In the first case the proof is complete;
in the second, observe that @ x (R*)¥ =~ ([0, 1] x R™)* ~ (R°)* (because
[0,1] x R*® = R, see [Sa)). w

QUESTION. Is the Classification Theorem still valid for Montel (LF)-
spaces? For separable (LF)-spaces?

Note that the answer to the first question is affirmative provided the
Lemma is valid for Montel Fréchet spaces.

PROBLEM. Classify topologically strong duals to separable (reflexive)
Fréchet spaces.
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Interpolation on families of characteristic functions
by

MICHAEL CWIKEL (Haifa}) and
ARCHIL GULISASHVILI (Athens, Ohio)

Abstract. We study a problem of interpolating a linear operator which is bounded
on some family of characteristic functions. A new example is given of a Banach couple
of function spaces for which such interpolation is possible. This couple is of the form
& = (B, L°°) where B is an arbitrary Banach lattice of measurable functions on a o-finite
nonatomic measure space (2, X, n). We also give an equivalent expression for the norm
of a function f in the real interpolation space (B,L™ )y p in terms of the characteristic
functions of the level sets of f.

1. Introduction. Our goal in this paper is to study interpolation prob-
lems for linear operators acting on spaces of functions, in the case where
these operators satisfy boundedness conditions only on a given family of
characteristic functions rather than on all functions in the spaces. It has
been shown by the second author [G1, G2, G5] that, under some addi-
tional restrictions, the boundedness of a linear operator T' on a given family
{xg : B € £} of characteristic functions from a couple of Lorentz spaces
into a couple of Banach spaces implies the boundedness of T in the real
interpolation spaces on the family of functions having all their level sets in
£. Moreover, a generalization of this interpolation theorem was obtained in
[G3, G4, G5] in the form of a norm estimate in the real interpolation space
for the Pettis integral of a mapping in terms of certain given estimates of
the integrand. The method of interpolating from characteristic functions was
used in the papers mentioned above and in [G6] to study the behavior of
different linear operators, mainly the Fourier transform and the embedding
operator.

Tn this paper we describe another situation where such interpolation
from characteristic functions is possible. Here, instead of a couple of Lorentz
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