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either to (R*)“ or to @ x (R*™)“. In the first case the proof is complete;
in the second, observe that @ x (R*)¥ =~ ([0, 1] x R™)* ~ (R°)* (because
[0,1] x R*® = R, see [Sa)). w

QUESTION. Is the Classification Theorem still valid for Montel (LF)-
spaces? For separable (LF)-spaces?

Note that the answer to the first question is affirmative provided the
Lemma is valid for Montel Fréchet spaces.

PROBLEM. Classify topologically strong duals to separable (reflexive)
Fréchet spaces.
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Interpolation on families of characteristic functions
by

MICHAEL CWIKEL (Haifa}) and
ARCHIL GULISASHVILI (Athens, Ohio)

Abstract. We study a problem of interpolating a linear operator which is bounded
on some family of characteristic functions. A new example is given of a Banach couple
of function spaces for which such interpolation is possible. This couple is of the form
& = (B, L°°) where B is an arbitrary Banach lattice of measurable functions on a o-finite
nonatomic measure space (2, X, n). We also give an equivalent expression for the norm
of a function f in the real interpolation space (B,L™ )y p in terms of the characteristic
functions of the level sets of f.

1. Introduction. Our goal in this paper is to study interpolation prob-
lems for linear operators acting on spaces of functions, in the case where
these operators satisfy boundedness conditions only on a given family of
characteristic functions rather than on all functions in the spaces. It has
been shown by the second author [G1, G2, G5] that, under some addi-
tional restrictions, the boundedness of a linear operator T' on a given family
{xg : B € £} of characteristic functions from a couple of Lorentz spaces
into a couple of Banach spaces implies the boundedness of T in the real
interpolation spaces on the family of functions having all their level sets in
£. Moreover, a generalization of this interpolation theorem was obtained in
[G3, G4, G5] in the form of a norm estimate in the real interpolation space
for the Pettis integral of a mapping in terms of certain given estimates of
the integrand. The method of interpolating from characteristic functions was
used in the papers mentioned above and in [G6] to study the behavior of
different linear operators, mainly the Fourier transform and the embedding
operator.

Tn this paper we describe another situation where such interpolation
from characteristic functions is possible. Here, instead of a couple of Lorentz
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spaces, we consider couples of the form (B, L*) where B is an arbitrary
Banach lattice of measurable functions on some nonatomic o-finite measure
space. The structure of the paper is as follows. In Section 2 we gather the
necessary definitions, pose a general problem of interpolating from a fam-
ily of characteristic functions, and formulate the main result (Theorem 1).
In Section 3 we discuss the problem of reconstructing a function from the
characteristic functions of its level sets. We begin the proof of Theorem 1
in Section 4. Our proof is based on some ideas from [G5]. We adapt them
to the case of a couple of Banach lattices and get some estimates for the
K-functional (see Theorem 3} and for the norm in the interpolation space
{see Theorem 4). In Section 5 we obtain an equivalent expression for the
norm of a nonnegative function f in the interpolation space (B, L), in
terms of the characteristic functions of the level sets of f. This result is
needed to complete our proof of Theorem 1 at the end of Section 5, hut it
also seems to be of independent interest.

2. Necessary definitions and main results. Throughout this paper
A = (Ap, A;) will denote a Banach couple, ie. a pair of Banach spaces
continvously embedded into a Hausdorff topological vector space Z. We
will use the standard notation £{4) = Ay + Ay, A(4A) = Ay N Ay, and
Agp = (Ao, A1)4 p- The symbol £°(A) will stand for the closure of A(A) in
X(A). Similarly, A7 will denote the closure of A(4) in A; where i = 0, 1. We
refer to [BL] for more information concerning the real interpolation method.

‘The symbol m will stand for Lebesgue measure on the half-line R*. Let
(£2, X, u) be a nonatomic complete o-finite measure space. A Banach space
& of (equivalence classes of u-almost everywhere equal) real measurable
functions on {2 such that if f € ¢ and |g(w)! < |f(w)| abmost everywhere,
then g € € and [|glls < ||f(\#, is called a Banach lattice on (2, ¥, u), or a
Banach function lattice, or simply a Banach lattice.

Let & = (&g, P1} be a Banach couple of Banach lattices on (£2, I, ).
Suppose that X is a locally convex topological vector space in which the
Banach spaces Ag and A; of the couple A introduced above are continuously
embedded. The space X need not necessarily be contained in the Hausdorff
topological vector space Z used in the original definition of A. Suppose that
T:® - X is a continuous linear operator. Let £ be a family of measurable
sets B € X such that xg € A(®) and

(1) [ Txzlla; < eiflxzlls,

for i == 0,1 and for some positive constants c;. Consider the class Mg of all
nonunegative measurable functions f on 2 such that the level set

_ E(, ) ={=z: f(z) > 4}
belongs to £ for each v > 0.
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In the present paper we deal with the following problem.

PROBLEM 1. What are sufficient conditions guaranteeing that inequalities
(1} imply that for each 8 € (0,1) and p € [1,00] we have

) 1715, <copllflz,,

forall f € 59,1, N Mg and for a constant cp p depending only on co, c1, 8,
and p?

In general, condition (1) alone is not sufficient to imply estimate (2) (see
[G5], Example 2.1). In order to formulate an additional condition which does
enable us to obtain (2), we first need to recall the following notion: If B is
a Banach space, then the topological space (B*,weak™) is called an angelic
space if for any bounded set H in B* the weak* closure of H coincides with
the set of weak® lmits of sequences in H. This definition is a special case
of the notion of angelic space introduced by Fremlin (see [F, P]). The class
of Banach spaces B satisfying the above condition will be denoted by AN.
Talagrand has shown that all reflexive, separable, and more generally all
weakly compactly generated Banach spaces belong to the class AN. In fact,
this is true for even more general classes of Banach spaces. For details of
this and other related results we refer to [E], pp. 564-565 and [T], Théo-
réme 3.6 (p. 415) and Théoréme 6.4 (p. 427).

The following condition was considered in [G5]:

(3) I°(A) € AN.
This condition plays an important role in problems concerning interpola-

tion on characteristic functions. Condition {3} is not very restrictive. For
example, any of the conditions (i)~(v) below implies (3):

(i) one of the spaces A or A; is separable;

(ii) one of the spaces Ag or A; is reflexive;

(iii) one of the spaces Ag, with 6 € (0,1) and p € (1,00) is sepa,rz'a,ble;

(iv) one of the spaces Ag,p with # € (0,1) and p € (1, oo) is reflexive;

(v) one of the spaces Agp, with 8 € (0,1) and p € (1,00) is in AN.

Indeed, it is known that (i) implies (iii) and (i) implies (iv) for all &
and p as above (see [B], p. 31 and p. 40). Since separable and reflexive
spaces are in AN, conditions (iii) and (iv) imply (v). Suppose now that
condition (v) holds. Since Ay, is dense in 2°(A), the space (Z°(A), weak“.‘)
is continuously embedded into the space (43 ,, weak*). Applying the “angelic
lemma” (see [F], p. 28 and p. 31), we get condition (3). This shows that each
of the conditions (i)—(v) implies condition (3). B

It was shown in [G5] that if the couple A satisfies condition (3) and @
is a couple of different Lorentz spaces, then (2) holds. In the present paper
we provide another class of examples of couples A and @ for which the
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interpolation theorem from the characteristic functions holds. This is done
in the following theorem, which is the main result of this paper.

THEOREM 1. Let A be a Banach couple continuously embedded into a
locally convex Hausdorff topological vector space X and sotisfying condition
(3). Let & be a Banach couple of lattices on a nonatomic complete o-finite
measure space (2, X, 1) such that $g = B where B is an arbitrary Banach
function lattice and &, = L. Let £ be some subset of X such that xp € B
for oll B € £. Suppose a linear operator T is given such that T maps both
B and L*™ into X continuously and

(4) 1Tx&l4 < collxells
and

(5) 1Txzla, < ealxelze
foroll BE€ &, Then

(6) 1T a,, <copllfllB,ze,,

forall 0 < 8 < 1,1 < p < oo, and all nonnegative functions f satisfying
E(y, f) €& forall y > 0.

The theory of Pettis integration will be an important tool in the proof
of this theorem. We conclude this section by recalling some definitions and
results from this theory: Let (8, 4, 7) be a o-finite measure space and A be
a mapping of § into a locally convex linear topological space €. For every
functional v € C* let yo X denote the composition of the mappings v and \.

DEFINITION 1. The mapping A is called weakly measurable if the function
v o A is A-measurable for every ¥ € C*. The mapping A is called Pettis
integrable in C if X is weakly measurable, { |yoA]dv < oo for every v € C¥,
and if, for each G € A, there exists an element z¢ € C such that

v(rg) = 57 oAdy forall vy € O™
G
The element xg is called the Pettis integral of A over G and is denoted
by C-{, Adv.

DEFINITION 2. Let (G, F, 1+) be a finite measure space and C be a Banach
space. It is said that C has the u-Pettis integral property if every bounded
weakly measurable function £ : G — C is Pettis integrable in C.

It is known that if C' is a Banach space then
(7N C' € AN = C has the u-Pettis integral property

for every probability measure g
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(see {E], pp. 564-565). The next lemma is standard and we leave it as an
exercise for the reader.

LeMMA 1. Let A be a weakly measurable mapping of (0, 00) into a Banach
space C such that the mapping Ax|qy 18 Pettis integrable in C for every
compact interval [a,b] C (0, 00). Suppose that ||Ay)|lec < ¢(y) for all y > 0
where ¢ € L1(0,00). Then the mapping A is Peitis integrable in C and

le-Dway| < §otwray
E E
for every Lebesgue measurable subset E of (0,00).

3. How to reconstruct a function from its level sets. Suppose f
is a nonnegative measurable function on a measure space (2, 2, u) as in
Section 2. Let 7; be a mapping of the half-line Rt = (0, c0) into the space
of measurable functions on {2 defined by 7¢(y) = Xgw,5)» ¥ > 0, where
E(y, f) = {f > y} are the level sets of the function f. If ¢ is a Banach
lattice on (£2, X, p) and f € &, then xg(y,s) € ¢ for all y > 0 since

(8) 0< Xa@.n <V
Hence, 7y maps Rt into &.
The function f can always be reconstructed from the mapping 75 by
pointwise integration:
o0
(9) f=1§7v) dy.
0
This follows easily from Tonelli’s Theorem. Now let ¢ be a Banach lat-
tice as above. Our next goal is to obtain the Pettis integral version of the
representation (9). First we study the measurability problem.

LEMMA 2. For every Banach lattice $ and every nonnegative measurable
function f € &, the mapping 7¢ : RT — & is weakly measurable.

Proof. Let v be an arbitrary functional in &*. We have to show that
the function oy is a measurable function. Tt suffices to show that yaoy (v}
is a measurable function of y on (1/n,co) for each positive integer n. For
each such n let L®|g(1/n,5) denote the subspace of L2, X, u) of those
functions which vanish g-a.e on f2\E(1/n,f). It follows from (8) that
this space is continuously embedded into . So the restriction Tn of v to
this space is given by v,{¥) = {, ¢ dv, for some finitely additive mea-
sure v, which is defined on the measurable subsets of £(1/n, ) and van-
ishes on all such subsets having p-measure zero. We can represent vy, as
a difference of two nonnegative finitely additive measures vl and 12, Le.

Vo = |n| = ([va| — va) = ¥} — v2. Now for each y € (1/n,00) we have
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XE(.5) € L®|B(1m,p) and so
vl E(y, ) = v2(B(y, £)) - v2(E(, F)).

Both functions on the right are monotonic on (1/n, o0). Thus their difference
is measurable. This completes the proof of Lemma 2.

Next we study the Pettis integrability of the mapping 7 where f > 0
belongs to an arbitrary Banach lattice &. Let E C R* be a Lebesgue
measurable set. Define fg(w) = g 7¢(y)w)dy for each w € 2, where
the integral should be understood in the pointwise sense. It is clear that
fe(w) = m(E N0, f(w)]), from which we can see that fg is 2 measurable
function. Since fz < f, we have fr € &.

LEMMA 3. Let & be o Banach lattice on (2, X, u) and f > 0 be a function

in®. Let 0 <a<b<oo. Let B be an arbitrary Lebesgue measurable subset
of fa,b]. Then

(10) Y(fe) = S’)’DTf dy  for all v & P,
B

Proof. Let v € . By estimate (8), we have

(11} Irslle < vt flle-

It follows from (11) and Lemma 2 that yer; € L*(E). Using (8) again, we see
that the subspace L*|j5(q, 1) of L(£2, X, 1) of those functions which vanish
almost everywhere on the complement of E(a, f) is continuously embedded
into @. So the restriction -y, of a functional v € $* is generated by a finitely
additive signed measure v, on (2, %) which vanishes on all measurable
subsets of the complement of the set E{a, f) and also on all measurable
subsets of zero p-measure of the set F(a, f). Moreover, v, = v} — v2 where
Vg is a nonnegative finitely additive measure for ¢ = 1,2. Hence 7, = 7% — 2
where ; is a nonnegative bounded linear functional on L%| g, ¢ for k =
1,2. Now we get

(12) Jyorsdy={lomrdy~ {120y dy.
: E B E
Consider a subdivision of [a,b] by N + 1 points ¢y,
a=cg<ey<...<oy-1 < eny=h.

This can be chosen so that m(E N [en—1,¢n)) = m(E)/N forn=1,...,N.
Since fg = Yn_; fonien_s,cn] a0d

m(F) m{E
N XE(en.f) < fBrlen-1,en] S I(\f )Xm(cn“l,f)
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we deduce that

N N
P 2k en) <07 < B S k)

n=1
But by choosing ¥ sufficiently large, both of the sums appearing in this
estimate can be made arbitrarily close to {;v% o 77 dy. (The reasoning here
is of course the same as in the proof of the Riemann integrability of a
monotonic function.) Therefore,

(13) Yalfe) = [ 7io s dy

B
for 4 =1, 2. Now (10) follows from (12) and (13). This completes the proof
of Lemma 3.

LEMMA 4. Let  be a Banach lattice and f > 0 be o function in €. If
the mapping 75 is Pettis integrable in $, then for every Lebesgue measurable
set B C RY we have

(14) fp=2a- S 75 dy.
kB

Proof. Consider the following sequence of functions: gn = frn[1/n,n]»
n =2 1. By Lemma 3 we have

=2 | 7rdy.
En[1/n.m]
Since the Pettis integral is countably additive (see [DU], p. 53},

(15) lim g, = @_Igﬂnrf dy
where the convergence on the left side is in the space . Denote the limit in
(15) by g.

Tt remains to prove that g = fg a.e. This follows by a straightforward
argument (cf. e.g. [KPS], p. 41) which we reproduce here for the reader’s
convenience: Clearly we have the pointwise inequalities 0 < gm < gm+1 <
limp oo gn = fr. First we claim that g, < g a.e. for all n. If not, then for
sore n there exists a set A with u(A4) > 0 such that g, — g > G on 4 and
thus for each m > n we have

0 < |(gn — 9xalle < ligm — g)xalie < lgm — glls,

which is clearly a contradiction. Taking pointwise limits, we deduce that
frm < g a.e. Now suppose that fg < g on some set 4 with u(A) > 0. Then
0 < |(g— fe)xalle < {g ~ gn)xalls for all n, which again is of course a
contradiction. Therefore, fz = g a.e. and hence (14) follows from (15}. This
completes the proof of Lemma 4.
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LEMMA 5. Suppose that a function f > 0 is given such that 74(y) € &
For oll y > 0. Assume

o0
(16) § s (@)lle dy < co.

0
Then f € @, the mapping 74 is Pettis integrable, and moreover,
(17 fo=&-{rs(y)dy

B
for every Lebesgue measurable subset B of (0,00).

Proof. Let us show that f € &. Indeed, since & is a Banach lattice and
o
F230 2 m0 s,
k=-—co
we have
oo

o0
Iflle <4 D> 2 ixgeeplls < 4§ Ixsg.ple dy.
k=—0co 0

Using (16), we get f € #. Now Lemma 5 follows from Lemmas 1-4.

4. Interpolation from characteristic functions in Banach lat~
tices. The first theorem in this section gives an estimate for the K-functio-

nal, provided some estimates for the characteristic functions of the level sets
of a function are known.

THEOREM 2. Let A be a Banach couple, conttnuously embedded into
a locally convex topological vector space X, and @ be a couple of Banach
lattices on (12, X2, u). Suppose £ is a family of measurable sets F such that
Xg € AP). Let T : & — X be a continuous linear operator such that
condition (1) is satisfied for all E € £. Suppose also that Z°(4) € AN.
Then for every function f € X($) N Mg we have

(18) Tfe X (4)

and

(19) K(t,Tf; Ao, A1) < ¢ | min{||rs(9)lleo, tiirs (w) ]2, } dy
1]

for all t > 0, provided the integral in (19) is finite for at least one value (and

therefore for all values) of t > 0. The constant ¢ ghove depends only on the
constants ¢; in (1).

Proof. We begin by studying the vector-valued function A; defined by
(20) Aty = T'xmy,5)-
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This takes values in Ag M A; since xg(,,5) € $o NP1 for all y > 0. Our first
goal will be to prove that A; is weakly measurable in the space Ag + Aj,
which is easily seen to be exactly the same as the space X°(4).

By Lemma 2, the vector-valued function y +— xgq, s is weakly measur-
able in X(®). Therefore, since T : (%) — X is continuous, the function
Ay is weakly measurable in X. Since X* separates points on X°(A), the set

X* C Z°(A)* is weak® dense in £°(A)*. Now consider the set

P={ye X°(A)*: Y(T'Xgy,p)) 18 a measurable function of y}.

P is weak* dense in 5°(4)* since X* C P. Thus in order to prove that
P = X°(A)* it is enough to check that P is a weak* closed set. By a the-
orem of Krein-Shmulian (see [DS], p. 429), it is sufficient to prove that
the set P N B(0,7) is weak* closed for every ball B(0,7) in Z°(4) of ra-
dius r centered at 0. This set is bounded in X°({A). Using the condition
£°(A) € AN, we see that every element of the weak* closure of the set
P B(0,r) can be represented as the weak* limit of a sequence in PNB(0, ).
It follows that P n B(0,7) is weak* closed. As already explained, this gives
P = 5°(A)*. Thus, the mapping \; defined by (20) is weakly measurable
in Z°(A). B

Given an arbitrary number £ > 0 we equip the space Y°(A) with the
equivalent norm

lall &5y = K (835 45, A).
Since the integral in (19) is finite, Lemma 5 implies that the mapping y —
XE(y,5) s Pettis integrable in X(&) and

[&,¢]
(21) f= 2@ | x5.s) dv-

0
It follows from (21) and the continuity of the operator T' from () into X
that the mapping Ay is Pettis integrable in X and

o0

(22) Tf=X-{ As(y)dy.
0
Since T satisfles (1) we obtain
(23) H%f(y)llf;)o(g, < emin{ [ x5y, ) l|%0: Ll X B, 6. }

for all y > 0 where the constant ¢ > 0 does not depend on y and . We have
already shown that the mapping

(24) Ar : (0,00) = (Z°(A) - 152 )

is weakly measurable. Now (3), (7}, (23), and the condition f & 2(5)_0 Mg
imply that the mapping {24) is Pettis integrable in the space X° (A) over
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every compact interval [a,b] C (0,00). By (23), the norm of (24) has an
integrable majorant. It follows from Lemma 1 that Ay is Pettis integrable

in X°(A) over all of (0, 00). Next, using (22), we get

oQ

(25) Tf = 2°(A)- | As(y) dy,
0

This proves (18). Moreover, (23}, (25) and Lemma 1 imply that
K (t,Tf; Ao, A1) € K(5,TF; 45, 43) = TS

o0
< e | min{[lxz. 5|60, tXa, ) ]l0: } dy.
0

This gives estimate (19) and so completes the proof of Theorem. 2.

We now consider the case & = (B, L) where B is a Banach lattice of
measurable functions on (2, X, ). In this case the estimate in Theorem 2
has the (slightly simpler) form

oo
(26) E(t,Tf; Ao, A1) < c | min{lx g, 55, t} dy.
0

This estimate will be used in the next theorem.

THEOREM 3. Suppose & = (B, I™°) as above and all conditions in Theo-
rem 2 are satisfied. Then for every function f € Z($)NMg and all numbers
6 and p such thot 0 <@ <1l and 1 <p < oo we have Tf € Ag,, and

T _ 1/p
(27) T a,, < Ca,p{ VP Yxmg.nlE—® dy}
0

provided the integral in (27) is finite. The constant cop i (27) depends
only on 8, p, and the constants ¢; in (1). Analogously, for p = oo we have
TfeAg o and

(28) ITflg, .. <co il;g{yl]xmy,f)i!}s“"}

provided the supremum in (28) is finite. The constant cy in (28) depends
only on 8 and the constants c; in (1).

Proof. Define ¢(y) = |xp(y,s)|lp. We shall use the notation D(., ¢) for
the distribution function of the function ¢, i.e. for all ¢ > 0 we set D(t,¢) =
m{{y : #(y) > t}). Using well known properties of the distribution function,
estimate (26), Hardy’s inequality (see [SW], Lemma 3.14 on p. 196), and
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the fact that ¢ is nonincreasing, in the case 1 < p < oc we get

[ea] oD

(20) 1T, <ef e ortar( § min{p(y), 1} dy)
¢} 0

P

[e.o]

<a [ ta( ¢>(y)dy)jp
a {wo(y)<t}

wey | 0PI D, )P dt
]
t

<e Dgot—ﬁf’—l ( [ D(z, ) dz)pdt
0

0
+ep | 01D, )P di
0

<ogp | ETOPTID(E, ¢)P dt
0

[e.]

24 — —
_ 6,p S y;p 1¢(y)(1 0)p dy,
1-8 5

which proves (27).
Next we will prove estimate (28). From (26} we get

=}
(30) |ITfl5,,, < csupt™ | min{p(y),t}dy
! >0 0
< csupt™? S B(y) dy + csupt' ¥ D(t, ¢)
>0 t>0
yid{v)<e}

(y)
D(z,¢) dz + esupt* 2 D(t, ¢)
>0

{
t
= csupt™? S
0 g

t
< csupt™? S 22 aupy® 1D(y, ¢) dz + csup O D(t, @)
t> 0 0 y>0 t> 0

= c(-l- + 1) sup 19 D(¢, ¢).
g > 0

By well known properties of the distribution function, since ¢ is nonincreas-

ing, this last expression is equal to ¢(1/8 + 1)sup,.o yqﬁ(y)l“a. {Cf. also

Lemma 3.8 on p. 191 in [SW].) This establishes (28) and completes the

proof of Theorem. 3. :
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5. Spaces (B, L), and the level sets of functions. In this section
we give an equivalent expression for the norm of a nonnegative function f
in the interpolation space (B, LYo p in terms of the level sets E(y, f). This
result enables us to complete the proof of Theorem 1.

THEOREM 4. Let B be a Banach function lattice on a nonatomic o-finite
measure space (£, 5, ). Then for every 8 € (0,1) and p € [1, 00) there exist
positive constants qgp and Bop such that, for every measurable function
f:02— [03 DO):

o0

1--8 -
(81) aep | Ixzanls ™ v dy < 11 Loy,
0
T 1—@
< Bop | Ixsanls "yt dy.
0

In the case p = oo there ezist positive constants ap and By such that

(32)  assupylixmwnls’ S IflBrey. < B supy||xm.nlE -
y>0 y>0

REMARK 1. The inequalities in (31) and (32) should be understood in the
following sense. The finiteness of the norm of a function in the interpolation
space in (31) or (32) implies the finiteness of the corresponding integral or
supremum and the validity of the estimates from below. Similarly, if the
integral in (31) or the supremum in {32) is finite, then the function is in the
corresponding interpolation space and the estimates from above hold.

Proof (of Theorem 4). Let 1 < p < co. Our first goal is to prove that
= 4]
(33) 17128 sy, < Bo § Ixmapls "y~ dy
0

provided the integral is finite. This can be considered as a special case of
the estimate (27) obtained in Theorem 3, if we choose A9 = $g = B and
Aq =Py = L™, let £ consist of all measurable sets for which xg € B, take
X = B+ L™, and let T be the identity operator. However, we cannot prove
this estirmate by immediately applying Theorems 2 and 3 in this special case,
since we do not know whether the condition X°(A4) € AN holds. Instead, we
shall use a (simpler} alternative argument. For each fixed ¢ > 0 consider the
space A = (Z(&), | - Hg}@)) as in Theorem 2. Since B and L™ are Banach
lattices, so is A. Moreover, 7¢(y) € A and

(34) I @)l gy < min{|xege )13, 2}

for all ¥ > 0 and ¢ > 0. The function on the right side of (34) appears in
the first line of the estimates (29) and so it is integrable on (0, oo} for each
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choice of fixed t > 0, in view of the subsequent estimates in {29) and the
finiteness of the integral in (33). Applying Lemma 5 with A in the role of
the Banach lattice & and then using Lemma 1, we obtain

(35) fe B+L™
and
(36) K(t, £;B,L°) < | min{||xzw,s |5t} dy-

0

(Note that (35) and (36) are analogous to (18) and (19) (or (26)) respectively,
in the special case discussed above.) Using (35), (36) and, once muore, the
estimates (29) of the proof of Theorem 3, we obtain (33) and so prove the
upper estimate for || f]lf 8,10}, i (31). The upper estimate in {32) is proved
in a similar way.

In order to finish the proof of Theorem 4 we need to obtain the lower
estimate in (31) and (32). Suppose f € (B,L®)sp where 1 < p < 00.
Define v(t) = t~2K (¢, f). The function v is nonincreasing on (0, oo) because
v(t) = infgqpn=,{t | follB + lif1llc}. Moreover, f & (B, L™}, implies
t~@ K (t,f) < M where M is some positive constant. Hence vlt) < Mt=1+
and lim;_ov(t) = 0. Denote by ¥ the following variant of the distribution
function of v: 7(y) = m{t € R : v(t) > y}. The function ¥ is nonincreasing
and left-continuous.

We need some simple and known facts about the K -functional for the
couple (B, L), which we will formulate as a separate lemma.

8,p

LEMMA 6. If f is a nonnegative function in (B, L*)g p for some 6 € (0,1)
and p € [1,0d], then for each y > 0 we have Xp(y,z) € B and

(37) Ifxewnle < Ellxew.nls fi B, L7).

Proof Fix any y > 0. Since sup;-q t=% K(t, f; B, L®) < oo, there exists
some decomposition f = g+ h of f with g € B and |h| e < y. It follows
that

lglxmw.n = 1f — hixew.n 2 (¥ — [hllz=)xB0.n-
Since B is a Banach lattice, the function on the left must be an element of B
and therefore so ig the function on the right and consequently also xm(y,f)-
Now let f = fo+ f1 be any decomposition of f with fo € Band f1 € L.
Then

I #x5w.nl5 < I foxswnlls + Mixewnle
< llfolls + lIxe@,n el fiilze-

‘We obtain (37) by taking the infimum over all such decompositions of f,
and so complete the proof of Lemma 6.
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REMARK 2. It is rather easy to extend the previous proof to obtain equiv-
alent formulz for the K-functional of the couple (B, L), in particular when
additional hypotheses are made about B. Various authors have considered
this problem. In many cases one has K(¢, f) =~ |lxr, fl|z for a suitable set
F, depending on t and f. A discussion of the case where B is an arbitrary
Banach lattice and (£2, X, i) is an arbitrary measure space can be found in
[CIM] (see also [CP]).

Now we continue the proof of Theorem 4. For every y > 0, Lemma 6
gives

It follows from the definition of ¥ that

{39) e>0, >0, vie) > a=0(a)>ec

Putting ¢ = ||xg(, ||z and @ = y in (39) and using (38}, we get
(40) () 2 lIxEw.nlls-

Since #(y) = m({t € R* : v(t) > y}) for almost all y, we get, using (40) and
standard properties of distribution functions (cf. the last step in (29)),

1£178, 100y, = § K (& f3B, L2)Pe=0"1 gt

a
[ o(pet=r-1gs = (1 a)g oly) =Pyt dy
0 0

>(1-9) S“XE@J)WI Peye=1 gy,
2

This gives the estimate of the norm of f from below in (31).

In order to deal with the case p = oo let us first observe that (cf. the
step immediately after (30))

sup{t*%u(t)} = sup{yv{y) Y.
1§>0{ )} y}lg{yv(y) }
Thus we have
[1£l(8,2)0,00 = sUp{t° K (¢, f; B, L)} = sup{t'~*u(t)}
t>0 >0
= sup{yv(y)! "%} > s 1-6
y}g{y (W) ™"} 2 yg%{yﬂxmw,f)l\a }

This gives the estimate of the norm of f from below in (32) and completes
the proof of Theorem 4.

Interpolation on families of characteristic functions 223

Proof of Theorem 1. Theorem 1 immediately follows from Theorems 3
and 4.
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Weak almost periodicity of I; contractions
and coboundaries of non-singular transformations

by

ISAAC KORNFELD (Fargo, ND} and MICHAEL LIN (BeerSheva)

Abstract. It is well known that a weakly almost periodic operator 7" in a Banach
space is mean ergodic, and in the complex case, also AT is mean ergodic for every |A] = 1.
We prove that a positive contraction on Iy is weakly almost periodic if (and only if} it
is mean ergodic. An example shows that without positivity the result is false. In order to
construct a contraction T on a complex L1 such that AT is mean ergodic whenever JA| = 1,
but 7 is not weakly almost periodic, we prove the following: Let T be an invertible wealdy
mixing non-singular transformation of a separable atomless probability space. Then there
exists a complex function ¢ € Lgo with lp(z)] = 1 a.e. such that for every A € C with
|Al = 1 the function f = 0 is the only solution of the equation f(rz) = Ap(z)f(z).
Moreover, the set of such functions ¢ is residual in the set of all complex unimodular
measurable functions (with the Iy topology).

1. Mean ergodicity and weak almost periodicity of L, contrac-
tions. Motivated by von Neumann’s mean ergodic theorem, we call a linear
opetator T' in a (real or complex) Banach space B mean ergodic if

1 T
(1.1) lim = " T*f exists for all f € B.
k=1

T-+00 1

A mean ergodic operator T which is power-bounded (i.e., sup, |T™} < c0)
induces the ergodic decomposition B ={y € B: Ty =y} & (I —T)B, and
the limit in (1.1) is the projection (corresponding to this decormposition) on
the subspace of fixed points.

A linear operator T is called (weakly) almost periodic if for every f € B
the orbit {T* f}r>o is (weakly) sequentially compact. A weakly almost pe-
riodic (WAP) operator is necessarily power-bounded, and a power-hounded
operator in a reflexive space is clearly WAP. Since the closed convex hull
of a weakly compact set is weakly compact IDS], a weakly almost periodic
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