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Weak almost periodicity of I; contractions
and coboundaries of non-singular transformations

by

ISAAC KORNFELD (Fargo, ND} and MICHAEL LIN (BeerSheva)

Abstract. It is well known that a weakly almost periodic operator 7" in a Banach
space is mean ergodic, and in the complex case, also AT is mean ergodic for every |A] = 1.
We prove that a positive contraction on Iy is weakly almost periodic if (and only if} it
is mean ergodic. An example shows that without positivity the result is false. In order to
construct a contraction T on a complex L1 such that AT is mean ergodic whenever JA| = 1,
but 7 is not weakly almost periodic, we prove the following: Let T be an invertible wealdy
mixing non-singular transformation of a separable atomless probability space. Then there
exists a complex function ¢ € Lgo with lp(z)] = 1 a.e. such that for every A € C with
|Al = 1 the function f = 0 is the only solution of the equation f(rz) = Ap(z)f(z).
Moreover, the set of such functions ¢ is residual in the set of all complex unimodular
measurable functions (with the Iy topology).

1. Mean ergodicity and weak almost periodicity of L, contrac-
tions. Motivated by von Neumann’s mean ergodic theorem, we call a linear
opetator T' in a (real or complex) Banach space B mean ergodic if

1 T
(1.1) lim = " T*f exists for all f € B.
k=1

T-+00 1

A mean ergodic operator T which is power-bounded (i.e., sup, |T™} < c0)
induces the ergodic decomposition B ={y € B: Ty =y} & (I —T)B, and
the limit in (1.1) is the projection (corresponding to this decormposition) on
the subspace of fixed points.

A linear operator T is called (weakly) almost periodic if for every f € B
the orbit {T* f}r>o is (weakly) sequentially compact. A weakly almost pe-
riodic (WAP) operator is necessarily power-bounded, and a power-hounded
operator in a reflexive space is clearly WAP. Since the closed convex hull
of a weakly compact set is weakly compact IDS], a weakly almost periodic
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226 I. Kornfeld and M. Lin

operator is mean ergodic (see {Y, p. 213], where the result is given in a
more general context). In general, the converse is false: a mean ergodic con-
traction T with 72 not mean ergodic is not weakly almost periodic (for a
simple example, see [Kr, p. 84]). A mean ergodic operator need not even
be power-bounded: Hille [Hi] proved that the operator defined on L;{0,1]
by Tf{z) = f(z) — |; f(y) dy is mean ergodic but not power-bounded. The
existence of T' positive mean ergodic on L, (1 < p < oo) which is not power-
bounded follows from Theorem 4.2 and section VI of [E]; furthermore, all
the powers of such a T' are also mean ergodic.

In this section we study the relationship between mean ergodicity and
weak almost periodicity of contractions on Ly (X, 1) of a o-finite measure
space.

LeMmMA 1.1. Let T be o positive contraction of Li(X,u). If there is
heL; withTh<h and h >0 a.e, then T is weakly almost periodic.

Proof. Since we can change the reference measure to any equivalent
one [Kr, p. 128], we assume u finite and h = 1, ie., T1 < 1. Then T is
also a contraction of Ly {Kr, p. 65], so for f € Ly the sequence {T%f} is
weakly sequentially compact in Ly, and hence (since the measure is finite)
also in L. Since the set of functions f € L1 for which the sequence {T* f}
is weakly sequentially compact in Iy is closed, T is WAP,

THEOREM 1.2. Let T' be a positive contraction on Ly(X, ). Then T is
weakly almost periodic if and only if T' is mean ergodic.

Proof. Since every WAP operator on a Banach space is mean ergodic,
it is enough to prove the converse.

Let T be a mean ergodic positive contraction on Ly (X, u). If p is o-
finite and infinite, it can be replaced by an equivalent finite measure [Kr,
p. 128], so we may and do assume that the measure 4 is finite. Recall ([DS,
IV.8.11]) that {gn} C L1(X, u) is weakly sequentially compact if and only
if sup,, [[gnll1 < 0o and sup, § , {gn| dp — 0 as u(A4) — 0. Thus, it is enough
to show that for 0 < f € Iy we have

supST"fdu —0  asu(d) —0.
A
Let ¢ and D denote the conservative and the dissipative parts of T,
respectively [Kr]. By Helmberg’s result ([Kx], p. 175), the mean ergodicity
of T implies that T" has a fixed point 0 < h € L; with € = {h > 0},
and T*"1p — 0 a.e. Hence |, T" fdu = \p JT*"1pdp — 0 by Lebesgue’s
convergence theorem.
The subspace L; (C) is T-invariant, and T, the restriction of T' to L; (C),
has a strictly positive fixed point. By Lemma 1.1, Tx is WAP. Hence, if
0 < g€ In(C), then sup, |, T"gdu — 0 as p(A) — 0.
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Let 0 < f € Li(X, i) Fix £ > 0, and pick N such that

e
T flly = § T¥F dp < 5.
D
The function g = 1cTV f is in L1(C). Therefore,

sl rsdn={ g, frranpy {sup )

={ max, |71}
- T A

v { sup [X TN (1T £) dps + JS@T”“N (1p TV f) d,u] }

Y

< 4 max ST”fd.’,u,}V{su

&
T*gdp+ =
- 1§nSNA kzlzs g #+2}<E

A
if 4(A) is small enough. Since £ > 0 is arbitrary, sup, {, T"fdy — 0 as
p(A) — 0. Hence the contraction T is WAP.

CoOROLLARY 1.3. If T is a contraction of L, with mean ergodic linear
modulus, then T is weakly almost periodic (and therefore mean ergodic).

Proof. Let {T| be the linear modulus of 7" {Kr, p. 159]. If |T'| is mean
ergodic, then it is WAP. Then for any f € L; we have

sup { [T*f| dp < sup | |T/*|f] dp— 0
k213 k>l
as u(A) — 0. Hence T' is WAP.

REMARK. The mean ergodicity of T, under the assumptions of Corol-
lary 1.3, was proved in Proposition 1.1 of [JL], together with a.e. convergence
of the averages (1.1).

Next, we deal with non-positive contractions of L. We show by examples
that, in general, properties of T' do not yield the corresponding properties
for its modulus, and Theorem 1.2 fails without the positivity assumption.

Recall that a Dunford-Schwaertz (DS) operator is a contraction T of
Ly(u) (where y is o-Buite), with | Tf|les < [/ f|lo0, and its linear modulus
T is also DS [K, p. 161].

Lemma 1.1 and Corollary 1.3 show that a DS contraction in a finite
measure space and its modulus are WAP. Clearly, the property of being DS is
not invariant under changes of the reference measure. Rather, a contraction
T on Ly is DS under some change of measure if and only if there exists a
measurable function 0 < h < oo a.e. with |T|h < h a.e. (and in that case,
we have a.e. convergence in (1.1) for every f € L1). The following examples
will be DS contractions in an infinite measure space. o
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Recall also that a positive contraction T' of L; is called ergodic if the
only T*-invariant functions in L., are the constant functions. T is called
weakly mizing if it is ergodic, and 7™ on the complex L, has no unimodular
eigenvalues different from one. Thus, a non-singular transformation 7 is
weakly mixing if go7 = Ag, for g € Leo(p) and |A| = 1, implies A = 1 and g
is constant. Weakly mixing transformations preserving an atomless infinite
measure exist [KP].

ExXAMPLE 1: A mean ergodic DS contraction on a real Ly which is not
WAP. Let 1 be an infinite o-finite measure, and let P be an ergodic and con-
servative positive Dunford-Schwartz operator in Ly (1) such that P? is also
ergodic (e.g., P is weakly mixing). Since P has no finite invariant measure,
it is not mean ergodic. Let T = —P. Since P? is ergodic, T%g = g € L im-
plies g = 0. Hence (by the Hahn—Banach theorem) (I — T)Ly = Ly, and T is
mean ergodic. Since P™ = (—1)*T™, and P is not WAP, T is not WAP. Note
that the modulus of T is clearly P, so T is mean ergodic with a non-mean
ergodic conservative modulus.

EXAMPLE 2: An almost periodic DS condraction with non-WAP conser-
vative modulus. Let ¢ be an infinite o-finite measure, and let P be an ergodic
and conservative positive Dunford-Schwartz operator in Ly (u), with P? er-
godic, which has a cyclically moving set of period 3, i.e., a set Ap with

P*le =la,, P*lAl = 14y, P*].Ag = 1A0

such that Ag, Ay, Az are disjoint, with union X (e.g., P is a Harris recurrent
operator of period 3; such & P is obtained from the randem walk on Z with
steps —1 with probability 2/3 and +2 with probability 1/3. For an example
of P induced by a transformation 7 preserving an infinite measure, let 8 be
weakly mixing infinite measure preserving in (¥, v), and in X = {1,2,3} xY
define 7(j,y) = (§+1,8y), where + denotes addition mod 3).

Define T' = (I — P). Then T is clearly a DS operator in Ly (u). Since for
any contraction S on a Banach space {|{((1 + 8)/2)"(] — §)|| = 0, we have
|T7(I - T)|| = |1 T™(I + P)|| — 0.

IfT"g = g € Le, then P*g = —g, and since P? is ergodic, g = 0.
Hence T™ has no non-zero fixed points in Ly, s0 Ly = (I — T)L;. Now
|T™(I —T)]| — 0 implies that [|[T"fi|s — 0 for every f & Ly, which shows
that T' is almost pericdic.

Let @ = |T'| be the modulus of T'. Then @ is DS, and obviously @ <
3(I+ P). We prove that Q*1 = 1, which will yield Q = }(I + P). For each
1 =10,1,2 we have

1>2@Q"1> Q*\lAé - 1A1‘+1|
2 T (La, - 1‘41'4-1)! = I%(lAi —2:1a, + 1Ae+z)| = lag,
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This yields Q*1 > maxp<i<a 14; =1, which shows that @*1=1.If0< g <1
satisfies @*g < g, then

0<1-g<1-Q'g=Q*(1—-9g)=3{I+P")(1-g),

which yields P*(1 -- g} > 1 — g. Since P is conservative, equality holds a.e.,
and therefore also Q*g = g a.e., which proves that () is conservative.

Assume that 0 < w € L, satisfies Qu = u. Then Pu = wu. But since P
is ergodic and conservative with no finite invariant measure (it preserves an
infinite measure), u = 0. Thus @ has no fixed points except zero, and since
() preserves integrals, it is not mean ergodic, hence not WAP.

DEFINITION. A power bounded operator T on a complex Banach space
B is called totally mean ergodic (TME) if for every corplex X with {A| = 1,
the operator AT is mean ergodic.

A weighted ergodic theorem for TME operators was obtained in [CLO].
Clearly, a weakly almost periodic operator is TME. In complex L; spaces,
the next example (which depends on the main result of the next section)
improves upon Example 1.

EXAMPLE 3: A totally mean ergodic DS contraction on a complex L
which is not WAP. Let = be an invertible non-singular ergodic transfor-
mation of a separable atomless probability space (X, A, u), which has an
equivalent infinite o-finite invariant measure ¥ (so it has no finite invariant
measure), and assume that 7 is weakly mixing,

Let Pf(z) = f(7). The invariance of v implies that P is a positive D3
operator on L1(v), with P*g(z) = g(t'z).

In the next section, we prove that under our assumptions on 7, there
exists a complex measurable function ¢ with [p(z)| = 1 a.e. such that for
every complex A with [A| = 1, f = 0 is the only measurable solution of the
equation f(Tz) = Ap(z)f(2).

We define Tf(z) = @(z)Pf(z). Then T*g = P*(pg) = (pg)© L
Clearly, T is DS on L;(¥), and its modulus is P.

Fix A with [A| = 1. To show that AT' is mean ergodic, we show that its
adjoint has no non-zero fixed points. Assume AXT™g = g for some g € Lgo.
Then Aw(r~'z)g(r~ z) = g(z) ae., which means Ap(z)g(z) = g(rx) a.e.
By the choice of ¢ we have g = 0 a.e. Hence limp o0 || % Z:zl()\T)kal =0
for every f € L1(v). Thus, T is totally mean ergodic.

Finally, T' is not WAP. If it were, then {|P"f|} = {|T™ f|} would be
weakly sequentially compact, implying that P is WAP. But P is not mean
ergodic, hence not WAP, since by ergodicity of T, P has no fixed points
in L1 (V)
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Note that under the change of the measure from » to y, the operators P
and T on Ly (v) are represented in Li(p) as Pf(x) = h(z)f (T} /h(rz) and
Tf(x) = @(z)PF(z) for f € Li(s), where h = dv/dy.

A natural question is whether Theorem 1.2 can be extended to higher

dimensions. A set of d commuting power-bounded operators {14, ..., Ty} in
a Banach space B generates an operator representation of Zi, defined by

T(ky, ..., kq) = T ... T The representation is called mean ergodic if

d n
Z Z T(k1,---,ka)f exists for all f & B.

j=1 k=1

(1.2) lim —

n—oo N9

The representation generated by mean ergodic commuting operators {Tj};ﬁzl
is mean ergodic (JGL]). However, mean ergodicity of a representation does
not imply that of its generators: for a contraction T which is not mean
ergodic, take § = —2(I 4+ T). Then S* has no non-zero fixed points, hence

‘ %iiT’“Sﬁ): H(%iT’“) (%i&”f)” —~0 forall f eB.
k=1 J=1

k=1 F=1
A representation T'(kq,...,kq) of Z_‘{ is called weakly almost periodic if
for every f € B the orbit {T(ky,..., ka)f : (k1,...,ke) € Z2} is weakly
sequentially compact. This clearly implies that each generator T is WAP.
Hence, weak almost periodicity of a fo_ representation implies mean ergodic-
ity of its generators, and therefore also mean ergodicity of the representation
itself.

We now show that the multidimensional analogue of Theorem 1.2 is false.

EXAMPLE 4: A representation of Z2 by positive Ly contractions which

is mean ergodic but not WAP. Let X1 = {1} x [0,1] and Xo = {2} x

[0, 1] be two disjoint unit intervals, and Xy = {0}. Let 6 be a conservative

non-singular transformation of [0,1] with no absolutely continuous finite

invariant measure. We define two transformations on X = X U X U Xs

(with u the sum of Lebesgue measures on the intervals and the Dirac measure
at 0} as follows:

70 = 0,

a0 =0,

T(lﬁy) = (lzgy)a T(zn z) = 0;
D-(th) = (2562)’ 0'(11 y)=0.

Then rox == 0 = o7z for every x € X. Let T and S be the Ly (X, i) preduals
of the Lo, contractions induced by = and o. Then T and § commute. Since
T*5% = T'S for every k > 0 and j > 0, the representation generated by T
and S is mean ergodic. The conservative part of T is X3 U Xp, but every
finite invariant measure for 7 vanishes on X;. Hence T' is not mean ergodic
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{(and similarly § is not mean ergodic). Therefore T' is not WAP, so the
representation is not WAP.

REMARKS. 1. Standard arguments show that if {T},...,Ty} are com-
muting conservative positive Ly comtractions, then mean ergodicity of the
Zi representation they generate implies the existence of a function u € Ly
with ©» > 0 a.e. such that Tju=u for 1 £ j < d. In that case, as in Lemma
1.1, the representation is WAP, and each T} is mean ergodic.

2, If we take X = Xp U X; in the previous example and consider the
restrictions of 7 and o to X, then the representation is mean ergodic, T'
is conservative and not mean ergodic, while § is mean ergodic and not
conservative,

3. The equivalence of (i) and (iii) of the next theorem is a imited mul-
tidimensional version of Theorem 1.2.

TuecoreM 1.4. Let {Ty,...,T4} be commuting positive contractions of
Li(X, ). Then the following conditions are equivalent:

(i) Pach T; is mean ergodic.
(i) Each Tj is weokly almost periodic.
(ili) The representation of 2% generated by {’1““.,-};?=1 is weakly almost
periodic.
Proof. (i}=>(ii) follows from Theorem 1.2, and (iii)=-(ii)=>(1) was pre-
viously discussed. Note that we can assume that u is finite, otherwise we

change the reference measure. For the proof of (ii)=-(jii) we need the follow-
ing modification of the criterion for weak sequential compactness in Lj.

A bounded sequence {g,} C Li(p), with p finite, is weakly sequen-
tially compact if and only if for every € > 0 there exists § > 0 such that
supy, § |gn|h du < € for every measurable h with 0 < h <1 and {hdp < 6.

The “if” direction follows from the standard criterion ([DS], IV.8.11) (by
applying the condition only to indicator functions).

Assume now that {gn} is weakly sequentially compact, and without loss
of generality sup,, ||gn|/1 < 1. For € > 0 the standard criterion yields a d1 > 0
such that sup, |, gs| du < £/2 whenever pu(4) < &1. Let § = min{é?, 2 /4}.
0 < h <1 with {Adu < 4, then u({h > v/8}) < /& < 8;. Hence for every
n we have i .

Jignlndu < Villgali+ | lanlds < Slignlli + 5 <&
{h>3} :

End of the proof of Theorem 1.4. For simplicity, the proof of (i) =-(iii)
is given for the case d = 2 (still assuming p finite). Define T7 = T and
Ty = §. We first show that {T%571: k > 0, j = 0} is weakly sequentially
compact in Ly. Let & > 0. Since § is WAP, the modified criterion yields a
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81 > 0 such that sup; {AS1dy < e for 0 £ h < 1 with {hdu < 81. Since T
is WAP, there is § > 0 such that supy, § , T%1dp < 6 whenever u(A) < 4.
Let u(A) < 8. Then for every k we have {T**1adp = §, T*1dp < &, and
taking T**1 4 for h, we obtain

sup S TES9 1 dp = supSSle*’“lA dp < €.
i i
Hence {T*571 :j > 0, k > 0} is weakly sequentially compact in L; by the
standard criterion. By positivity of T and § we see that {T5S7f : 5 >0,
k>0} is weakly sequentially compact in Ly for every bounded f. Finally,
since the set of functions f € Ly for which the sequence {T*59f : j 2 0,

k > 0} is weakly sequentially compact is closed in L, the representation
is WAP.

2. Multiplicative coboundaries of non-singular transformations.
The main result of this section is Theorem 2.1 about multiplicative cobound-
aries of a non-singular invertible weakly mixing transformation 7. When r
preserves a finite measure, the result was proved in [JP], but this special
case is not sufficient for the construction in Example 3 of the previous sec-
tion. Our result does not need even a o-finite invariant measure. Part of
the argument below is inspired by the proof of Theorem 3 in [JP], but the
absence of an invariant probability requires some additional ideas.

THEOREM 2.1. Let 7 be an invertible weakly mizing non-singular trans-
formation of a separable atomless probability space (X, A, p). There egists a

complex function @ € Loo(X), |¢(z)] == 1 p-a.e., such that for every A € C
with |A| = 1, the equation

(2.1) flrz) = Ap(z) f(2)
has only the trivial solution f =0 a.e.

Moreover, the set of such functions ¢ is residual in the set U = {f €
Ly(X) 1 |f(2)| =1} (with the Ly topology).

Proof. The set U, endowed with the L) metric and with pointwise
multiplication as a group operation, becomes a complete separable metric
(commuiative) group.

Let U be the quotient group U/K, where K = 8% is the subgroup of
constant unimodular complex functions, and let « : U — U be the natural
homomorphism taking every f € U to its coset f € U.

Define ¢ : U — U by o(f) = f(rz)/ f(z), f € U. Then p is a homomor-
phism of UV .with Ker(p) = K (by ergodicity), and we can therefore define
0:U—U by

(2.2) C wf=moalf), where f & i (F).
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Clearly, ¢ is a homomorphism of ﬁ, which is injective by the weak mixing
property of 7. If {fn} C U converges in U (i.e., in L;-norm) to f, then we
have a.e. convergence for a subsequence, say {f,, }, and Lebesgue’s theorem
vields that ||o(fa, ) - o{f)|l1 — 0. This implies continuity of g. To obtain
continuity of g on U (with the quotient topology, irt which U is also a
complete separable metric group), let Fr— fin {7, which means that there
exists a sequence {An} with |A,| =1 such that | A, f, — fll1 — 0. Then

8(fn) = (@O fn)) = m(o(f)) = 8(F)-

Fix i € U. If it does not satisfy the desired requirements, then there is
a A with |A] = 1 for which (2.1) has a non-zero solution f (actually, there
is only one such A, by weak mixing). By ergodicity of 7, the solution f is
unique up to a multiplicative constant, and its absolute value | f| is constant
a.e., so assume | f| = 1 a.e. We therefore conclude that Ap is a multiplicative
coboundary for r:

o= 2

Hence, Ay € oU, and @ = mo @ € pU.

By the open mapping theorem for homomorphismms of complete separable
metric groups (which is obtained from [Ke, p. 213], or can be proved as in
the classical vector space case, using a right-invariant metric), if Im(g) is not
of first category, then it is a closed (and open) subgroup of /, and P is an
open mapping onto its image. In that case, g, being injective, is a bijection,
and the inverse mapping ! is continuous on Im(g).

The proof of the theorem will be obtained from the central Lemma 2.2
below. We first introduce the necessary notation.

Let (12, B,m) be a probability space. For a measurable function h : £2 —
[0,1), its distribution function Dy, is defined by Dp(t) := m{{z € 2 : h(z)
<)}, for t € [0, 1]. If f(z) = exp(2mih(x)), we also call Dx(t) the distribu-
tion function of f; in other words, Ds(t) = m({z € 2 : arg f(z) < 27t}).
The distribution function of a probability measure v on [0,1] is Dy(t) =
([0, ¢])- 5 .

Denote by M., the set of all {discrete) probability measures on 0,1)=8
concentrated on the set of points {j/n : 0 < j < n}. Every probability
v € M, can (and will) be naturally identified with the n—d.imensional vef:tor
{l{j};?;l, with v; = v(j/n). By this identification, the distance dn (v, v') =
|lv—'Il between two probabilities v, v & My, equals the £-distance between
the corresponding vectors: dn (v, V) = ;.:01 v — v_,’,-l. We denote by [(") the
uniform probability in M, i.e., I™(j/n) = 1/n, 0 £ j < n. The l;)irac
measure at 0, i.e., the point-mass probability concentrated: at zero, will be
denoted by 4, and § € M, for every n.

a.e.
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LEMMA 2.2. There exists a sequence { fn} of functions in U such that

& (&) 1 o

(2.4)  Jor all {\.} with |Ma| =1, Dz, (¢) = Ds(t) in measure.

We first deduce Theorem 2.1 from this lemma.

Assume that Im(g) is not of first category. We saw that in that case g is
a bijection onto its image with continuous inverse. The sequence {f,} from
the lemma satisfies b'(ﬁ) — 1 by (2.3). Continuity of ! yiclds f,, — 1,
which means that there exists a sequence {A,} with |A,| = 1 such that
|Anfn — 1l|1 — 0, which contradicts (2.4). Hence g is not surjective, so
Im(3) is a set of first category in U, ie, Im(p) = Uret Nj, with cach N;
nowhere dense in U. Tt follows that 7= (Im(3)) = U, 7~ (N;) is a set of
first category in I7. Then every ¢ € V = U —n~}(Im(5)) satisfies the desired
requirements, since otherwise, as we have seen, & = 7 o ¢ would be in 0.

Proof of Lemma £.2. Let ¢ be the Radon-Nikodym derivative du o 7/dpu.
Without loss of generality we can (and will) assume that

(2.5) 1/2 < é(z) £2

since otherwise the measure 1z can be replaced by another measure, [, equiv-
alent to it, :

pra.e.,

0

=Y 270 rm,
==

— 00
whose Radon-Nikodym derivative ¢(z) = dfi o 7/dfi obviously takes values
between 1/2 and 2.
We fix n, and construct the function f,. To simplify notation, we will
often suppress the subscript n from the parameters of the construction.
First, we apply the “non-singular version” of the Rokhlin lemma (see, for

example, [W]) to the transformation 7, and get a tower {r* A}o<pen with
base 4, i.e., A is measurable and satisfies

n-—1
(2.6)  TFANTA=0, 0<k#£j<n; M(UT’“A)>1——1—.
k=0 n
It can be shown [W, p. 94] that (even in the general non-singular case) we
can have a tower which also satisfies
(2.7) p{r"tA) < 1/n.

In the sequel, T will denote the collection of sets {TkA}g<k<n, as well as
their union. -
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Next, we partition the space X into finitely many subsets B,, 1 <r <
My, on each of which the Radon-Nikodym derivative ¢ = duo7/dp is
“approximately constant”. More precisely, for each 7, 1 < v < my,, we want
to have
(2.8) sup{g(z): z € B,}

inf{¢(z): = € B}
In order to ensure (2.8), it is enough to choose for m, any m satisfying
4t/m < 14 n~2 and take B, = ¢71(4,) for 1 < r < m, where A, =
[%— . 4("‘"1)/’”, % 4””") for 1 <r <m,and 4, = [% . 4(’“_1)/"“,2]. Note
that the sets {Br}1<r<m are disjoint, and, by (2.5), their union is the entire
gpace X mod 0.

For each k, 0 < k < n, denote by £, the partition of the set A = A C
T into the sets Ay, = T*AN B,, I < r < m. Every partition {, can be
“pulled down” to the base A of the tower T, to yield a partition 77%&; of A.
Let 1 = \/;;3 7~%¢, be the common refinement of all these partitions of A,
i.e., the elements of 7 are all possible (non-empty mod 0) intersections of the
form (p—y 7*Ck, where each Cj is an element of &, 0 < & < n. Denote
by s = s, the number of elements of », and by E,,...,E, the elements
themselves.

We can now consider the tower 7 as the disjoint union of the “columns”
Cpy 1 £ p < 5, where €, = U:;é 7% E,. The construction of the desired
function f, will be carried out on each column C, separately. In order to
further simplify notation, we will now consider p fixed (n is still kept fixed),
and suppress not only the subscript n, but also the subscript p from the
parameters of the construction.

Partition the base set B = E, of the column C = Cp into n subsets
Da,..., D, of equal measure: for each ¢, 1 <t < n, p{D;) = >u(E). This
allows us to consider the column € as the disjoint union of the subcolumns
C®), 1 < ¢ < n, where ) = U:;é 75D, .

We are now ready to define the function f, on the column C. We set

Fnlz) = exp(2rihn(z)),
where the function h, is defined on € = {Ji_; UrZl+*D, by

4t -
hn(z) = l“,_tn__,_,

! (mod1) for z € 7"Dy.
In other words, on every subcolumn C(#) the function h, takes all the values
j/n, 0 € 3§ < n-—1,in cyclic order, starting with zero on the base of the
subcolumn C(1), starting with 1/n on the base of the subcolumn C%), and
so on. This means that on each “horizontal” set E(*) := 7% of the columan
C all the values j/n, 0 < j < n —1, are assumed. Let

E(k‘j)m{aTEE(k)1hn(m):j/n}= 0<k<n 0Zji<n

<14n"2
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For 0 < k < n, denote by (%) the probability measure on [0, 1) concentrated
on the points j/n, 0 < § < n (so, v(*) is in M), given by the probability
vector {VJU“)}?;&, where v:Ek) = u(E("”j))/p,(E(’“)). Note that the measure
v(® (the measure corresponding to the “bottom” level B® = E of the
column C) is exactly the uniform measure I (n),

Tt follows from (2.8) that 7 maps every level E®) of the column C to
the next level E®+1) “almost linearly”. This guarantecs that for every k,
0 € k < n, the measure k) ig close, in the sense of the metric dn, to the
uniform measure [ . To be precise, (2.8) yields that for every k, 0 < k <m,

(k)
max; ¥;

s R
min; ¥,

<(A+n < (l4n A" <1+ 27

This, in turn, implies that le(.k) - 1/n| < 2/n? for each j, so

(2.9) d, (v® 1)y < 2/n, 0Lk <n.

The above construction can be carried out on every column C = Cp,
1 < p < 5. So, we have the function f, defined on the entire tower 7.
Outside the tower T the function f,, is defined to be zero.

From now on, the subscript p will be “reinstalled” (still keeping n fixed).
In particular, the set E*) (the kth level of the column € = Cp) will now

be denoted by E,(,k), and the measure v*) corresponding to Eﬁ.’“’ will be
denoted by v,

Define a measure v+ € M, by
vr(i/n) =pr({z €T : hn(z) =j/n});

where pt7 is the conditional measure /(7). In other words, vz = pgoh;t.

It is clear that the measure v+ is a convex combination of the measures
v*2) 0<k<n, 1<p<s

0<j<n,

n—1 g

vr =33 Py,

k=0 p=1
where oY) = vr (E:E,k)).
Due to (2.9), the triangle inequality yields

n—-1 &

Ao 1) = g — 1y £ 573 el ten) — oy, < 2.
k=0 p=1 n

(2.10)

Thus, for each n we have defined f,, using a Rokhlin tower 7" = 7T, and
have constructed a probability v9;, which satisfies (2.10).
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Hence, for every t € [0, 1] we have |D,,. (£) =Dy (8)| < |lvz, —1m)))y - 0
asn — 00. Since {I™} converges in distribution to {, the uniform (Lebesgue)
measure on [0, 1), also the measures vz, converge in distribution to 1.

Finally, define a measure v(™ & M, by

v (j/m) = ul{z € T : halw) = j/n}),

In other words, v = po h L.
It follows from (2.6) that dy, (™, vr,) — 0 as n — oo. This shows that
also the probability measures v{™) converge in distribution to the Lebesgue
measure on [0,1). Since the distribution functions Py, and D, are the

same, (2.4) follows. Note also that (2.7) and the construction of the functions
hy guarantee that

u({z € X ¢ lhp(rz) — ho(z)| = 1/n}) — 0

as n — 0o. This yields (2.3) and therefore completes the proofs of Lemma 2.2
and Theorem 2.1.

<< n.

REMARK. Equation (2.1) for A = 1 is sometimes called the multiplica-
tive cohomelogical equation for 7, and any ¢ € U which is of the form
w(z) = f(rz)/f(z) for some f € U is called a multiplicative coboundary
for . A measurable function u(x) which is of the form u(z) = h(Tz) — h(z)
for some real (complex) measurable function is called an additive real (com-
plex) coboundary for T, and k is called a transfer function for u. Obviously,
if u is an additive real coboundary, then ¢(z) = exp(27iu(z)) is a multi-
plicative coboundary, but the converse is false in general. This shows that
constructing functions which are not multiplicative coboundaries (as done
in Theorem 2.1) can be harder than constructing functions which are not
additive real coboundaries.

The relationship between additive real coboundaries and multiplicative
coboundaries has been studied in [HOkOs], [Sc], [MSc], [He-1], {He-2]. Some
recent results on cohomology of non-singular transformations can be found
in [IY].

In [JP], a unimodular function i is called a weak (multiplicative) cobound-
ary for T if for some complex A with |A| = 1, the function A is a multi-
plicative coboundary. In this terminology, Theorem 2.1 says that if 7 is
weakly mizing, then the set of weak multiplicative coboundaries 15 of first
category in the set of all complez measurable unimodular functions, with the
Ly topology.

TUROREM 2.3. Let T be an invertible ergodic non-singular transformation
of a separable atomless probability space (X, A, p). Then the set of its mul-
tiplicative coboundaries is of first category in the set of complex unimodular
functions, with the Ly topology. :
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Proof. We use the notation in the proof of Theorem 2,1. It )? =g, then
obviously o(f) = o(g), so we can define §: U — U by 2(f) = o(f). It can
be checked that 3 is continuous, and injective (by ergodicity).

Ergodicity of 7 is sufficient for the proof of Lemma 2.2, which in fact
gives a sequence {fn} C U such that fn(rz)/fn(z) — 1 in Ly-norm, while
Dy, -» Dy in measure.

The set of multiplicative coboundaries is exactly the image of 2. If this
image is not of first category in U, then it is a closed subgroup of U, and
7 is an open mapping onto it (again by the open mapping theorem). As in
the proof of Theorem 2.1, we use the sequence {f,} to show that the image
of p must be of first category.

REMARK. For r probability preserving, Theorem 2.3 was proved in {JP].

The following theorem shows that under the assumptions of Theorem 2.3
the set of multiplicative coboundaries, though of first category, is dense in U.

THEOREM 2.4. Let 7 be an ergodic non-singular transformation of an
atomiess probability space (X, A, u}. Then the set of its multiplicative co-
boundaries is dense in the set of complex unimodular functions, with the Ly
topology.

Proof. For a complex number z # 0, denote by Arg(z) its unique sngle
in [0, 2%).

Assume first that 7 has no invariant probability absolutely continuous
with respect to . By [Kr, p. 141], there exists hg € Lo, ho > 0 a.e., with

| X
\ 15 T;lho('r"‘m)

Define A; = {z : ho(z) > 1/7}. Then {A4;} is an increasing sequence with
UJ; A; =X, and

— 0.

o0

(2.11) lij{rrl —0 forallj=>1.

e ]

1 N
15\7 :z;llAj- (r"z)

For p € U, let ¢ (z) = Arg(ip(%)). Then |14, —2|ly — 0. For each § we have
lina H + Efle("/)lAj Wr™z) “m —+ 0, 50 by the Yosida mean ergodic theorem
[Kr, Theorem 2.1.3], ¥l4, is in the Le-closure of {hor—h : h € Ly}
Hence there exists a sequence of bounded real measurable functions {hx}
such that hx o 7 — hg — 1 in Li-norm. Then (using a.e. convergence a,long'
subsequences) exp(ihg) o 7/exp(ihg) — exp(iy)) = ¢ in Ly-norm.

We now prove the theorem when 7 does have a finite invariant measure
v <& u. This implies that the conservative part € is not null, and the er-
godicity of 7 implies that C is the support of v, while almost every point
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of the dissipative part D is eventually moved by 7 into ¢ (we do not as-
sume invertibility, so D need not be njlll). For j > 1,1et D; = {z € D :
-1y & C, ¥z € C}. Then A; = |JI_, D; is increasing to D, and {4;}
satisfies (2.11) (since ¥ oo, 1p,(7"z) < 1). This yields, as before, that every
bounded f supported in D is the L;-limit of a sequence {hy 0 7 — hi}, with
each hy € Loo(X, ).

Let f € Loo (X, ) with f = 0 a.e. on D. If there is a bounded function b’
defined on €, with A'or—h' = f a.e. on C, we define hon all of X by h = A’
on C, and by h(z) = R'(77%) for z € D;. Then hor—h = f a.e. on X. We first
assume that v is the restriction of 4 to C. The restriction of 7 to C preserves
v, and is also ergodic, so, by the mean ergodic theorem (and denseness of
Loo(C,v) in Ly (C,v)), the set {goT—g: g € Lo(C)} is Lr-dense in the set
of v-integrable functions {on C) with zero integral. Now let f € L1(u) with
{fdv = 0 and f = 0 ae. on D. Using the previously shown extension of
transfer functions from C to X, we obtain a sequence of bounded functions
{hg} with hy o7 — b — f in Ly-norm. Combining this with what was
obtained for bounded f supported on D, we see that for any f bounded with
{ofdu= { f dv == 0 there is a sequence {hy} € Log such that hyo7— hi —
#in Ly-norm. Fix ¢ € U, and o = {Arg(e(z))dv = { Arg(e(z)) dp.
Since p is atomless, there is a set A C C with p(4) = «f(27). Define
Wiz) = Arg(p(z)) ~ 2mla(z). Then exp(ip(z)) = w(z), and lgvdu =0
Tf hy © 7 — hg — % in Li-norm, then, as before, exp(ihz) o 7/exp(ihg) —
exp(iy)) = ¢ in Ly-norm.

Finally, we drop the assumption that gl is invariant, and let ¢ be an
equivalent probability such that its restriction to C' is invariant. We saw that
@ € U is the limit in Ly () of a sequence of multiplicative coboundaries,
and therefore it is also the limit in L(p) of the same sequence.
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Universal images of universal elements

by
LUIS BERNAL-GONZALEZ (Sevilla)

Abstract. We furnish several necessary and sufficient conditions for the following
property: For a topological space X, a continuous selfmapping § of X and a family +
of continuous selfmappings of X, the irnage under 5 of every T-universal elemeut is also
r-universal. An application in operator theory, where we extend results of Bourdon, Her-
rero, Bes, Herzog and Lemmert, is given. In particular, it is proved that every hypercyclic
operator on a real or complex Banach space has a dense invariant linear manifold with
maximal algebraic dimension consisting, apart from zero, of vectors which are hyper-
cyelic,

1. Prelirninaries. Assume that X is a topological space. Denote by
C'(X) the class of continucus selfmappings of X, Following Grosse-Erdmann
[Gr], we say that a nonempty family r C C(X) is universal when there is an
element 2 € X such that the orbit O(z,r) = {Tz:T €7} is densein X.In
such a case, the element z is called T-universal. U (r) will stand for the set
of T-universal elements of X, If 7 is countable, then a necessary condition
for 7 to be universal is, of course, the separability of X. f T' & C(X) and
z € X, the orbit of 2 under T is O(z,T) = O(z,7), where this time 7
is the family of iterates 7 = {I™ : n € N}. Here N is the set of positive
integers, T* = T, T2 = T'o T, and so on. T is called universal whenever
this 7 is universal, and an element z € X is called T-universal if and only
if O(z,T) is dense. In this case, we set U(T) = U(r). Denote by DR(X)
the subset of mappings 7' € C(X) such that the range T'(X) is dense in X.
If T is universal, then, trivially, T € DR(X). A subset 1 C C'(X) is said
to be densely universal whenever U(7) is dense in X. Note that U(T) is
always dense if T is universal, since O(z,T) C U(T) for every T-universal

2000 Mathematica Subject Classification: Primary 47A16; Secondary 54C10.

Key words and phrases: universal element, almost commutativity, universal image,-
dense range, dense hypercyelic manifold, point spectrum of the adjoint, analytic function
of an operator, real entire function, maximal dimension.
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