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Universal images of universal elements

by
LUIS BERNAL-GONZALEZ (Sevilla)

Abstract. We furnish several necessary and sufficient conditions for the following
property: For a topological space X, a continuous selfmapping § of X and a family +
of continuous selfmappings of X, the irnage under 5 of every T-universal elemeut is also
r-universal. An application in operator theory, where we extend results of Bourdon, Her-
rero, Bes, Herzog and Lemmert, is given. In particular, it is proved that every hypercyclic
operator on a real or complex Banach space has a dense invariant linear manifold with
maximal algebraic dimension consisting, apart from zero, of vectors which are hyper-
cyelic,

1. Prelirninaries. Assume that X is a topological space. Denote by
C'(X) the class of continucus selfmappings of X, Following Grosse-Erdmann
[Gr], we say that a nonempty family r C C(X) is universal when there is an
element 2 € X such that the orbit O(z,r) = {Tz:T €7} is densein X.In
such a case, the element z is called T-universal. U (r) will stand for the set
of T-universal elements of X, If 7 is countable, then a necessary condition
for 7 to be universal is, of course, the separability of X. f T' & C(X) and
z € X, the orbit of 2 under T is O(z,T) = O(z,7), where this time 7
is the family of iterates 7 = {I™ : n € N}. Here N is the set of positive
integers, T* = T, T2 = T'o T, and so on. T is called universal whenever
this 7 is universal, and an element z € X is called T-universal if and only
if O(z,T) is dense. In this case, we set U(T) = U(r). Denote by DR(X)
the subset of mappings 7' € C(X) such that the range T'(X) is dense in X.
If T is universal, then, trivially, T € DR(X). A subset 1 C C'(X) is said
to be densely universal whenever U(7) is dense in X. Note that U(T) is
always dense if T is universal, since O(z,T) C U(T) for every T-universal
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element z, because O(T™z,T) = T™(0(z,T)) and T™ € DR(X) for each
m e N

‘We should point out here that if X is a topological vector space and
7 C L(X) = {operators on X} = {T € C(X): T is linear}, then the word
“hypercyclicity” is preferred to “universality” (see, for instance, [GS]). In
order to cause no confusion, we keep the word “universal” in this paper.

Some final notations which will be employed are the following: If A ¢
X, T,8 € C(X) and 7 C C(X), then we set A = the closure of 4,
OA = the boundary of A, TS =To 8, 'T)={F € C(X) : T8 = ST} and
P(ir)={S e C(X): TS = ST forall T € 7}. R and C denote, as usual, the
real line and the complex plane, respectively.

'The aim of this note is to study the following problem: If 7 © C'(X) is
universal and S € C(X), when is the image under S of every r-universal
element 7-universal? That is, when S(U(r)) C U(r)? If S commutes or
“almost commutes” with each member of 7, then we provide a complete
answer (Section 2). A celebrated result of Herrero for the Hilbert setting
is obtained for the Banach setting in the complex case as a linear example
(Section 3) by means of a proof which is easier than that in [He, Prop. 4.1].
The main tool of this proof is a result which, in turn, generalizes a statement
of Herzog and Lemmert [HL, Satz 1] in the case where the dual pair (X,Y)
equals (X, X*), X being a complex Banach space. The real case is more
involved and is also considered (Section 4). In both cases we prove that
for every hypercyclic operator on a real or complex Banach space there
exists a dense invariant linear manifold with maximal algebraic dimension
consisting, apart from zero, of vectors which are hypereyclic.

2. Universal images. Firstly, we introduce the notion of “almost com-
mutativity” on some kinds of uniformizable topological spaces. Assume
that § € C(X) and 7 = {T, : o € I} is a net in CX). If X isa
metrizable topological space, then we say that S almost commutes with
7 whenever there exists a metric d on X , compatible with its topology,
such that lim.er d(ToSz, 9Twz) = Oforall z € X. If X is a topologlcal
group, then we say that 5 almost commutes weakly with T whenever the
net {(ToS5%)(8T0z)  }acr converges for every z € X. It is obvious that
almost commutativity implies weak almost commutativity on a metrizable
topological group.

For a topological space X, a family r C ¢ (X) and a mapping S € C(X),
consider the following seven properties:

(a) S(U(Ty) c U(r).

(b) S € DR(X).

(€} $(X)NU(r) 0.

@ SWE) N ) £,
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(e) (X N U(+) 0.

By SWir)nuU(r) 0.
{g) S(X) is somewhere dense.

Recall that (g) means that the closure of S(X) has nonempty interior.
We are now ready to state our results.

THEOREM L. If X is a topological space, S € C(X), the family T ¢ C(X)
is universol and 8 € I'(r), then the siz properties (a)—(F) are equivalent. If,
in addition, T is densely universal, then the seven properties (a)-(g) are
equivalent.

Proof. By hypothesis, U(r) is not empty, so S(U(r)) is not either. It
is trivial that (a) implies (d} and (d) implies (c). If (c) holds, then there is
a universal element y and a point 2 € X such that y = Sz. Since Oy, 7) is
dense and ST = TS for every T' € 7, we see that S(O(x,7)) = O(Sz, 1) =
O(y,7) is dense, so S(X) is dense, i.e., (b} is obtained. We now prove that
(b) implies (a): Take a point y € S{U(7)). Then there exists = € U(r) with
y = Sz. Since O(x,7) is dense and § € I'(7), the set O(y,7) = O(Sz,7) =
S{O(z, 7))} is dense, so y is universal, thatis, S{U(r)) C U(r). Hence (a)-(d)
are equivalent.

On the other hand, it is evident that (d) implies (f), and (£) implies (e).
Let us show that (e) implies (b): Let V' be a nonempty open subset of X
and take a universal element y such that y € S(X). There is T € T with
Ty €V, because O(y, 7) is dense. Since T is continuous, there exists an open
subset W containing ¢ such that T'(W) < V. But there is # € X satisfying
Sz € W, whence S(T'z) = T'Sz € T(W) C V, so S(O(z, 7)) is dense and,
consequently, S(X) is dense. Thus, properties {a)—(f) are equivalent.

It is trivial that always (b) implies {g). Assume now that 7 is densely
universal. If {g) holds, then there exists a nonempty open subset V C X
such that S(X) D V. By dense universality, there is an element z € U(r)
with z € V', so € S(X). Then §(X)NU(r) # 0, and this is (). The proof

18 finished. m

THEOREM 2, Suppese that X is o topological space, § € C(X), the net
7= Ty e € I} C C(X) is universal and that ot least one of the following
condilions is satisfied:

(i) X is metrizable and S almost commutes with .
(i) X is @ topological group and S almost commutes weakly with .

Then (a)-(f) are equivelent. If, in eddition, T is densely universal, then
(a)-(g) are equivalent.

Proof. It is very similar to that of Theorem 1. It suffices to take into
account that, if (i) is satisfied, then, for every z € X, O(Sz,7) = {TaSz
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a € I} is dense if and only if S(O(z, 7)) = {STaz : o € I} is dense, and
this is true because limye 1 d{To Sz, SThx) = 0 for some metric d compatible
with the topology of X and every z € X. If (ii) is satisfied, set L(z) =
Himger{TaSz)(ST,z)™t € X for every z € X. In this case, O(Sz,7) is
dense if and only if the set {L(z)  (ST,z): « € I} is dense, and this holds
if and only if S(O(z, 7)) is dense. n

Note that the second statement of Theorems 1, 2 holds in the case where
T is universal and, respectively, S € I'(T") (Theorem 1) and S either almost
commutes (case (i)) or almost commutes weakly (case (ii)) with {T™ : n € N}
(Theorem 2).

Observe that, in particular, Thecrem 1 proves that if § is somewhere
dense but does not have dense range then it cannot commute with a family
T with U (7) dense in X . Furthermore, examples showing that Theorems 1, 2
are false if we omit the commuting property of S can be given. For this, we
follow an example in [GS]. Let (@,) be a dense sequence in R?, and {e;, €3}
be the standard basis of R?. For each positive integer n, let b, € R? be of
norm one and orthogonal to ay, and define 7}, : R? — R? by

Thirér + pea) = Aag + nuby,.
Then 7 := {T), : n > 1} satisfles:

(i) U(7) = spanf{e1} \ {0} (see [GS, Section 1]).

(ii) If § : B2 — R2 is linear, then SU(T) C U(T) if and only if e; is an
eigenvector of 5 of nonzero eigenvalue.

Now, consider S(Ae; + wes) := Aey. Then we have:

(a) SU(T) =U(r).

(b) S does not “almost commute weakly” (in particular, it does not
“almost commute”, and hence it does not commute) with 7. Indeed, given
z = e; and n € N, we have T,,5% — SThx = Ty(e1) — S(an) = an — S(a,).
Since (an) is dense, there are subsequences (a,(;} and (@m(j)) comverging
respectively to 0 and e. But then S{an(;)) — 0 and S{a,,;)) — S(ez) = 0
{7 — oo), whence TSz — STn(J-):c — 0 and Tm(j)Sm - STm(j)m — &9
(7 — o0), so (T8z — ST,z) does not converge.

(c) S(R?) (= span{e; }) is nowhere dense.

On the other hand, note also that a selfmapping S may have dense range
and yet not preserve universal elements: take for instance = as above, and
the mapping S(Ae; + peg) 1= pey + Aes.

3. A linear example: c-dimensijonal universal manifolds. In this
section, X will stand for a complez Banach space. We need some background
on general spectral theory (see, for instance, [Do, Chapter 1] or [Ru, Chap-
ter 10]). If T € L(X) and T* is its adjoint, then o(T) = a(T™). The point

icm

Universal images of universal elements 245

spectrum o (1) of T is the set of eigenvalues of T', that is, the set of A & C
such that T'— AI is not one-to-one, I being the identity operator. Denote by
F(T) the family of all functions which are analytic on some neighbourhood
of o(T). Hence F(T) = F(T*). Let f € F(T) and ~ be a positively oriented
Jordan cycle swrounding o(T) such that both v and its geometric interior
are contained in the domain of analyticity of f. Then the operator f (1)
is defined by the following equation, where the integral exists as a limit of
Riemann sums in the norm of L(X):

AT = 2—% VO - T) dn

f(T) depends only on f. It happens that if f(z) has power series expan-
sion f(z) = Yo g anz" valid in a neighbourhood of o(T"), then the series
S omeo onT™ converges to f(T) in the norm of L{X). Then, in this sense, the
notion of f(T) extends the definition P(T) = 7 ) a,T™ (with 7° = I)
when P(2) is the polynomial P(z) = 3" a,z™

In [Bo] it is proved that if ¢ € U{T) and P is a nonzero polynomial, then
P(T)z € U(T). The key idea is to show that P(T) has dense range whenever
T is universal. Herzog and Lemmert [HL, Satz 1] show that the kernel of
P{T™) is trivial if T is universal and P is a nonzero polynomial. This, when
applied to P(T™) — AI for every A € C, tells us in fact that o, (P(T*)) = 0
for each nonconstant polynomial P. By the Hahn—~Banach theorem and by
the fact P(T™) = P(T)*, P(T) has dense range (see also [Ki] for the case
P(I") = T'— \I), and this is all that is needed. As a consequence, the set
M = span{0{(z,T)) = {P(T)z : P is a polynomial} is a dense T-invariant
linear manifold such that M\ {0} C U(T’). Herrero [He, Prop. 4.1] showed
that if 1" is a universal operator on a complex Hilbert space X, §2 is
a connected analytic Cauchy domain including o(7T) and f € H?(842)
(= the closure in L*{(8(2), with respect to linear Lebesgue measure, of the
rational functions with poles outside £2) is nonzero, then f(T)U(T)) <
U(T). We state a more general result (Theorem 3(2)) which is valid for any
complex Banach space. Furthermore, the proof provided here—based upon
part (1) of Theorem 3, which in turn extends Herzog-Lemmert’s result for
the dual pair (X, X™), X being a complex Banach space—is easier than
that of Proposition 4.1 of [He]. Recall that a (real or complex) separable
Banach space X supports a universal operator if and only if dim X = oo
(see [Ro], [An] and [Be]) if and only if dim X = ¢ (= the cardinality of the
continuum).

THEOREM 3. Suppose that X is a complexr Banach space and that
T € L(X) is universal. Assume that f € F(T), D{f) being its domain of
analyticity, We have: ‘ :
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LiIf :rls nonconstant on every connected component of D(f), then
oo (F(T7)) =

(2)If f is not identically zero and D(f) is connected, then f(T)(U(1))
cuUm.

(3) There emists a dense T-invariant linear manifold M with. mazimal
algebraic dimension (i.e., dim M = c) such that M \ {0} C U(T).

Proof. Since T is universal, X must be separable and infinite-dimensio-
nal, so dim X =¢.

(1) ¥ # is nonconstant on every connected component of D{f) then,
by a special version of the spectral mapping theorem [Ru, Theorem 10. 33],

oo(f(T*)) = flop(T™)). But, since T is universal, op(T*) = 0, so
op(f(T7) =

(2) Assume that D(f) is connected and f # 0. If f is nonconstant
then, by (1), op(F(T*)) = B. But £(T*) = (F(T))*, so ap(f(T)*) = . In
particular, 0 & o,(F(T)*), so f(T)* is one-to-one. From the Hahn-Banach
theorem, we get f(T) € DR(X). Since zf(z) = f(z)z and (f - g)(T) =
f(T)g(T) (g € F(T)), we have f(T') € I'(T). By Theorem 1, we obtain
F(TNU(T)) C U(T). If f = A # 0 is constant, then f(T) = AI, in which
case f(T)U(T)) = {>z:z € UT)} = U(T).

(3) Fix a vector = € U(T) and define M = {f(T)xz: f is entire}. By (2),
MN\{0} C U(T). It is obvious that M is a linear manifold. M is T-invariant
since 2f(z) is entire for each entire function f(z). It is dense because M >
O{x, T). Finally, the linear spaces M and {entire functions} are evidently
algebraically isomorphic, so dimM =c. =

4. The real case. The proof of the statement (3) in Theorem 3 is based
on the statement (2), which involves the fact that the underlying Banach
space is comnplex, because (2) is based in turn on properties arising from the
Cauchy-type definition of the operators f{T'). Nevertheless, we will be able
to show a result which is analogous to Thecrem 3(2, 3) in the real case. This
is the aim of this section.

J. P. Bes [Bs] has recently proved that if X is a real Banach space, T' €
L{X} is universal and P is a nonzero polynomial with real coefficients, then
P(T) has dense range. Then, as in the proof of [Bo], we have P(T)(U(T"))
C U(T) and M := span(O{z,T)) = {P(1")z : P is a polynomial with real
coefficients} is a dense T-invariant linear manifold such that M\{0} C U(T").

If f(t) = 3.;Zpast’ is a real entire function (i.e., f(t) € R for every
t € R or, equivalently, a; € R for every j > 0) and T € L(X), where X is
a real Banach space, then it is a standard exercise to prove that the series
Y720 a;T? converges in the norm of L(X), and f(T) is therefore defined in
a natural way as f(T) = 3772, a;77. Part (b) of the following theorem is
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derived from (a) by using Theorem 1. Part (c) is obtained from (b) in the
same way as (3) is obtained from Theorem 3(2} by considering this time
M = {f(T)z: f is real entire}, x being a vector chosen in U(T).

THEOREM 4. Suppose that X is a real Banach space and that T' € L(X)
is universal. We have:

(a) If [ is a real nonzero entire function, then f(T) € DR(X).
(b) If f is a real nonzero entire function, then F(TWU(T)) C U(T).

(c) There ewists a dense T'-invariant linear manifold M such that
dimM = ¢ and M \ {0} C U(T).

The remainder of this section is devoted to proving (a). Note that Bes’s
result is the special case when f = a nongero polynomial. Denote by H(C)
the space of entire functions, endowed with the topology of uniform conver-
gence on compact subsets of C. The following three results are well known
when X is a complex Banach space, even if f,, {n € N), f, g are analytic on
a domain distinct from C. We give an independent proof for the real case in
Lemma I, which of course works in the complex case as well. The proof of
Lemma 2 is straightforward from the definitions and it is left to the reader.
Lemma 3 is a consequence of Lemnma 2. From now on, || - || will stand for
the norm either in X or in L{X), without distinction.

LeMMA 1. Assume that X is a real Banach space and that f, (n € N),
F are real entire functions satisfying fn — f (n — o) in H(C). If T &
L{X), then f,(T) — f(T} (n — o0) in the norm of L(X).

Proof. Suppose that fn(2) = 3 -2 a; (M2d, f(z) = Yieoaid (aj,a; al™
eR je{0,1,2,...},neN).Itis well known that (fn) converges to f in
H(C) if and only if

su.p{|a,§J — ag|, la(n) a7 jeEN} — 0 (n— oo).

Given € € (0,1), there exists N € N such that the latter expression is less
than £/(3(1 + ||7|)) for all n > N. Then

1F(T) = F(T)] = HE

o0
<™ = aol + Y [a$™ — ay] - [T
=1

e & Al )"
+
< ST Z( 3L+ 17T

- ﬂa‘)TjH
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hence i .
“fn(T)“f(T)” <§+é—_"g < & foralln?_N,

as required. =

LEMMA 2. If X is o real Banach space, f, g are real entire functions
and T € L(X)}, then (f - g)(T) = f(T)g(T)-

LEMMA 3. If X is a real Banach space and T € L(X), then the operator
el = 3225 (1/40T7 is invertible and (€M)t =eT.

The next auxiliary statement comes from the Weierstrass factorization
theorem and from the fact that if & is a nonreal zero of a real entire func-
tion f, then @ is also a zero of f with the same multiplicity.

LEMMA 4. If f is a nonconstant real entire function with infinitely many
zeros, then there exist m € {0,1,2,...}, a real enfire function g, a sequence
(an) C C\ {0} and o sequence (P,) of polynomials with real coefficients
satisfying

ox2
F(z) = 78 [ an(e)e™
n=0
uniformly in compact subsets of C, where g,(z) =1—a,z if an € R and
qn(z) =1 —2Re(a; V)2 + lan| 7227 if 0, € C\ R

Let us finish the proof of Theorem 4(a). Fix a real nonzero entire function
f and an operator 7' € L(X). We may assume that f has infinitely many
zeros (the other cases are easier and left to the reader). With the notation
of Lemma 4, we have f(2) = 2™e?#) G (2)Rn(2) (z € C, n € N), where
Gu(z) = qu(2) ... gu(2)eP BT +P2) and R, (2) = [[he sy a(2)eF*(), in
such a way that for each fixed n the infinite product R, converges in H{C),
and R,(z} — 1 (n — o0) in H{(C). From Lemmas 1, 2 one gets f(7T") =
TmeI TG (TR (T) for all n € N and R, (T) — I (n — o0) in the norm
of L(X)}. Therefore there exists N & N with ||Ry(T) — I|| < 1, s0 Ry (T) is
invertible. Thus, Ry(T) € DR(X). We have f(T) = TG (T) Ry (T).
Observe that T (so T™) has dense range because it is universal. The op-
erator e97) has dense range since it is invertible by Lemma 3. Note that
Gn(T) = i (T)...qn(T)ePr (D+-+Pv(T) aoain by Lemma 2. The operator
eF1T)++Pv(T) ig invertible, so of dense range. Finally, éach g, (T) has either
the form I —a; ' T (with a, € R\{0}) or the form I —2 Re(a; )T + |ag|~21%
(with ar € C\R), Le., gx(T") is a nonzero polynomial in T' with real coeffi-
cients. But from Bes's theorem each ¢z (7") has dense range. Consequently,
Gn(T) € DR{X) and one concludes that F(T'} has also dense range. w

We add here that property (a) in Theorem 4 can also be achieved by
using complexifications. Given a real Banach space X and a continuous
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linear operator A on X, denote by Aand X their complexifications {i.e.,
X = X +1iX, Alz +1iy) = Az +idy, v + iy € X). Now, let f be real,
entire and nonconstant (that f(7°) has dense range follows immediately if

f # 0 is constant). Since 7' is universal, by a recent result of J. Bonet and
A. Peris [BP],

ap((T)") =0,
Thus, by the spectral mapping theorem [Ru, Theorem 10.33],

oo (FT)V)) = Fop((T)*)) = 0.

In particular, f(T)* = f((T)*) is one-to-one, and so ﬁf} = f£(T") has dense
range. Hence f(T') must have dense range. This proof also yields that f(T') €
DR(X) (so f(U(T)) C U(T)) for any real analytic function that extends

holomorphically to some open neighbourhood §2 of the spectrum {7T") (and
is nonconstant on every component of {2).

5. Final remarks. 1. Theorem 1 is related to 1.3.1 and 1.3.2 of [Gr],
which tell us in particular that (1) U({TS: T € 7}) = §~H{U (7)) and (2) if
S € DR(X) then U(7) C U({ST : T € 7}), without the assumption of com-
mutativity. For example observe that under the suppositions of Theorem 1,
property (2) includes the part “(b} implies (a)” of this theorem.

2. In connection with Theorems 3(3) and 4(c), note that Bourdon-Bes’s
manifold M = span(O(z,T)) had just countable dimension. On the other
hand, Read [Re] gave an extreme example for that statement; namely, he
constructed an operator I" on the sequence space i* such that U (T) = 11\{0}.

3. For other results related to universality and analytic transforms of
operators, see, for instance, [HS] and [Sc].

Acknowledgements. The author wants to thank the referee for sug-
gesting helpful comments which led to significant improvements in this pa-
per.
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Partial retractions for weighted Hardy spaces
by

SERGEI KISLIAKOV (8t Petersburg) and QUANHUA XU (Besangon)

Abstract. Let 1 < p £ oo and let wp,w; be two weights on the unit circle such
that 1og(wuw{'1) € BMO. We prove that the couple (Hp(wg), Hp(w1)) of weighted Hardy
spaces is a partial retract of (Lp{wn), Ip(wy)). This completes previous work of the au-
thors. More generally, we have & similar result for finite families of weighted Hardy spaces.
We include some applications to interpolation.

For 1 < p < oo we can project the space L,(T) onto the (houndary)
Hardy class Hp. This can be done by an operator independent of p, for
instance, by the Riesz projection. The extreme indices p = 1 and p = oo
cannot be included.

Though regret can hardly be allowed in connection with a true math-
ematical statement, the latter assertion (about the extreme indices) may
evoke a sort of this feeling in some situations. The following fact proved in
[13] (see [11] for a simple argument) can sometimes serve as a remedy.

For every f € Hy + Hy (= Hiy) there is a linear operator firing f and
mapping boundedly Ly to Hy and Ly to Hy, with norms not exceeding a
universal constant. ‘

Later, this result was extended to weighted Hardy spaces. By a weight
we mean a nonnegative measurable function w on T such that logw € L;.
We put Ly(w) = Ly(T,wdm) (m is normalized Lebesgue measure on T),

and .
Loo{w) = {f:fu € Loc}
equipped with the natural norm ||f|le,w = [[fw™/|co. Next, let ¢ be an
outer function satisfying || = w a.e. on T. We introduce the weighted
Hardy space Hy(w), 0 < p < oo, by
Hy(w)={f: fo'/? € Hy},
Hoo(w) = {f : f‘PFl € Hoo}'

0 < p<o,
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