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An example of a Fréchet algebra
which is a principal ideal domain

by
GRACIELA CARBONI and ANGEL LAROTONDA (Buenos Aires)

Abstract. We construct an example of a Fréchet m-convex algebra which is a principal
ideal domain, and has the unit disk as the maximal ideal space.

1. Introduction. In the sequel, if not stated otherwise, we consider
Hausdorff locally multiplicatively comvex (LMC) commutative C-algebras
with identity (denoted by 1), and we identify the set of scalar multiples of
the identity with C. A Fréchet m-convez olgebra A is a complete metrizable
LMC algebra; in this case the topology of A can be defined by an increasing
sequence of algebra seminorms {(see [5]).

If I is an ideal of A, we denote by I™ the ideal of A generated by all
products of the form zy ... ¢, (z; € I). We say that I is finitely generated if
there exist elements 1, ..., 2, in A such that I = Z’;:l Az, and we write
[=(z1,...,2,); when r =1 we say that I = (x) is principal.

As usual, A is noetherian (resp. principal) if every ideal is finitely gen-
erated (resp. principal}. '

There are many proofs of the fact that a noetherian Banach algebra
is finite-dimensional, and hence semilocal (see [6], [11] for instance). For
Fréchet m-convex algebras all these proofs break down; in fact the algebra
of formal power series C[[X]] (with the topology of €M) is a principal ideal
domain (sce also [4] and observe that all these examples are local rings).

Reeall that the finiteness conditions on all ideals are somewhat rare in
the LMC-coutext; for instance, if K is a connected compact set in C then
the algebra O(K) of holomorphic germs is a principal ideal domain, but
it is not mefrizable. On the other hand infinite-dimensional examples of
complete metrizable locally convex division algebras cannot exist, since the
Gelfand-Mazur theorem is true for such algebras ([2], [13]).
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In absence of examples it is natural suspect that a Fréchet m-convex
noetherian algebra is semilocal (see [12]). Here [6] is a good reference; in 2
final remark the authors state that this conjecture is false, they mention a
future paper, but as far as we know the relevant example has never been
published. Therefore we present an explicit example of a Fréchet m-convex
principal ideal domain algebra with maximal ideal space homeomorphic to
the closed unit disk A of the complex plane.

2. Preliminaries. We start with a submultiplicative sequence a =
(@n)n>0, that is,

(1) an > 0, ag =1,
(2) Gptm < Gram for all n, min N,

The algebra A{a) is the set of all complex power series £ = > ;o 28
such that

lzll =3 |l
=0
is finite, with the obvious vector operations and multiplication given by the

convolution product of series. Then A(a) is a power series Banach algebra

with identity 1 and ¢ as a generator; if r{a) = lithy,—s 0 an ", then r(a) is the

spectral radius of ¢. Observe that ||t*|| = a,, {n > 0); if we denote by d,, the
map & i &, then we have |d,(z)|a, < ||z|| for each n > 0.

Also the map h + h(t) is a homeomorphism of the character space of the
algebra onto the spectrum of ¢, and the map z — h, is a homeomorphism
of the closed disk A, = {z € C:|z| < r(a)} onto the character space of
A(a); here we use the notation h.(z) = 3 7o, zx2" (see [5], §5 for details).

We assume in what follows that

(3) r(a)y=1.

We denote by A(A) the disk algebra of continuous functions on A which
are holomorphic in A% it is easy to see that, for f € A(A) and |zo| < 1,
F(20) = 0 means that f belongs to the maximal ideal M,, of A(A), and
this is equivalent to saying that f = (z — zo)g with g € A(A). Hence M,, is
rri;mipa)l, generated by z — zp (of course, this argument breaks down when

Zpl = 1).

Now under the hypothesis (3) it is clear that A(a) can be algebraically
identified with the subalgebra of A(A) of the functions whose Taylor series
at 0 belong to A{a}, with the above norm defined by the sequence a; as usual
we denote by 7 the function defined by Z(z) = h, (), and by M, the maximal
ideal Ker(h;) of A(a), for |2| < 1. Furthermore, let G : A(a) — C(R) be the
map defined by G(z)(s) = h.is(z). The following fact is very well known:

icm

Ezample of a Fréchet algebra 267

LEMMA 2.1. G(A(a)) C C*(R) if the sequence n*/a, (n > 0) is bounded.
‘We also remark the following fact:

LeMMA 2.2, If G(A(a)) € C°(R) and if 2 € M2+ for 2 = ¢, then
G(z)*)(5) = 0 when 0 < k < n.

Proof. We denote by 7, the maximal ideal of C**(R) of the functions
vanishing at s € R; clearly G(M.) C T, hence G(x) € "' and observe
that a function f € I satisfies f*)1(s) =0,k =0,1,...,n.

‘We now choose a particular sequence a in such a way that the functions
in G(A(a)) are C* and belong to a quasi-analytic class.

3. A quasi-analytic algebra. Let Rt = {s € R: 5 > 0}; we start with
the function 2 : Rt — R* defined by

_Jle-Ds+1 for0<s<1,
2(s) = {es/(l-{—ln(s)) for 1 < s.
This map has the following properties:
(a) £2 is increasing, 22(0) = 1.
() If u,v > 1 then 2(u+v) < 2(u)2(v).
(c) limy, o0 f2(5)2/% = 1,
DerINITION 3.1. For £, > 0 let

me(s) = 35/0(3), M) = ig]gmg(s).

ReMARK 3.2. We have the following properties:

(1) For each ¢ > 0, M(£) is finite. Also M(0) = 1 and M(£) = e~ for
each £ > 0.

(2) If £ > 1, then M(£) = sup,»; me(s).

(3) M is increasing for £ > 1.

(4) For each n > 1 we have M(n)? < M(n— 1)M(n++1); more generally,
ME S ME+e)ME—e)for 0<e<E,1<¢E

In particular the sequence M(n) is log-convex.

DEFINITION 3.3. For each z # 0 in R, set
" z*

i SO = O]

Here 7 is the associated map of the sequence $2(n) ([7], V:2.3), and ¢ is an
auxiliary function (see below).

REMARKS 3.4. (a) 7 and g are increasing maps.
(b) For every z > 0 we have 1 < 7(z) < q(m)
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(c) For every z > 0 we have ¢(z) < e(z + V)7 (z); in fact,

Pl s }
z)=maxq Su , SU
a(z) {%&M@sﬁM@

and then observe that ¢{z) < e for 0 < z < 1. On the other hand, if > 1
then supyc,<; #°/M(s) < ex and since M is increasing in [1,00), we have
the inequalities

su —:i<su —ms—-<:r:su —ﬂ-<m’r(m)
SR M) = B T T M)

(where [} means “integral part”). Hence for « > 1 we have
q(z) < max{ex,z7(z)} < exr(z).
This vields the required inequality for all x > 0.

(@ 55 %%)- dzr < oo is equivalen to §j° hll__ﬁigl dx < oo. This is a conse-

quence of (¢) above and the fact that In{e(z + 1))/(1 + z*) is integrable in
[0, co).

LemMa 3.5. If © > €, then Ing(z) = /(1 + In(x)).

Proof. The function C(z) = €”/(1 + x) is continuous and convex for

z > 0; if C*(z) denotes the conjugate function, we have the following identity
for £ > 1.

In M(£) = ig{& In(z) — In 0(z)} = sup {é Infz) ~ "itﬁn—(ggj}
=sup{{in(z) - C(ln(z))} = sup{s — C(s)} = C*(¢).
We need the following

Auxaiary LEMMA. We have

?2113{115 —-C* (&)} = 2‘;1;{95 -} fory>=2.

Proof. Set ¢(z) = C'(z) = ze®/(1 —]— z)2. Thus
Cz)={pu)du+1, C"(z)={o u)du~1
0 0
(see [14], 1.10.11). Since ¢~ is increasing,

1

=% M uwdu<¢*1) <y

VTY lamtmy i
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because 1 < 2¢%/9 = ¢(2). So

g 1
- S M u)du< (1 - &y~ Sgb"‘l(u) du
0 0

and hence supg<e<1{y§ — C*(§)} <y — C*(1).

Thus for y > 2 we have supe,; {y€ — C*(€)} = supeso{vé - C*(§)} =
C**(y) = C(y) (see [9], 1.15, for instance). =0

Finally, for & > ® we have
Ing{z) = sup{{In(z) —In M(£)}
£20

= max{ozlégl{ﬁ' In(z) - In M{)}, 21;12{5111(93) - (&)}

= ma.x{ 021;21{5111(53) —In M(£)}, 1+ ln(:r)} 1+ In(z)

COROLLARY 3.6. The integral §o” 325 dz is divergent.

Proof By 3.4(d), it suffices to prove the assertion for Ing(z), and this
follows from the previous lemima, since

T Ing(z) T lng(z) T x
> dz =
§1+m2 dz 2 6531”2 g }3 ArmE)ia ™

o0 [oe]

z 1
> | ot dp= | ————dz =
- S 4z21n(z) e S 4z 1n(z) da = 00

e? el

3.7. A quasi-analytic Banach algebra of power series. If we set M, =
M(n), where M is the function of 3.1, then the class C{M,} of all f €
C*(R) such that || f ™o < kzKF M, (for some constans kg, Ky depending
only of f) is a quasi-analytic class, by 3.2(4), 3.6 and the Denjoy—Carleman
theorem (see [7], V.2.6 and V.2.4; or {10], 19.11).

Let now a = ()0 be the sequence a, = £2(n), where {2 is the function
of the previous section. The properties {a), (b) and (c) of {2 show that B =
A(a) is a Banach algebra of power series. We claim that G(B) C C{Mp}. In
fact, we first observe that for every = € B, the map G(z) is C°°: it is clear
that each sequence (n*/an)nzo is bounded for k > 0. We now assume that
&= 3,50 Tnt" belongs to B; then for every k >0 we have

k
n
HG(Q’)(MHOO < Z zaln® < Z |$n‘ana

n>0 n>0

k
T

< E lwn|an sup — < “ﬂ’,‘HMk
n>0 n21 Gn
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In other words we have shown

PROPOSITION 3.7.1. The algebra B defined above is a quasi-analytic Ba-
nach algebra of power series.

The following property will be used in the final construction {6.2 below).
PROPOSITION 3.7.2. If M C B is a mazimal ideal, then ()., M™ = 0.

Proof If M = M,, |z| < 1, then £ € M" for all n means that for all
complex derivatives of & we must have '™ (2) = 0. Since 7 is holomorphic
in |z| < 1, we obtain z = 0 (this argument holds for any power series Banach
algebra A(a) as a subalgebra of the disk algebra A(A)). Now, if [2| = 1, say
z = €', then © € M" implies that all the derivatives of order £k < n — 1
of the function G(z) vanish at s € R. Hence in this case z € M™ for all n
again implies z = 0 because G(z) & C{M,}.

4, Fréchet algebras of power series

4.1. Submultiplicative sequences. We assume that W = {a(p}, p > 0} is
a sequence of submultiplicative sequences such that

(1) a(p) < a(p+1) for each p > 0, i.e., an(p) < an(p+1) for all n,p > 0,
(2) Timp o0 an(p)/™ =1 for each p > 0.

Then for each p > 0 we have a Banach algebra A(a(p)) of power series and
continuous inclusion maps A(a(p + 1)) C A(a(p)) for p > 0; this system
produces a matrix algebra F(W) = A(a,,) of complex power series where
Gpn = (,(p) in the sense of [3]. Explicitly,

FW) = { Y 2t llally = 3 lonlan(p) < oo for every p > o}
n=0 n=0
with the topology defined by the family || [|,, p > 0, of norms. Note that ¢
is a topological generator of (W), hence all characters of F(W) are con-
tinuous ([1]); the character space of F{W) can he identified with the closed
disk A = {z € C : |z| < 1} as in the Banach algebra situation of §2.
Therefore the set of units of # (W) is open (see [6]) and hence every max-
imal ideal is closed. Since every Fréchet m-convex algebra which is a field
is necessarily isomorphic to C (see [13]), every (closed) maximal ideal is the
kernel of a continuous character. We write each character h, of F(W) in the
form £(z) = h.(z) = 32 #n2", and denote by M, = Ker(h,) the asso-
ciated maximal ideal. It follows that there is a continuous homomorphism
i: F(W) — A(A) defined by i(z){2) = #(2) and i(M,) C M, for all z € A.
In what follows we assume the following additional properties:

(3) For each p > 0 there exists a constant Cp such that
(n+1)an(p) < Cpanii(p+1) for every n > 0.
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(4) Each sequence a(p), p > 0, is increasing.

ExampLES 4.2. We give two concrete examples of sequences W having
the properties 4.1(1)}-(4):

(a) Set ag(p) = 1 and an(p) = (2n)? forn > 0, p > 0. All the verifications
are almost trivial (here we can take Cp, = 1 for all p).

(b) Fix A € (0,1) and define an(p) = €’ for all n,p > 0. As before,
all the verifications are easy, with the possible exception of 4.1(3); this can
be obtained (with Cp = (he)=>"" for all p} from the inequality n+ 1 <
(/\e)”’\_le(“+1)‘\. This inequality follows from elementary calculus applied
to evaluate tlhe: maximum of the function f(x) = ze=*" for z > 1, attained
atz=A"A"",

ReMARK 4.3. The above properties imply that for each p > 0 we have

k)
Z 1] (p) S Gpa'n-{—l(p + 1)
i=0

In fact, 31 2i(p) < (n+ Van(p) < Cponpi{p +1).
4,4, Augiliary operators. Assuming 4.1(3), (4) we can define, for each
z € A, a continuous linear operator T}, : F(W) — F(W) in three steps:

(1) Set To(t") = 3kt henoy 2t if n > 1, and T(1) = 0. Observe that if
n > 1 then -

IT e < D Jolarlp) S1+a1(p) + ..o+ gna(p)
k-+h=n—1
< Cpan(p+1) = Gplt|p+1,
by 4.3; obviously this also holds for n =0.
(il) We now define T, on the polynomials in ¢ by lh;:arity; in this case,
the definition gives: if © == E::T:U 2.t then Tp(z) = 3, €Tz (t"). Hence
by (i) we have

N N
p S D 1enlCpllt™llp41 = Cp ) lwnlan(p + 1)
n=1

n=l

< Gp“meH-

(iif) The above inequalities show that T, can be extended by continuity to
a continuous linear map A(a(p+1)) — A(a(p)) for all p > 0. This completes
the definition of ;.

An explicit formula for T, is not necessary here, but we recall that a,ftgr
a rearrangement of the absolutely convergent series T (z) = Y >0 2nT=(t")
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we obtain without difficulty
Tz(os) = Z ( Z Etbjzj_(n+l))tn.
nx0 j2n4l
We state the following properties of these operators:

LemMA 4.4.1. For ewef"y z € F(W) and every z € 4,

(i) z = (t— 2)T:(z) + ha{2),
(ii) z=Y h(TF@)t— 2 + TP (z)(t-2)" (n2=1).
k=0

Proof. (i) This is clear when z = ™, n > 0. Hence by linearity the
equality holds when z is a polynomial in ¢. Finally by continuity the result
follows for all z € F(W).

(ii) By induction,

n-1

z =Y h(TF())(t
k=0

n—1
= Z ha(TF () (E — 2)* + (R (T7@)) + T+ () (¢ = 2))(t ~ 2)"

—2)* + I3 ()t — 2)"

i ho (TE(x))(E — )% + T (@) (t - )"+
k=0

ProposiTiON 4.5. For every mazimal ideal M, in F(W), MP is princi-
pol, generated by (1 — z)".

Proof It is enough to show that M, is generated by ¢ — 2, and this
follows quickly from 4.4.1(i).

PROPOSITION 4.6. Let P be a prime ideal in F(W); then either

(a) P is a mazimal ideal, or else
(b) for some z € A, we have P C (oo, M2

Proof Clearly P ¢ M, for some z € A. Supose that x € P and
P # M.; we assert that if ¢ = (£ —~ 2)™y,, then 3 = (£ — 2)" 1y, 11. In fact,
if © = (t — 2)"yn, then either ¢ - z € P (hence M, = P) or else y, € P. In
the latter case we obtain yn = (f — 2)yn41 and hence z = (¢ — 2)" My, 1.
Finally, if z € P & M., = (t — z)y then z &€ 72, M by 4.5. Note that
by 4.4.1(%), yn = T™(z) and ynt1 = T{ys) = T (2).

REMARK 4.7. Recall from 4.1 that ¢(M;) C M,. Hence if |z| < 1 then
necessarily P = 0 in (b) above.
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5. Algebraic lemmas. In the construction of examples we use some
characterizations of a principal ideal domain by properties of prime ideals.

For the reader’s convenience we include the proof of the following results
(which are known).

LEMMA 5.1. Let A be a commutative C-algebra with identity, and N be
the set of non-principal ideals of A, ordered by inclusion. Then:

(i) N is inductive.

(ii) If A is an integral domain, then every maximal element I € N is o
prime ideal.

Proof. (i) Routine. (ii}) Assume that ab € I, and a,b & I. The ideal
I+ (a) is proper: otherwise we can write 1 = y + za with y € I and z € A,
hence b = by + z(ab) € I, a contradiction. Then by the maximality of I, the
ideal I + (a) is principal, with a generator ¢, and we have ¢ =y +za, y € I,
z € A, and also'y = ue, o = ve, for « and v in A4; note that 1 = u + 2v.

Clearly (c) = (y) + (a). On the other hand we can see that I = (y) + Ja
where J = {#z € A : za &€ I'}; in fact, if ¢ € I C Ae then ¢ = a1y + as0,
which implies aga € I, hence a; € J. Then we have I C (y) + Ja, and the
opposite inclusion is trivial.

Note that I ¢ J and I # J (sincebe J, b & I); also A # J (since a ¢ T).
Hence J is principal, with a generator g. Since I = Ay + Ja it follows that

= (y) + Aag = (y) + Ja.

Finally, let H be the ideal generated by {u,gv}; we claim that I C H:
first observe that y = cu € H, and then ag = cvg € H. But I # H, since
g=gu-+zgv € H, g ¢ I. Hence the ideal H is principal, generated by an
element s € A. Now we have (s¢) = He = {uc, gve} = {y,ag} = (y) + Ja =
I. This gives a contradiction.

LEMMA 5.2. Let A be a C-algebra which is an integral domain such that
every prime ideal in A is principal. Then A is o principal ideal domain.

Proof. If there exist non-principal ideals in A, let I be a maximal ele-
ment of the set A of non-principal ideals of A. By 5.1(ii}), I is prime, hence
principal, which is impossible.

COROLLARY 5.3. Let A be a C-algebra which is an integral domain such
that

(i) every non-null prime ideal is mazimal, and
(i) every mazimal ideal is principal.

Then A is a principal ideal domain.

6. Example of a Fréchet m-convex principal ideal domain. Let
W = (a{p))p>0 be a sequence of submultiplicative sequences with the prop-
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erties 4.1(3), (4) (see for instance 4.2) and let a = (an)nzo be the submul-
tiplicative sequence a, = £2(n) of 3.7. We define @, (p) = anan{p) for each
n,p > 0; more explicitly Go(p) = 1, and @, (p) = e (+in{n)g,. (p) for all
n,p = 0.

LeMMA 6.1. The sequence W = (@(p))pz0 has the following properties:

(a) Each sequence a{p) is submultiplicative.

(b) W has the properties 4.1(1)~{4).

(c) For each p > 0 we have an € Gn(p) for alln = 0.
Proof. Routine verification.

‘We denote by B (as in 3.7} the Banach algebra A(a) of power series;
observe that 6.1(c) gives an inclusion j : F(W) — B.

Now we consider the algebra F(W), which is a Fréchet m-convex algebra
with character space A by 4.1(2). On the other hand, we have the following

THEOREM 6.2. F(W} is a principal ideal domain.

Proof We apply 5.3; in fact, every maximal ideal in F(W) is principal
by 6.1(b) and 4.5. Also every prime ideal P C F(W) is either maximal
or null: this is clear when P C M, |z| < 1, and when |z| = 1 we have
§(M,) C M, C B, hence 4.6(b) gives

iPyei()3z) c N Mz =0
n=1 n=1

by 3.7.2.

We have thus constructed the promised example; in fact, a collection of
examples can be obtained according to the selection of sequences W of §4.

REMARK 6.3. The algebra F(W) is also a Montel space.

Proof. For each p > 0 we have the linear isometry j, : ££ — A(a(p))
given by jp(3 50 Zat™) = 5,50 Tn0n(p)” 't", and the inclusion map 4 :
A(a{p+1)) — Ala(p)) gives a map & : £ — £ by the rule i 0 jpiq = jp0P.
Now the property 4.1(3) and the submultiplicativity of the sequence a(p)
imply that ¢ is compact, because it is the transpose of the map ¥ : cg — ¢y
given by ¥(s), = snan(p)a.(p + 1)“1, which is compact. Indeed, if we define
a sequence of finite rank maps ¥, : ¢g — ¢p by T, (8)k = sear(p)ar(p + l)"1
when k& < n, and 0 otherwise, then

C, al(p)
— < ZRTIM
19— 0] < 2,

hence ¥, converges to ¥ in norm, and so ¥ is compact. Finally & = ¥*, and
also the inclusion map A(a(p + 1)) — A{a(p)) is compact.
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Now, it follows from [8] that F(W) is also a Montel space.
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