

References

- [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976.
- [2] Yu. A. Brudnyi and N. Ya. Krugljak, Real Interpolation Functors and Interpolation Spaces I, North-Holland, 1991.
- [3] F. Cobos and J. Peetre, Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc. 63 (1991), 371-400.
- [4] R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. Math. 43 (1982), 203-229.
- [5] M. Cwikel, J. E. McCarty and T. H. Wolff, Interpolation between weighted Hardy spaces, Proc. Amer. Math. Soc. 116 (1992), 381-388.
- [6] S. Janson, Interpolation of subcouples and quotient couples, Ark. Mat. 31 (1993), 307-338.
- [7] N. Kalton, Complex interpolation of Hardy-type subspaces, Math. Nachr. 171 (1995), 227-258.
- [8] S. V. Kisliakov, Interpolation of H^p-spaces: some recent developments, in: Function Spaces, Interpolation Spaces, and Related Topics, Israel Math. Conf. Proc. 13, Bar-Ilan Univ., Ramat Gan, 1999, 102-140.
- [9] —, Bourgain's analytic projection revisited, Proc. Amer. Math. Soc. 126 (1998), 3307-3314.
- [10] S. V. Kisliakov and Q. Xu, Interpolation of Hardy spaces, Trans. Amer. Math. Soc. 343 (1994), 1-34.
- [11] —, —, Real interpolation and singular integrals, St. Petersburg Math. J. 8 (1997), 593-615.
- [12] G. Pisier, Interpolation between H^p spaces and non-commutative generalizations, I, Pacific J. Math. 155 (1992), 341–368.
- [13] Q. Xu, Notes on interpolation of Hardy spaces, Ann. Inst. Fourier (Grenoble) 42 (1992), 875-889; Erratum, 43 (1993), 569.
- [14] —, New results on interpolation of Hardy spaces, in: Banach Space Theory and its Applications (Wuhan, 1994), Wuhan Univ. Press, 1996, 13-31.

Steklov Math. Institute St. Petersburg Branch Fontanka 27 191011 St. Petersburg, Russia E-mail: skis@pdmi.ras.ru Université de Franche-Comté UMR de Mathématiques 16, Route de Gray 25030 Besançon Cedex, France E-mail: qx@math.univ-fcomte.fr

Received March 29, 1999 (4295)

An example of a Fréchet algebra which is a principal ideal domain

by

GRACIELA CARBONI and ANGEL LAROTONDA (Buenos Aires)

Abstract. We construct an example of a Fréchet m-convex algebra which is a principal ideal domain, and has the unit disk as the maximal ideal space.

1. Introduction. In the sequel, if not stated otherwise, we consider Hausdorff locally multiplicatively convex (LMC) commutative \mathbb{C} -algebras with identity (denoted by 1), and we identify the set of scalar multiples of the identity with \mathbb{C} . A Fréchet m-convex algebra A is a complete metrizable LMC algebra; in this case the topology of A can be defined by an increasing sequence of algebra seminorms (see [5]).

If I is an ideal of A, we denote by I^n the ideal of A generated by all products of the form $x_1 \ldots x_n$ $(x_i \in I)$. We say that I is finitely generated if there exist elements x_1, \ldots, x_r in A such that $I = \sum_{i=1}^r Ax_i$, and we write $I = (x_1, \ldots, x_r)$; when r = 1 we say that I = (x) is principal.

As usual, A is noetherian (resp. principal) if every ideal is finitely generated (resp. principal).

There are many proofs of the fact that a noetherian Banach algebra is finite-dimensional, and hence semilocal (see [6], [11] for instance). For Fréchet m-convex algebras all these proofs break down; in fact the algebra of formal power series $\mathbb{C}[[X]]$ (with the topology of $\mathbb{C}^{\mathbb{N}}$) is a principal ideal domain (see also [4] and observe that all these examples are local rings).

Recall that the finiteness conditions on all ideals are somewhat rare in the LMC-context; for instance, if K is a connected compact set in $\mathbb C$ then the algebra $\mathcal O(K)$ of holomorphic germs is a principal ideal domain, but it is not metrizable. On the other hand infinite-dimensional examples of complete metrizable locally convex division algebras cannot exist, since the Gelfand-Mazur theorem is true for such algebras ([2], [13]).

²⁰⁰⁰ Mathematics Subject Classification: Primary 46J40; Secondary 13F10. Key words and phrases: Fréchet algebra, principal ideal domain, quasi-analytic class. Supported by UBACYT and CONICET.

In absence of examples it is natural suspect that a Fréchet m-convex noetherian algebra is semilocal (see [12]). Here [6] is a good reference; in a final remark the authors state that this conjecture is false, they mention a future paper, but as far as we know the relevant example has never been published. Therefore we present an explicit example of a Fréchet m-convex principal ideal domain algebra with maximal ideal space homeomorphic to the closed unit disk Δ of the complex plane.

- 2. Preliminaries. We start with a submultiplicative sequence $a = (a_n)_{n \geq 0}$, that is,
 - (1) $a_n > 0$, $a_0 = 1$,
 - (2) $a_{n+m} \leq a_n a_m$ for all n, m in \mathbb{N} .

The algebra A(a) is the set of all complex power series $x = \sum_{i=0}^{\infty} x_i t^i$ such that

$$||x|| = \sum_{i=0}^{\infty} |x_i| a_i$$

is finite, with the obvious vector operations and multiplication given by the convolution product of series. Then A(a) is a power series Banach algebra with identity 1 and t as a generator; if $r(a) = \lim_{n \to \infty} a_n^{1/n}$, then r(a) is the spectral radius of t. Observe that $||t^n|| = a_n$ $(n \ge 0)$; if we denote by d_n the map $x \mapsto x_n$, then we have $|d_n(x)|a_n \le ||x||$ for each $n \ge 0$.

Also the map $h \mapsto h(t)$ is a homeomorphism of the character space of the algebra onto the spectrum of t, and the map $z \mapsto h_z$ is a homeomorphism of the closed disk $\Delta_{r(a)} = \{z \in \mathbb{C} : |z| \le r(a)\}$ onto the character space of A(a); here we use the notation $h_z(x) = \sum_{k=0}^{\infty} x_k z^k$ (see [5], §5 for details).

We assume in what follows that

(3)
$$r(a) = 1$$
.

We denote by $\mathcal{A}(\Delta)$ the disk algebra of continuous functions on Δ which are holomorphic in Δ° ; it is easy to see that, for $f \in \mathcal{A}(\Delta)$ and $|z_0| < 1$, $f(z_0) = 0$ means that f belongs to the maximal ideal \mathcal{M}_{z_0} of $\mathcal{A}(\Delta)$, and this is equivalent to saying that $f = (z - z_0)g$ with $g \in \mathcal{A}(\Delta)$. Hence \mathcal{M}_{z_0} is principal, generated by $z - z_0$ (of course, this argument breaks down when $|z_0| = 1$).

Now under the hypothesis (3) it is clear that A(a) can be algebraically identified with the subalgebra of $\mathcal{A}(\Delta)$ of the functions whose Taylor series at 0 belong to A(a), with the above norm defined by the sequence a; as usual we denote by \widehat{x} the function defined by $\widehat{x}(z) = h_x(x)$, and by M_z the maximal ideal $\operatorname{Ker}(h_z)$ of A(a), for $|z| \leq 1$. Furthermore, let $G: A(a) \to C(\mathbb{R})$ be the map defined by $G(x)(s) = h_{e^{is}}(x)$. The following fact is very well known:

LEMMA 2.1. $G(A(a)) \subset C^k(\mathbb{R})$ if the sequence n^k/a_n $(n \geq 0)$ is bounded. We also remark the following fact:

LEMMA 2.2. If $G(A(a)) \subset C^{\infty}(\mathbb{R})$ and if $x \in M_z^{n+1}$ for $z = e^{is}$, then $G(x)^{(k)}(s) = 0$ when $0 \le k \le n$.

Proof. We denote by \mathcal{I}_s the maximal ideal of $C^{\infty}(\mathbb{R})$ of the functions vanishing at $s \in \mathbb{R}$; clearly $G(M_z) \subset \mathcal{I}_s$, hence $G(x) \in \mathcal{I}_s^{n+1}$ and observe that a function $f \in \mathcal{I}_s^{n+1}$ satisfies $f^{(k)}(s) = 0, k = 0, 1, \ldots, n$.

We now choose a particular sequence a in such a way that the functions in G(A(a)) are C^{∞} and belong to a quasi-analytic class.

3. A quasi-analytic algebra. Let $\mathbb{R}^+ = \{s \in \mathbb{R} : s \geq 0\}$; we start with the function $\Omega : \mathbb{R}^+ \to \mathbb{R}^+$ defined by

$$\Omega(s) = \begin{cases} (e-1)s + 1 & \text{for } 0 \le s \le 1, \\ e^{s/(1+\ln(s))} & \text{for } 1 \le s. \end{cases}$$

This map has the following properties:

- (a) Ω is increasing, $\Omega(0) = 1$.
- (b) If $u, v \ge 1$ then $\Omega(u+v) \le \Omega(u)\Omega(v)$.
- (c) $\lim_{s\to\infty} \Omega(s)^{1/s} = 1$.

Definition 3.1. For $\xi, s \geq 0$ let

$$m_{\xi}(s) = s^{\xi}/\Omega(s), \quad M(\xi) = \sup_{s>0} m_{\xi}(s).$$

REMARK 3.2. We have the following properties:

- (1) For each $\xi \geq 0$, $M(\xi)$ is finite. Also M(0) = 1 and $M(\xi) \geq e^{-1}$ for each $\xi \geq 0$.
 - (2) If $\xi \geq 1$, then $M(\xi) = \sup_{s>1} m_{\xi}(s)$.
 - (3) M is increasing for $\xi \geq 1$.
- (4) For each $n \ge 1$ we have $M(n)^2 \le M(n-1)M(n+1)$; more generally, $M(\xi)^2 \le M(\xi + \varepsilon)M(\xi \varepsilon)$ for $0 \le \varepsilon \le \xi$, $1 \le \xi$.

In particular the sequence M(n) is log-convex.

DEFINITION 3.3. For each $x \neq 0$ in \mathbb{R}^+ , set

$$\tau(x) = \sup_{n \ge 0} \frac{x^n}{M(n)}, \quad q(x) = \sup_{s \ge 0} \frac{x^s}{M(s)}.$$

Here τ is the associated map of the sequence $\Omega(n)$ ([7], V.2.3), and q is an auxiliary function (see below).

REMARKS 3.4. (a) τ and q are increasing maps.

(b) For every x > 0 we have $1 \le \tau(x) \le q(x)$.

(c) For every x > 0 we have $q(x) \le e(x+1)\tau(x)$; in fact,

$$q(x) = \max \left\{ \sup_{0 \le s \le 1} \frac{x^s}{M(s)}, \sup_{s \ge 1} \frac{x^s}{M(s)} \right\}$$

and then observe that $q(x) \leq e$ for 0 < x < 1. On the other hand, if $x \geq 1$ then $\sup_{0 \leq s \leq 1} x^s/M(s) \leq ex$ and since M is increasing in $[1, \infty)$, we have the inequalities

$$\sup_{s\geq 1} \frac{x^s}{M(s)} \leq \sup_{s\geq 1} \frac{x^s}{M([s])} \leq x \sup_{s\geq 1} \frac{x^{[s]}}{M([s])} \leq x\tau(x)$$

(where [] means "integral part"). Hence for $x \ge 1$ we have

$$q(x) \le \max\{ex, x\tau(x)\} \le ex\tau(x).$$

This yields the required inequality for all x > 0.

(d) $\int_0^\infty \frac{\ln \tau(x)}{1+x^2} dx < \infty$ is equivalent to $\int_0^\infty \frac{\ln q(x)}{1+x^2} dx < \infty$. This is a consequence of (c) above and the fact that $\ln(e(x+1))/(1+x^2)$ is integrable in $[0,\infty)$.

LEMMA 3.5. If $x \ge e^3$, then $\ln q(x) = x/(1 + \ln(x))$.

Proof. The function $C(x) = e^x/(1+x)$ is continuous and convex for $x \ge 0$; if $C^*(x)$ denotes the conjugate function, we have the following identity for $\xi \ge 1$:

$$\ln M(\xi) = \sup_{x \ge 1} \{ \xi \ln(x) - \ln \Omega(x) \} = \sup_{x \ge 1} \left\{ \xi \ln(x) - \frac{x}{1 + \ln(x)} \right\}$$
$$= \sup_{x \ge 1} \{ \xi \ln(x) - C(\ln(x)) \} = \sup_{s \ge 0} \{ \xi s - C(s) \} = C^*(\xi).$$

We need the following

AUXILIARY LEMMA. We have

$$\sup_{\xi \ge 0} \{ y\xi - C^*(\xi) \} = \sup_{\xi > 1} \{ y\xi - C^*(\xi) \} \quad \text{for } y \ge 2.$$

Proof. Set $\phi(x) = C'(x) = xe^x/(1+x)^2$. Thus

$$C(x) = \int_{0}^{x} \phi(u) du + 1, \quad C^{*}(x) = \int_{0}^{x} \phi^{-1}(u) du - 1$$

(see [14], 1.10.11). Since ϕ^{-1} is increasing,

$$\frac{1}{1-\xi} \int_{\xi}^{1} \phi^{-1}(u) \, du \le \phi^{-1}(1) \le y$$

because $1 \le 2e^2/9 = \phi(2)$. So

$$-\int_{0}^{\xi} \phi^{-1}(u) \, du \le (1-\xi)y - \int_{0}^{1} \phi^{-1}(u) \, du$$

and hence $\sup_{0 < \xi < 1} \{ y\xi - C^*(\xi) \} \le y - C^*(1)$.

Thus for $y \ge 2$ we have $\sup_{\xi \ge 1} \{ y\xi - C^*(\xi) \} = \sup_{\xi \ge 0} \{ y\xi - C^*(\xi) \} = C^{**}(y) = C(y)$ (see [9], I.15, for instance).

Finally, for $x \ge e^3$ we have

$$\begin{split} \ln q(x) &= \sup_{\xi \geq 0} \{\xi \ln(x) - \ln M(\xi)\} \\ &= \max \{ \sup_{0 \leq \xi \leq 1} \{\xi \ln(x) - \ln M(\xi)\}, \sup_{\xi \geq 1} \{\xi \ln(x) - C^*(\xi)\}\} \\ &= \max \left\{ \sup_{0 \leq \xi \leq 1} \{\xi \ln(x) - \ln M(\xi)\}, \frac{x}{1 + \ln(x)} \right\} = \frac{x}{1 + \ln(x)}. \end{split}$$

Corollary 3.6. The integral $\int_0^\infty \frac{\ln \tau(x)}{1+x^2} dx$ is divergent.

Proof. By 3.4(d), it suffices to prove the assertion for $\ln q(x)$, and this follows from the previous lemma, since

$$\int_{0}^{\infty} \frac{\ln q(x)}{1+x^{2}} dx \ge \int_{e^{3}}^{\infty} \frac{\ln q(x)}{1+x^{2}} dx = \int_{e^{3}}^{\infty} \frac{x}{(1+\ln(x))(1+x^{2})} dx$$
$$\ge \int_{e^{3}}^{\infty} \frac{x}{4x^{2} \ln(x)} dx = \int_{e^{3}}^{\infty} \frac{1}{4x \ln(x)} dx = \infty.$$

3.7. A quasi-analytic Banach algebra of power series. If we set $M_n = M(n)$, where M is the function of 3.1, then the class $C\{M_n\}$ of all $f \in C^{\infty}(\mathbb{R})$ such that $||f^{(n)}||_{\infty} \leq k_f K_f^n M_n$ (for some constans k_f , K_f depending only of f) is a quasi-analytic class, by 3.2(4), 3.6 and the Denjoy-Carleman theorem (see [7], V.2.6 and V.2.4; or [10], 19.11).

Let now $a=(a_n)_{n\geq 0}$ be the sequence $a_n=\Omega(n)$, where Ω is the function of the previous section. The properties (a), (b) and (c) of Ω show that B=A(a) is a Banach algebra of power series. We claim that $G(B)\subset C\{M_n\}$. In fact, we first observe that for every $x\in B$, the map G(x) is C^∞ : it is clear that each sequence $(n^k/a_n)_{n\geq 0}$ is bounded for $k\geq 0$. We now assume that $x=\sum_{n\geq 0}x_nt^n$ belongs to B; then for every $k\geq 0$ we have

$$||G(x)^{(k)}||_{\infty} \le \sum_{n\ge 0} |x_n| n^k \le \sum_{n\ge 0} |x_n| a_n \frac{n^k}{a_n}$$
$$\le \sum_{n\ge 0} |x_n| a_n \sup_{n\ge 1} \frac{n^k}{a_n} \le ||x|| M_k.$$

Example of a Fréchet algebra

271

In other words we have shown

PROPOSITION 3.7.1. The algebra B defined above is a quasi-analytic Banach algebra of power series.

The following property will be used in the final construction (6.2 below).

PROPOSITION 3.7.2. If $M \subset B$ is a maximal ideal, then $\bigcap_{n=1}^{\infty} M^n = 0$.

Proof. If $M=M_z$, |z|<1, then $x\in M^n$ for all n means that for all complex derivatives of \widehat{x} we must have $\widehat{x}^{(n)}(z)=0$. Since \widehat{x} is holomorphic in |z|<1, we obtain x=0 (this argument holds for any power series Banach algebra A(a) as a subalgebra of the disk algebra $A(\Delta)$). Now, if |z|=1, say $z=e^{is}$, then $x\in M^n$ implies that all the derivatives of order $k\leq n-1$ of the function G(x) vanish at $s\in\mathbb{R}$. Hence in this case $x\in M^n$ for all n again implies x=0 because $G(x)\in C\{M_n\}$.

4. Fréchet algebras of power series

- 4.1. Submultiplicative sequences. We assume that $W = \{a(p), p \ge 0\}$ is a sequence of submultiplicative sequences such that
 - (1) $a(p) \le a(p+1)$ for each $p \ge 0$, i.e., $a_n(p) \le a_n(p+1)$ for all $n, p \ge 0$,
 - (2) $\lim_{n\to\infty} a_n(p)^{1/n} = 1$ for each $p \ge 0$.

Then for each $p \ge 0$ we have a Banach algebra A(a(p)) of power series and continuous inclusion maps $A(a(p+1)) \subset A(a(p))$ for $p \ge 0$; this system produces a matrix algebra $F(W) = A(a_{p,n})$ of complex power series where $a_{p,n} = a_n(p)$ in the sense of [3]. Explicitly,

$$F(W) = \left\{ \sum_{n=0}^{\infty} x_n t^n : \|x\|_p = \sum_{n=0}^{\infty} |x_n| a_n(p) < \infty \text{ for every } p \ge 0 \right\}$$

with the topology defined by the family $\| \cdot \|_p$, $p \geq 0$, of norms. Note that t is a topological generator of F(W), hence all characters of F(W) are continuous ([1]); the character space of F(W) can be identified with the closed disk $\Delta = \{z \in \mathbb{C} : |z| \leq 1\}$ as in the Banach algebra situation of §2. Therefore the set of units of F(W) is open (see [6]) and hence every maximal ideal is closed. Since every Fréchet m-convex algebra which is a field is necessarily isomorphic to \mathbb{C} (see [13]), every (closed) maximal ideal is the kernel of a continuous character. We write each character h_z of F(W) in the form $\widehat{x}(z) = h_z(x) = \sum_{n=0}^{\infty} x_n z^n$, and denote by $M_z = \operatorname{Ker}(h_z)$ the associated maximal ideal. It follows that there is a continuous homomorphism $i: F(W) \to \mathcal{A}(\Delta)$ defined by $i(x)(z) = \widehat{x}(z)$ and $i(M_z) \subset \mathcal{M}_z$ for all $z \in \Delta$. In what follows we assume the following additional properties:

(3) For each $p \geq 0$ there exists a constant C_p such that

$$(n+1)a_n(p) \le C_p a_{n+1}(p+1)$$
 for every $n \ge 0$.

(4) Each sequence $a(p), p \ge 0$, is increasing.

EXAMPLES 4.2. We give two concrete examples of sequences W having the properties 4.1(1)-(4):

- (a) Set $a_0(p) = 1$ and $a_n(p) = (2n)^p$ for n > 0, $p \ge 0$. All the verifications are almost trivial (here we can take $C_p = 1$ for all p).
- (b) Fix $\lambda \in (0,1)$ and define $a_n(p) = e^{pn^{\lambda}}$ for all $n, p \geq 0$. As before, all the verifications are easy, with the possible exception of 4.1(3); this can be obtained (with $C_p = (\lambda e)^{-\lambda^{-1}}$ for all p) from the inequality $n+1 \leq (\lambda e)^{-\lambda^{-1}} e^{(n+1)^{\lambda}}$. This inequality follows from elementary calculus applied to evaluate the maximum of the function $f(x) = xe^{-x^{\lambda}}$ for $x \geq 1$, attained at $x = \lambda^{-\lambda^{-1}}$.

Remark 4.3. The above properties imply that for each $p \geq 0$ we have

$$\sum_{i=0}^{n} a_i(p) \le C_p a_{n+1}(p+1).$$

In fact, $\sum_{i=0}^{n} a_i(p) \le (n+1)a_n(p) \le C_p a_{n+1}(p+1)$.

- 4.4. Auxiliary operators. Assuming 4.1(3), (4) we can define, for each $z \in \Delta$, a continuous linear operator $T_z : F(W) \to F(W)$ in three steps:
- (i) Set $T_z(t^n) = \sum_{k+h=n-1} z^h t^k$ if $n \ge 1$, and $T_z(1) = 0$. Observe that if n > 1 then

$$||T_z(t^n)||_p \le \sum_{k+h=n-1} |z|^h a_k(p) \le 1 + a_1(p) + \dots + a_{n-1}(p)$$

$$\le C_p a_n(p+1) = C_p ||t^n||_{p+1},$$

by 4.3; obviously this also holds for n = 0.

(ii) We now define T_z on the polynomials in t by linearity; in this case, the definition gives: if $x = \sum_{n=0}^{N} x_n t^n$ then $T_z(x) = \sum_{n=0}^{N} x_n T_z(t^n)$. Hence by (i) we have

$$||T_z(x)||_p \le \sum_{n=1}^N |x_n|C_p||t^n||_{p+1} = C_p \sum_{n=1}^N |x_n|a_n(p+1)$$

$$\le C_p ||x||_{p+1}.$$

(iii) The above inequalities show that T_z can be extended by continuity to a continuous linear map $A(a(p+1)) \to A(a(p))$ for all $p \ge 0$. This completes the definition of T_z .

An explicit formula for T_z is not necessary here, but we recall that after a rearrangement of the absolutely convergent series $T_z(x) = \sum_{n\geq 0} x_n T_z(t^n)$

Example of a Fréchet algebra

we obtain without difficulty

$$T_z(x) = \sum_{n\geq 0} \left(\sum_{j\geq n+1} x_j z^{j-(n+1)} \right) t^n.$$

We state the following properties of these operators:

LEMMA 4.4.1. For every $x \in F(W)$ and every $z \in \Delta$,

(i)
$$x = (t-z)T_z(x) + h_z(x),$$

(ii)
$$x = \sum_{k=0}^{n-1} h_z(T_z^k(x))(t-z)^k + T_z^n(x)(t-z)^n \quad (n \ge 1).$$

Proof. (i) This is clear when $x = t^n$, $n \ge 0$. Hence by linearity the equality holds when x is a polynomial in t. Finally by continuity the result follows for all $x \in F(W)$.

(ii) By induction,

$$x = \sum_{k=0}^{n-1} h_z(T_z^k(x))(t-z)^k + T_z^n(x)(t-z)^n$$

$$= \sum_{k=0}^{n-1} h_z(T_z^k(x))(t-z)^k + (h_z(T_z^n(x)) + T_z^{n+1}(x)(t-z))(t-z)^n$$

$$= \sum_{k=0}^{n} h_z(T_z^k(x))(t-z)^k + T_z^{n+1}(x)(t-z)^{n+1}.$$

PROPOSITION 4.5. For every maximal ideal M_z in F(W), M_z^n is principal, generated by $(t-z)^n$.

Proof. It is enough to show that M_z is generated by t-z, and this follows quickly from 4.4.1(i).

PROPOSITION 4.6. Let P be a prime ideal in F(W); then either

- (a) P is a maximal ideal, or else
- (b) for some $z \in \Delta$, we have $P \subset \bigcap_{n=1}^{\infty} M_z^n$.

Proof. Clearly $P \subset M_z$ for some $z \in \Delta$. Supose that $x \in P$ and $P \neq M_z$; we assert that if $x = (t-z)^n y_n$, then $x = (t-z)^{n+1} y_{n+1}$. In fact, if $x = (t-z)^n y_n$, then either $t-z \in P$ (hence $M_z = P$) or else $y_n \in P$. In the latter case we obtain $y_n = (t-z)y_{n+1}$ and hence $x = (t-z)^{n+1} y_{n+1}$. Finally, if $x \in P \subseteq M_z$, x = (t-z)y then $x \in \bigcap_{n=1}^{\infty} M_z^n$ by 4.5. Note that by 4.4.1(ii), $y_n = T^n(x)$ and $y_{n+1} = T(y_n) = T^{n+1}(x)$.

REMARK 4.7. Recall from 4.1 that $i(M_z) \subset \mathcal{M}_z$. Hence if |z| < 1 then necessarily P = 0 in (b) above.

5. Algebraic lemmas. In the construction of examples we use some characterizations of a principal ideal domain by properties of prime ideals. For the reader's convenience we include the proof of the following results (which are known).

LEMMA 5.1. Let A be a commutative \mathbb{C} -algebra with identity, and N be the set of non-principal ideals of A, ordered by inclusion. Then:

- (i) \mathcal{N} is inductive.
- (ii) If A is an integral domain, then every maximal element $I \in \mathcal{N}$ is a prime ideal.

Proof. (i) Routine. (ii) Assume that $ab \in I$, and $a, b \notin I$. The ideal I + (a) is proper: otherwise we can write 1 = y + xa with $y \in I$ and $x \in A$, hence $b = by + x(ab) \in I$, a contradiction. Then by the maximality of I, the ideal I + (a) is principal, with a generator c, and we have c = y + xa, $y \in I$, $x \in A$, and also y = uc, a = vc, for a = vc and a = vc note that a = vc note that a = vc is principal.

Clearly (c)=(y)+(a). On the other hand we can see that I=(y)+Ja where $J=\{z\in A: za\in I\}$; in fact, if $y'\in I\subset Ac$ then $y'=a_1y+a_2a$, which implies $a_2a\in I$, hence $a_2\in J$. Then we have $I\subset (y)+Ja$, and the opposite inclusion is trivial.

Note that $I \subset J$ and $I \neq J$ (since $b \in J$, $b \notin I$); also $A \neq J$ (since $a \notin I$). Hence J is principal, with a generator g. Since I = Ay + Ja it follows that I = (y) + Aag = (y) + Ja.

Finally, let H be the ideal generated by $\{u, gv\}$; we claim that $I \subset H$: first observe that $y = cu \in H$, and then $ag = cvg \in H$. But $I \neq H$, since $g = gu + xgv \in H$, $g \notin I$. Hence the ideal H is principal, generated by an element $s \in A$. Now we have $(sc) = Hc = \{uc, gvc\} = \{y, ag\} = (y) + Ja = I$. This gives a contradiction.

LEMMA 5.2. Let A be a \mathbb{C} -algebra which is an integral domain such that every prime ideal in A is principal. Then A is a principal ideal domain.

Proof. If there exist non-principal ideals in A, let I be a maximal element of the set $\mathcal N$ of non-principal ideals of A. By 5.1(ii), I is prime, hence principal, which is impossible.

COROLLARY 5.3. Let A be a \mathbb{C} -algebra which is an integral domain such that

- (i) every non-null prime ideal is maximal, and
- (ii) every maximal ideal is principal.

Then A is a principal ideal domain.

6. Example of a Fréchet m-convex principal ideal domain. Let $W = (a(p))_{p>0}$ be a sequence of submultiplicative sequences with the prop-

erties 4.1(3), (4) (see for instance 4.2) and let $a=(a_n)_{n\geq 0}$ be the submultiplicative sequence $a_n=\Omega(n)$ of 3.7. We define $\widetilde{a}_n(p)=a_na_n(p)$ for each $n,p\geq 0$; more explicitly $\widetilde{a}_0(p)=1$, and $\widetilde{a}_n(p)=e^{n/(1+\ln(n))}a_n(p)$ for all $n,p\geq 0$.

LEMMA 6.1. The sequence $\widetilde{W} = (\widetilde{a}(p))_{p \geq 0}$ has the following properties:

- (a) Each sequence $\tilde{a}(p)$ is submultiplicative.
- (b) \widetilde{W} has the properties 4.1(1)–(4).
- (c) For each $p \ge 0$ we have $a_n \le \widetilde{a}_n(p)$ for all $n \ge 0$.

Proof. Routine verification.

We denote by B (as in 3.7) the Banach algebra A(a) of power series; observe that 6.1(c) gives an inclusion $j: F(\widetilde{W}) \to B$.

Now we consider the algebra $F(\widetilde{W})$, which is a Fréchet m-convex algebra with character space Δ by 4.1(2). On the other hand, we have the following

Theorem 6.2. $F(\widetilde{W})$ is a principal ideal domain.

Proof. We apply 5.3; in fact, every maximal ideal in $F(\widetilde{W})$ is principal by 6.1(b) and 4.5. Also every prime ideal $P \subset F(\widetilde{W})$ is either maximal or null: this is clear when $P \subset \widetilde{M}_z$, |z| < 1, and when |z| = 1 we have $j(\widetilde{M}_z) \subset M_z \subset B$, hence 4.6(b) gives

$$j(P) \subset j\Big(\bigcap_{n=1}^{\infty} \widetilde{M}_{z}^{n}\Big) \subset \bigcap_{n=1}^{\infty} M_{z}^{n} = 0$$

by 3.7.2.

We have thus constructed the promised example; in fact, a collection of examples can be obtained according to the selection of sequences W of §4.

REMARK 6.3. The algebra $F(\widetilde{W})$ is also a Montel space.

Proof. For each $p \geq 0$ we have the linear isometry $j_p: \ell^1 \to A(a(p))$ given by $j_p(\sum_{n\geq 0} x_n t^n) = \sum_{n\geq 0} x_n a_n(p)^{-1} t^n$, and the inclusion map $i: A(a(p+1)) \to A(a(p))$ gives a map $\Phi: \ell^1 \to \ell^1$ by the rule $i \circ j_{p+1} = j_p \circ \Phi$. Now the property 4.1(3) and the submultiplicativity of the sequence a(p) imply that Φ is compact, because it is the transpose of the map $\Psi: c_0 \to c_0$ given by $\Psi(s)_n = s_n a_n(p) a_n(p+1)^{-1}$, which is compact. Indeed, if we define a sequence of finite rank maps $\Psi_n: c_0 \to c_0$ by $\Psi_n(s)_k = s_k a_k(p) a_k(p+1)^{-1}$ when $k \leq n$, and 0 otherwise, then

$$\|\Psi_n - \Psi\| \le \frac{C_p a_1(p)}{n+1},$$

hence Ψ_n converges to Ψ in norm, and so Ψ is compact. Finally $\Phi = \Psi^*$, and also the inclusion map $A(a(p+1)) \to A(a(p))$ is compact.

Now, it follows from [8] that $F(\widetilde{W})$ is also a Montel space.

Acknowledgements. We are grateful to Professor W. Żelazko for his helpful and invaluable comments and suggestions.

References

- [1] R. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182.
- [2] —, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 623-630.
- [3] H. Arizmendi, On the spectral radius of a matrix algebra, Funct. Approx. Comment. Math. 19 (1990), 167-176.
- [4] S. Bouloussa, Caractérisation des algèbres de Fréchet qui sont des anneaux de valuation, J. London Math. Soc. (2) 25 (1982), 355-364.
- [5] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183.
- [6] A. Ferreira and G. Tomassini, Finiteness properties of topological algebras, Ann. Scuola Norm. Sup. Pisa 3 (1978), 471-488.
- [7] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968.
- [8] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383.
- [9] W. Roberts and D. Vanberg, Convex Functions, Academic Press, New York, 1973.
- [10] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1964.
- [11] A. Sinclair and A. Tullo, Noetherian Banach algebras are finite dimensional, Math. Ann. 211 (1974), 151-153.
- [12] G. Tomassini, On some finiteness properties of topological algebras, Symposia Math. 11 (1973), 305-311.
- [13] W. Żelazko, A theorem on B₀ division algebras, Bull. Acad. Polon. Sci. 8 (1960), 373-375.
- [14] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1977.

Departamento de Matemática
Facultad de Cs. Exactas y Naturales
Universidad de Buenos Aires
Pabellón 1 - Ciudad Universitaria
1428 Buenos Aires, Argentina
E-mail: gcarbo@mate.dm.uba.ar
pucho@mate.dm.uba.ar

Received April 26, 1999
Revised version August 30, 1999

(4312)