icm

STUDIA MATHEMATICA 138 (3) (2000)

A sharp rearrangement inequality
for the fractional maximal operator

by

A, CTANCHI (Firenze), R. KERMAN (St. Catharines, ON),
B. OPIC (Praba) and L. PICK {Praha)

Ahbstract. We prove a sharp pointwise estimate of the nonincreasing rearrangement
of the fractional maximal function of f, My f, by an expression involving the nonincreasing
rearrangement of f. This estimate is used to obtain necessary and sufficient conditions for
the boundedness of My between classical Lorentz spaces.

1. Introduction and statement of main results. For n € N and
v € [0,n), the fractional mazimal operator M, is defined at f € L] (R™) by

loc
(M, f)(=) = sup |Q""" | |f(y)|dy, =eR",
Q5 Q
where the supremum is extended over all cubes @ ¢ B™ with sides parallel to
the coordinate axes and |E| denotes the n-dimensional Lebesgue measure of
a measurable subset E of B™. For the classical Hardy-Littlewood maximal
operator M := Mj, the rearrangement inequality

(1.1) ef () < (M) < CF* (), te(0,00)

holds, where f*(t) = inf{X\ > 0: [{z € " : |f(z)| > A} <t} is the nonin-
creasing rearrangement of f, f**(t) = t‘lgg f*(y)dy, and ¢,C are positive
constants depending only on n (cf. [BS, Chapter 3, Theorem 3.8]). Similar

sharp rearrangement estimates are known for other classical operators of
harmonic analysis such as the Riesz potential
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and the Hilbert transform
1
(Hf)(=)=pv.—{ =~

WIR

These estimates are of great importance in the study of operators on re-
arrangement-invariant function spaces as well as in interpolation theory.
A sharp rearrangement inequality for M, v € (0,n), is not available in the
existing literature. The aim of this paper is to fill this gap and to present
an application of our estimate.

Throughout the paper, we denote by 9% (0,00) the set of all nonneg-
ative measurable functions on (0,00), and by M7 (0,00;]) the set of all
nonincreasing functions from MM+ (0, c0). The symbol x (4 stands for the
characteristic function of an interval (a,b) C (0,00). The quantity w, =
720 (n/2 + 1)t is the volume of the unit ball in R®. We use the letter
C for a positive constant, independent of appropriate parameters and not
necessarily the same at each occurrence.

0 4,

zeR

THEOREM 1.1. Let n € N and v € [0,n). Then there exists a positive
constant C, depending only on n and -y, such that

(12) (MY () <O sup 7/7f*(r), te(0,00),

E<CT<00
for every f € L (R™). Inequality (1.2) is sharp in the sense that for every
@ € MT(0, 00; |) there ewists a function f on R® such that f* = ¢ a.e. on
(0,00} end

(1.3) (Myf)* (&) 2 e sup 7/"f*™(7), t€(0,00),

f<r<c0
where, again, ¢ is o positive constant which depends only on n and ~v. More-
over, the expression SUD, ¢, coo ™7/ ™ F**(7) can be replaced by (£7/™ f**(t) +
supt<,,.<m'r'f/”f*(1')) in both (1.2) and {1.3).

Observe that, since
sup Tv/nf**( ) — f**(t)

tlr<oa

(1.2) and (1.3) are consistent with (1.1). Further, (1.3) is of the same nature
as an analogous estimate for the Riesz potential (cf. [$]), though essentially
smaller, as we show below in the remark preceding the proof of Theorem 1.1.

Theorem 1.1 will be used to characterize the classical Lorentz spaces
between which M, is bounded. Given p € (1,00} and a nonnegative mea-
surable function v on (0, cc), the classical Loreniz space AP(v) is the set of
all measurable functions f on R™ such that the quantity

oQ 1/
1 fllarcey = ( (£ (0)v(t) de) ’
| |

ify=0,
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is finite. Let us recall that classical Lorentz spaces include many familiar
function spaces such as Lebesgue, Lorenta or Lorentz-Zygmund spaces.

The boundedness of the Hardy-Littlewood maximal operator M between
AP(v) and A%{(w) was characterized in [AM] for 1 < p = ¢ < oc and v = w,
and in [3] for arbitrary p, g € (1,00) and v, w. For the operator M.,, we have
the following result.

THEOREM 1.2. Letn e N, vy e [0,n), 1 < p £ q < oo, ond let w,v be
nonnegative and measurable functions on (0,c0) with v satisfying {5 v(t) dt
< oo for every x € (0,00). Then M, is bounded from AP(v) into A%(w) if
and only if there ewists a positive constant C such that

(1.4) T“’/”(Ew(t) dt)lfq < C(gv(t) d,t)l/p
0 ]

and

(1.5) (Oftq(’f/“ﬂ)w(t) dt) Y q(g (rl §'U(y) dy) ’
T 0 0

hold for all r € (0,00).

REMARKS 1.3. (i) If v = 0, then (1.4) and (1.5) coincide with the condi-
tioms in [3, Theorem 2].

(ii) If v satisfies t71 S; v(r)dr < Cu(t) for all t > 0 (in particular, if v is
nondecreasing), then (1.5) can be replaced by

1/p'
u(t)dt) "<

/8

(1.6) (Osot'?("f/“_l)w(t) dt)lfq(g (w(t) dt) <C.
r 0

Indeed, while (1.5) obviously implies (1.6), the condition (1.6) is (by [OX])
equivalent to saying that the inequality

oo t g 1/q o0
wn (e a) ww) <o | et )

0 0 0
holds for all ¢ € MT(0, oc), which of course implies that (1.7) holds for all
p € M+(0, 00; ), and the latter yields (1.5) by [S, Theorem 2].

1/p

2. Proof of Theorem 1.1. Qur point of departure will be the following
two estimates involving (M, f)*:

(2.1) sup £V )M < C § @)l dy
>0 pr
and
* - ST Y A
(2.2) sup (M f)"(#) < Csup 772 (t);

where C' depends only on n and 7.
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Observe that inequalities (2.1) and (2.2) amount to saying that the opera-
tor M., is bounded from L*{R™) into L™/ ("=7}°(R"), and from Ln/1oo (R
into L% (R™), respectively. In contrast to this, the Riesz potential I, while
also bounded from L'(R") into L*/("=7):°°(R"), is only bounded from
LR into L°°(R™). This is equivalent (cf. [BS, Chapter 4, Theo-
rern 4.11]) to the inequality

(I ) () < G(t"f/"‘lﬂf*(y) dy+ {7/t ) dy), t € (0,00).
8] t

Together with the elementary estimate (M, f)(z) < C(I,|f})(z), = € R™,
v € (0,n), we arrive at
t o]

(23) 0400 <o(pFwdy+ [V W) dy), e (0,00)
3} t

This latter estimate is not as sharp as (1.2). Indeed, it is easily seen that
i =]
i) < (0771 )y + | w7 P ) dy) for all 7 € [t 00).
0 t
On the other hand, for any function f on R™ satisfying f*(t) = /7,
t € (0, 00), the right hand side of (1.2) is finite while the right side of (2.3) is
not. In fact, the right hand side of (1.2) is the least noninereasing majorant
of the first summand on the right hand side of (2.3).
Estimate (2.1) is well known (cf. e.g. [T, Chapter VI, (2.19)]). The proof
of (2.2) is easy. Indeed, for every cube Q@ C R®, the Hardy-Littlewcod
inequality ([BS, Chapter 2, Theorem 2.2]) yields

|
Q™1 £yl dy < Q™Y | #/m Fr (1)t m dt < e sup £/ (1),
5 5 = >0

and (2.2) follows.

Proof of Theorem 1.1. Fix ¢t € (0,c0) and let f & L} _(R"). We may
assume that

{2.4) sup T'r/nf**(qﬂ) < o0,
t<T<00

otherwise (1.2) holds trivially. Then, by the Hardy-Littlewood inequality,

{ 1@} de < { ) dy < 0
E 0

for every set £ C R" of measure at most ¢. In particular, if we put E =
{z € R" : |f(x)] > f*(t)}, then |E| < ¢ (cf. [BS, Chapter 2, (1.18)]), and so
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f is integrable over E. In other words, the function
(@) = max{|f(z)| - £*(¢),0} sgn f (=),
belongs to L*(R™). Next, the function
he(x) = min {|f(z)], f*(t) } sgn f(z),

z eR”,

r € R,
satisfes

hi(7) = min{f* (), f* (&)}, 7€ (0,00).
Hence,

{2.5) supf."f/”h;‘('r) = max{ sup 'r'””f*(t), sup 'r"/“f*(r)}
>0 <<t t<r<on

= sup T”’/“f*(v-)g sup T"’/“f**('r),
tLT<o0 f<T<00 '

which, together with (2.4), implies that h; € L»/7:*°{R"). Furthermore,
f =gt + hs, and

(2.6) g¢ (1) = xun (T)(F"(1) = £7({#),

Therefore, using [BS, Chapter 2, Proposition 1.7], (2.1), (2.2), {2.6) and
(2.5), we get

(M f)7(8) < (Myge)* (2/2) + (M1} (2/2)

i y/n—-1 o0
<o((3) Tatwarespsmn o)
2 o >0

T & (0,0).

i
<o(erm | - e sw )
0 t<r<oo

<C sup TVMF(7),
t<lT <00
and {1.2) follows.
We now prove (1.3). Let ¢ € M+ (0,00;}). Putting f(z) = @(walzl™),
2 € R\ {0}, we have f* = ¢ a.e. on (0, 00). Moreover, given y € R”, denote
by B(ly|) the ball in ™, centered at the origin and having radius lyl. Then,
for every x,y € R® such that |y| > |z|, we have

(M, fYz) > By | #z)dz
B(vh
wh |y|™
=clwalyl™™ | (7 dr = cHwalyl™),
0

where ¢ = wi™/m9r=n and H(H) = £/ [ (r)dr for t € (0,00).
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Consequently,
L))z sup H(r),
THwn|@|®
whence (1.3) follows on taking rearrangements.
Finally, to see that the expression SUD;¢ <00 77/m f**(1) can be replaced
by (877 () 4 SUPycrece TV F* (7)) in (1.2), take f € Li (R} and ¢ €

(0, c0). Then
T T
sup 7ty < sup ] sup y7 )T dy
t<T <00 " LT <00 3 t<y<co
< sup 7™ f*(y),

T Y tcy<eo

and the result follows since

sup TV <P 4+ sup 7/t S Iy dy.
t<T <0 t<T <00 i

The same assertion for (1.3) is a consequence of the elementary fact that

f** 2 f*. n

3. Proof of Theorem 1.2. We begin by proving a weighted norm
inequality for the operator R, defined at ¢ &€ M+(0, 005 |) by

(Ryg)(t)= sup 7""p(r), t€(0,00).
t<T<<00

LEmMa 8.1 Let n € N, v € [0,n), 1 < p € q < oo, and let w,v be
nonnegative measurable functions on (0, 00) with v satisfying S () dt < o0
for every x € (0,00). Then there is a positive constant € such that the
inequality

o

sy (Tmaeremea)” <o | @)
a 0

holds for all p € 9T (0, 00; 1) if and only if (1.4) holds for all r € (0, 00).

Proof. Necessity: Since, for any r€ (0, 00), (Byx(0,7)){T) = 1" "x(0,m(t),
t € (0,00}, the necessity of (1.4) follows by testing (3.1) on ¢ = X0,
Sufficiency: If v = 0 and ¢ € MT(0,00; |}, then (Ryp)(t) = @(t), and
the assertion follows from {3, Remark (i), p. 148]. Let v € (0,n). With no
loss of generality, we assume that w # 0 on a set of positive measure. Then
(1.4) entails {3 v(t) dt = co. Consequently, there is an increasing sequence
{7t teez in (0,00) such that
i
(3.2) {otydt=2% ke
D .
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It clearly suffices to verify (3.1) for continuous ¢ having compact support
in {0,00) and @ # 0. For such ¢, the set A C Z given by 4 = {k € Z :
(Byp)(ri—1) > (Ry){ry)} is not empty. Take k € A and define
_ {O if (R’Y‘P)(t) = (RW‘P)(Tk—-l)i te (05""1‘:—1)5
rin{r; : (Byp)(r;) = (Ryp)(ra—1)}
Then we obtain
(Ryp)(t) = (Byp) (k1)

Moreover, by the definition of A, the supremum appearing in the definition
of (Ry@)(rk~1) is attained in [rp_y,7%). Therefore, for every k € A and
t € 2k, 7% ), We have

(3.3)  (Byp)(t) S (Ryp)(re—1)= sup

Pl LT

otherwise.

ked te [zk,rkmﬂ.

7/ 2p(r) < 1™ plre—1).

Thus, by (3.3), (1.4), (3.2), monotonicity of ¢ and the inequality ¢ > p,
we get

o

(Tra@me a)’ = (T Tiraomma)

0 kEA zk

(E P () g w(t) dt)

keA

so(Fereen(foma)")"

< 41/”6'(2 o? ?‘kwl)( S it )dt)

kA Th—2

sened)”)”

q/zu) t/g

Th—1

<aio( 3 ( |

keA Te-2
< 41/;00(030 o (Eu () dt) v
0

and (3.1) follows. =

Theorem 1.2 is a consequence of Theorem 1.1, Lemma 3.1 and the char-
acterization in [8, Theorem 2] of the inequality

(T G §‘p(3) ds) i d").l/q <0 (Og OG0 dt)l/ P

0 0
for all ¢ € PMT(0, 00; |).
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On pointwise estimates for maximal
and singular integral operators

by
A K. LERNER (Odessa)

Abstract. We prove two pointwise estimates relating some classical maximal and
singular integral operators. In particular, these estimates imply well-known rearrangement
inequalities, L5, and BLO-norm inequalities.

Introduction. For a locally integrable function f on R", define the
Hardy-Littlewood and Fefferman—Stein maximal functions by

1

Mjf(z) = Sup 1 CSQ HOES
fhe)= s !%1 §9 F) - foldy,

where fo = Q7§ o> the supremum is taken over all cubes } containing
x, and |Q| denotes the Lebesgue measure of Q.

We also define the Calderén—Zygmund maximal singular integral opera-
tor by

T* f(z) = sup
o0

| fwk—w dy\,
|yl >e
where the kernel k(z) satisfies the standard conditions:

k()] < o\ | h@de=0 (0<R;<R;<o0)
(1) |£l’:| By <|z|<Ra .
b(z) — k(z —v)] < l——'f% iyl < =1/2, @ > 0).

Let w be a non-negative, locally integrable function. Given a measur-
able set &, let w(E) = |, w(z)de. We say that w satisfies Muckenhoupt’s

2000 Mathematics Subject Classification: Primary 42B20, 42B25.

19RE1



