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On pointwise estimates for maximal
and singular integral operators

by
A K. LERNER (Odessa)

Abstract. We prove two pointwise estimates relating some classical maximal and
singular integral operators. In particular, these estimates imply well-known rearrangement
inequalities, L5, and BLO-norm inequalities.

Introduction. For a locally integrable function f on R", define the
Hardy-Littlewood and Fefferman—Stein maximal functions by

1

Mjf(z) = Sup 1 CSQ HOES
fhe)= s !%1 §9 F) - foldy,

where fo = Q7§ o> the supremum is taken over all cubes } containing
x, and |Q| denotes the Lebesgue measure of Q.

We also define the Calderén—Zygmund maximal singular integral opera-
tor by

T* f(z) = sup
o0

| fwk—w dy\,
|yl >e
where the kernel k(z) satisfies the standard conditions:

k()] < o\ | h@de=0 (0<R;<R;<o0)
(1) |£l’:| By <|z|<Ra .
b(z) — k(z —v)] < l——'f% iyl < =1/2, @ > 0).

Let w be a non-negative, locally integrable function. Given a measur-
able set &, let w(E) = |, w(z)de. We say that w satisfies Muckenhoupt’s
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286 A K. Lerner

condition Ay if there exist ¢, 4 > 0 so that for any @ and E C Q,

w(B) < ¢(|B|/1Q1)°w(Q).
For w € Au, it is well known (see [7, 9, 10]) that
(2) 17 fllpes < €l M Fllp,,
(3) 1M £ llp.0 < &l FFllpe

for all p > 0, where [[f|lp = ({z. |F(2) [P (z) dz)/P.
BMO estimates for T f go back to [15, 16]:

(4) 177 £l < el £l oo-

For the Hardy-Littlewood maximal function a BMO estimate was estab-
lished later in [4]:

(5) (M flle < cfl £l

These estimates were strengthened in [13] and [3] respectively:

(6) 17" fllsro < €l flloas
(7) M FlisLo < cliflls-
The space BLO {8] consists of all functions f € L _(R?) such that

loc

|l fliBLo = sup(fg — inf f) < oc.
Q Q

It is easy to see that BL.O ¢ BMO, moreover ||f|. < 2| fllsro-

Note that the estimates (2), (3) were proved in [7, 9, 10] with the help
of so-called good A inequalities. Afterwards, rearrangement inequalities for
M, f%,T* f were obtained (see [1, 2, 5]), which also imply (2), (3).

The non-increasing rearrangement of f with respect to w 6, p. 32] is
defined by

folt)= sup inf |f(z 0 <t < oo).
0= e milfE) ( )
If w =1 we use the notation f*(#).

A key role in our work is played by the maximal function (see [11, 19])

maf(z) = %Pm(fxca)*(AIQD (0<A<1).

In terms of this function we establish pointwise estimates for the operators
M{f, f#,T*f. In particular, these estimates imply all the above mentioned
results, namely rearrangement inequalities, LE and BLO-norm estimates
(2)-(7).

Our main results are the following.

THEOREM 1. For any function f € LP(R") (1 < p < oc) and for all
r e R,

mA(T*)(5) < exnMf(2) +T*f(z) (0 <A< 1),
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THEOREM 2. For any function f € L, (R*) and for oll ¢ € R™,
mA(Mf)(2) S exnfF @)+ Mf(z) (0<) <)

Inequalities (2){7) follow from these theorems in view of the next main
lermma.

LiMmma 1. Let f and g be non-negative functions on R™. Suppose that for
any A0 < A= 1/2, there exists a constant ¢y > 0 so that

myf(z) < exglz) + f(x)
forallz € B, ond let w € Ay, Then
(1) there exists o constant ¢ > 0 g0 that
folt) £ dgliat) + £5(2t)
for allt > 0;
(ii) #f fi(+oc) =0, then
I£ze < cpllgflzz
(iii) if g &€ L%, then

(0 <p<oa);

1 flsro £ cllgile-
The proof of (iii) is essentially based on the inequality

8) 17lle < ensup inf((f — e)xe)" (MQI)
which was proved by F. John [12] and J.-O. Strémberg [19] in the cases

0 < A< 1/2and A= 1/2 respectively. For A > 1/2 this inequality fails.
First, we prove Theorems 1, 2, and then Lemmma 1.

Proof of Theorem 1. Here it is convenient to use the maximal function
finf (@) = sap(fxs)*(AB]),
B3z

where the supremum is taken over all balls B centered at z. It is easy.to
see that for any cube @ containing = there is a ball B centered at = v&;hlch
containg ) such that |B| = ¢,|@|. From this property, for any z € R* we
havo

(9) iy f (@) S Moo, (2}

By (9), it suffices to get the required estimate for ﬁ'.z,\. Let B be an
arbitrary ball with centor at z. From the definition of T™ it follows that
(10) T*(Fxreas)(2) £ T f(=). |
Further, by (1), the standard arguments (see, for example, [18, p. 59]) show
that for all y € B,

(11) T (Fme\28)(y) S cMf(z) + T*(Fxe\28) (@)
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On the other hand, by weak type (1, 1) of T* [17, p. 42] we have
(T*(Fx2)) (MBI} < - B, [ 1£ )l dy < eM f(2).

From this and (10), (11) we get
(T Flxs)* (A B} < cMf(z) + T f(z).
Taking the upper bound over all balls B centered at z proves the theorem.

Proof of Theorem 2. We shall use the following elementary property of
cubes: if cubes @; and @, intersect then either @1 C 3¢ or Q2 C 3Qy
(as usual, £Q denotes the cube concentric with ¢ and having edge length k&
times as large).

Let (@ be an arbitrary cube containing the point z. Take an arbitrary
point i € @ and suppose a cube @' contains y. If @' C 3@, then

|flor < 1f = fsqlor + 1 Flsq < M((f — faq)xsq) (W) + Mf(z}.

Assume now that @' ¢ 3@. Then @ C 3@’ and in this case

[flor < 1f = faorlar + 1 flae < 87 (2) + M [ (z).
Thus, forall y € @,

M f(y) = max( P | flor, sup | Fler)

Q’ch QCSQ’
< M((f - f20)xQ)(v) + 3" f*(w) + M ().
Using the weak type (1,1) of the operator M, we get
((M £xq)" (MR < (M((f - f30)x30))" (N@Q)) + 3" F#(z) + M f(x)

,le [f = fagl +3"f#(z) + Mf(z)

< of*(z) + Mf(z).
Taking the upper bound over alt Q 3 z yields the theorem.

Proof of Lemma 1. Choose A so that ¢(2"A)% = 1/4, where ¢, § are the
constants from the definition of A, and put ¢/ =¢;.

Let E be an arbitrary set with w({E) = ¢. Applying the Calderén—
Zygmund decomposition to the function xg and number ), we get pairwise
disjoint cubes @; such that
(12) AQi| <[EBN Q4| < 2™A|Q4l.

From the definition of A, it follows that

=zi:w(EmQ")-<—cZ([E|8:|2i]) w(Qi) < e(270)? (UQ)

i
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So, we have w(lJ; @) = 4t. From this and the left-hand inequality of {12)
we obtain

inf |f(@) < inf_ipf |£(a)] < inf(ixa)" (QH)

< 1111fm1ér1flm;‘f( ) = CUEiUn;fQ-i maf(z) < (maf)l(48).

Taking the supremum over all sets £ with w{F) = t, we get
Falt) < (maf)5 (48).
From this and simple properties of rearrangement it follows that
fot) < (dg+ i(4t) < dgs(2t) + f(2¢).
So, we get (1), Iterating this inequality we obtain (i) in a standard way (see,
for example, [14]).

It remains to prove (iii). This follows immediately from the following
BLO criterion.

LEMMA 2. Let A < 1/2. Then a non-negative function f belongs to BLO
iff maf — f & L. Moreover,

£ lsro < [maf = flloo-
Proof Define A= ||myf — flioo. It i3 clear that
(13) (Fra)* (@) < A+ gt §
for any cube @. From this it follows that
inf((f — 6)x@)"(AQI) < ((f ~ inf fxa)"(AIQI)

= (FxQ) (@) —inf f < 4.

Since A < 1/2, by Jobn and Strémberg’s theorem (see (8)) it follows that
f € BMO and || f]« < cA. Further, note that for any cube ¢,

fo s f (1f(z) ~ fal + IF(@)) < ((If = fal + 1f1)x@)* (1QD)
< ((f = f@)xg) (1Q1/2) + (Fx@)*(1Q1/2) < 2 fll+« + (Fx@)"(1Q1/2).
From this and (13} we get

I filro = sgp(fcz - igff) < sgp@HwaF (Fxa)(1Ql/2) — iréff)
< agp(ch + (Fx)"(AQI) - igff) < (2e+1)A

Conversely, let f & BLO. Then
(Fxa)*(NQD) < (7 - falxa)" (@D + fo
< 21fo+ sz +igf 7 < (2/2+ Dlifllszo 33 7.
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Thus,
maf(x) < (2/A+ )| filBro + flx)-
The lemma is proved.
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