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Metric entropy of convex hulls in Hilbert spaces

by
WENBO V. LI {Newark, DE) and WERNER LINDE (Jena)

Abstract. Let T be a precompact subset of a Hilbert space. We estimate the metric
entropy of co(T"), the convex hull of T, by quantities originating in the theory of majorizing
measures. In a similar way, estimates of the Gelfand width are provided. As an application
we get upper bounds for the entropy of co(T), T' = {f1,%2,...}, |&{| < aj, by functions of
the a;’s only. This partially answers a question raised by K. Ball and A. Pajor (cf. i1h-
Our estimates turn out to be optimal in the case of slowly decreasing sequences (a;)52;-

1. Introduction. Let H be a separable Hilbert space and let T' € H be
a precompact subset. A suitable measure for the size of T are the covering
numbers defined by

N(T,e) == inf{ﬂ. €Nidty,...,tn € T such that 7 C | J B(tk;e)}
k=1

where B(z;¢) is the open e-ball centered at z € H.
If N(T',¢) grows exponentially, it is more convenient to work with the
metric entropy of T given by

H(T,e) i=logN(T,¢=).

Let co(T") denote the convex hull of 7". Then it is precompact as well, and
it is natural to ask for good estimates of H(co(T),) in terms of H(T¢).
Such problems play an important role in the theory of empirical processes
(cf. [9]). First results were devoted to the case of “small” sets T, i.e. satisfying
N(T,e) € cg~* for some a > 0. In this case we have the optimal estimate

_ H{co(T), £) < ce2/(3+e)
(cf. [9], [1], [6] and [5], [16] for recent generalizations of this result). Here
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and throughout the paper, ¢ with or without a subscript always denotes a
universal positive constant which may be different at each occurrence.
The case of “big” sets T C H, ie.

(1.1) H(T,e) <ee™™

for come o > 0, requires different techniques and new phenomenons appear.
More precisely, as shown in [6], estimate (1.1) implies

—_2 —1y1-2/e
ce~2(loge™1) , 0< <,
H(co(T),e) < {Cg_a 2<a<oo,

and again, those are best possible. In particular, this tells us that the situ-
ation is completely different for @ < 2 and & > 2 {the case @ == 2 remains
open). One possible explanation for this change of quality at o = 2 (we
do not know of a purely geometric one) is a close relation between metric
entropy and Gaussian stochastic processes. More precisely, let (X¢)ierr be
the isonormal Gaussian process on H, i.e.

EX; =0 and EX X, =(t,8) forallt,se .

Recall that one may use the representation
oo

{1.2) Xp=  &lt, fi)
k=1

where (£k)k>1 18 a sequence of i.i.d. standard normal random variables and
(fi)k>1 is any complete orthonormal system in H. Now, T C His as
befare, we may define its I-width by

(1.3) T := sup{Esup |X:| : § C T finite}.
tes

Then a basic result of R. M. Dudley and V. N. Sudakov (cf. [14]) asserts

oC

{1.4) c1 iliga\/H(T, e) STy <L e S VH(T,e)de + \/2/_“'32,; (1]

for some universal ¢i,co > 0. Since I(T) == l(co(T)), this explaing why
the metric entropy of co(T) cannot grow faster than e~* provided that
{5 +/H(T,€) de < co. To obtain sharp bounds for H (co(T),€), the estimates
in (1.4) do not suffice. For example, they do not provide any information
about H(co{T"),s) when the integral in (1.4) is infinite. To overcome these
difficulties, the main idea in (6] was to investigate the behavior of the integrals

(1.5) T VE(T,5)ds and g VH(T,5)ds

as £ — 0 (in dependence on whether the integral in (1.4) diverges or con-
verges). Although these techniques led to new and interesting results, they
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do not imply sharp estimates in the critical case H(T,e) < ce™2. Recall
(cf. [8] or [13]) that (1.4) cannot be improved for general T, i.e. it is impos-
sible to characterize the finiteness of I(T) by the entropy integral in (1.4).
Consequently, for general T, the integrals in (1.5) cannot be expected to
provide optimal estimates for H(co(T"}, ). Fortunately, the pioneering work
of X. Fernique and M. Talagrand (cf. [17] and [18]) provides us with a purely
geometric description of [(T") (majorizing measures). So our objective is to
replace the quantities in (1.5) by similar ones derived from the theory of
majorizing measures. This leads to finer estimates of H(co(T),e) and allows
us to treat some important examples in the critical case a = 2. OQur results
are optimal in special situations, yet do not answer the most interesting
open question, namely, whether or not sup,,qe2H(T,¢) < oo always im-
plies sup,q&2H (co(T),&) < co. This is becanse the left hand side of (1.4)
does not characterize the finiteness of I(T) either (1).

Besides estimates for the metric entropy we also prove upper bounds for
the Gelfand width of co(T"), i.e. we give estimates for the minimal diameter
of slices of co(T) with finite-codimensional subspaces.

In Section 5 we apply our results to sets T = {t1,%a,...} with [[#;|| < a5
for some sequence of a;'s tending to zero monotonically. Here we get direct
estimates for the metric entropy of co(T") in terms of the a;’s. In particular,
if a5 = (logj)~*/?J(logj) with J slowly varying, this leads to new and
best possible estimates of the size of co(T'), shedding some new light on the
critical case o = 2.

Acknowledgements. The authors would like to acknowledge the sup-
port by the RiP program at Oberwolfach where this work originated. Fur-
thermore we are grateful to M. A. Lifshits for helpful remarks concerning
the organization of this paper.

2. Notations and their relations. Our first objective is to state the
convex hull problem in an analytic form. Given T' C H bounded, the Banach
space Iy (T') consists of summable functions on T', i.e. a = (at)ser belongs
to {1(T") provided that ||afly := 3 ,er|ou] < co. Note that then at most
countably many of the a;'s are different from zero. Sefting

up(a) = Z at, @ = (o)ieT,
teT

defines a bounded operator up from I (T') into H. Moreover, ur is compact
iff T is a precompact subset of H. For our purposes it is more convenient to

() Added in proof (March 2000). The above problem has been solved recently by
Fuchang Gao (Univ, of Idaho) as follows: If sup.~g e?H{T,e) < oo, then this implies
H{co(T),2) < ce 2 {log £~ 1)? and, moreover, for general sets T' C H this is best possible.
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work with aco(T') instead of co(T"). Here

aCO(T) = {iaktk : zﬂ: |O€k| <l, tpheT, ne N}
k=1 k=1

denotes the absolutely convex (symmetric convex) hull of T in H. Indeed,
because of

(2.1) aco({T) C {up(a) : [|alx < 1} C aco(T),

the metric entropy of aco(T') (which is of course greater than that of co(T)
is closely related to the sequence of entropy numbers of up and this allows
us to use basic properties of those numbers. More precisely, for each k € N
we define the kth entropy number of T C H by

(2.2) £4(T) = inf{e > 0: N(T,¢) < k}
and the kth (dyadic) entropy number by
ex(T) = egu-1{T).
In view of (2.1) it follows that
ex(aco(T)) = ex(ur) and N(aco(T), ) = N{ur(Biy(r)):€)

where e;(ur) i= ex(ur(Bym))) and B, (7) denotes the closed unit ball of
1.(T) (cf. [7] or [14] for further properties of entropy numbers of operators).

We shall need still another measure for the size of T'. If u is an arbitrary
operator between Banach spaces B and F, its kth Gelfand number cp{u) is
defined by

cx(u) == inf{||u|p| : M € E and codim(M) < k}.
For T ¢ H bounded, let ur be as above. Then we define the kth Gelfond
width of T' {more precisely of aco(T")) by
e (T) 1= e (ug).
Observe that this width has a geometric meaning. Namely, if T' is finite and
n is the dimension of H,, the space spanned by T, then it is not difficult to
see that
ex(T) = inf{diam(aco(T) N F) : F € Hy, dim(F) >n — k}.

So ¢ (T) measures the minimal diameter of m-dimensional, m > n—#, slices
of aco(T) and for arbitrary precompact T one may use

ex(T) = sup{ex(Tv) : To € T finite}.

The main properties of Gelfand numbers can be found in [14], Chapter b.
Finally, we relate !(T") defined in (1.3) to the l-norm of uY. Given an
operator v from a Hilbert space H into a Banach space E, its l-norm is
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defined by .
n
2.3) l(v) = su E1 (i H
( 0= 5] e,
where f1, fa,... is an orthonormal basis in H. Normally, this I-norm is de-

fined by second moments (cf. {14], p. 35), which by Fernique’s theorem
(cf. [13], Cor. 3.2, p. 59) is equivalent to (2.3). For T C Hlet up : [, (T) —» H
be as above. Then the dual operator u# maps H into l(T") (set of bounded
functions on T endowed with the sup-norm) and

ur(h) = (&, )ter
for h € H. It is easy to see that [(u}) = I{T).

‘We now state the basic relations between the quantities defined above.
The first result relates entropy numbers to Gelfand widths by the so-called
Car] inequality {cf. [3], Thm. 1). For later purposes we formulate a recently
proved more general statement (cf. Thm. 1.3 of [6]).

PrOPOSITION 2.1. Let by be an increasing sequence of positive numbers
such that

bor < Ybe, kEN,
for some v = 1. Then there is a constent x > 1 only depending on vy such
that for ol T C H and all n €N,
sup brer(aco(T)) < k sup brex(T).
1<k<n 1<k<n

The next result relates the Gelfand widths of a set T' to its I-width.
This is a reformulation of a basic result due to A. Pajor and N. Tomczak-
Jaegermann (cf. [14], Thm. 5.8} in the language of sets.

PROPOSITION 2.2. For T' C H we have

sup VE ex(T) < cl(T).
keN

3. Majorizing measures. For later purposes we need an inner, purely
geometric description of I(T) as well as of related quantities. In the case
of l-width this was done by X. Fernique and M. Talagrand (cf. [17]), yet it
does not suffice for our purposes. More precisely, we need quantities which
either measure the quality of sets T" with I{T’) < oo or quantify the “degree
of infinity” for I(T) = oo. To do so, we have to modify the basic ideas in
[18] slightly. -

Here and later on ¢ always denotes a fixed integer sufficiently large (¢ =
16 suffices). Given 1" C H precompact, a number 1 € Z is chosen as the
largest integer for which N (T,q™%) = 1; it will be fixed as long as T’ is
fixed. Let J C {4,424+ 1,. ..} C Z be a finite or infinite interval. Then A4 =
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{A;};es always denotes a sequence of finite partitions of T with the following
properties.
(i) A; = {T'} whenever i € J,
(ii) A;.41 always refines A; and
(iii) for each A € .A; we have diam(A4) < 2¢7.

A sequence w = (w;) ;e of weights is said to be adapted (to A} provided
that w; : A; — [0,1], w; =1 whenever { € J, and moreover, for each § € J,

Z Wy (A) < 1.
AcA;

In the classical case J = {i,i+1,...} we define a (possibly infinite) number

i . 1
Epw(T) = su “7 Mog —————
AnlD)i=sup 3, a4/ L)

where A;(t) is the unique set in A; with ¢ € A;(t).
Set
O(T) = inf{Oaw(T) s A= {A;}jzi; W= (Wy)s2i}-
The remarkable result about Gaussian processes can now be formulated as
follows (cf. [18]).

THEOREM 3.1. For any T C H,

(3.1) a@(T) < sup Esup X € CQQ(T).
Ssﬁgi‘t tes
qLiLe

In particular, we have I(T) < co iff O(T) < oa.

Let us give a first generalization of the above construction. Choose now

J = {i,i+1,..., N} for some N > i,i.e. we deal with sequences A = {Aj}j-\f__,-
of partitions of T and adapted weights w = (w; )3 . Then we put
al 1
e .(T) := sup g~ [log —rer
Awl) TZ;, wi (45 ()

and
or (T) = inf{@ﬁ,w(T) rA= {Aj};'\r:iv W= (wj):;'\;-i}s
where the N indicates that only sequences up to order N are used. The

main advantage of this quantity is that it is finite for any precompact T,
not only for sets with I(T) < oco.

The following generalization of (1.4) may be proved by similar methods
to those used in [12] for infinite sequences of partitions.
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PROPOSITION 3.1, For any T'C H and any N > i we have

BTN <o¥ () <e | VAT

g~ -

¢1 sup ¢7d
i<j<N-1

Next we need a guantity which measures the quality of a set T with
IT) < co. Let T C H and ¢ € Z be as before. Given M > 4, this time J is

{M+1,...},ie Aand w are of the form A = {A;};oar and w = (w;)j> 2.
Then we define

1
T)=smp > o Smona)

‘“M+1
and
AM(TY = inf{A%w(T) s A= {A;}ism, W= (wi)sar ke
Observe that AM(T) < oo for one (each) M > i iff [{T") < oo.

The next result may be regarded as a counterpart to (1.4) for AM(T)
and can be proved by exactly the same methods as in [12].

PRrROPOSITION 3.2. For any M > 1 and T C H we hove

T) <o g VE(T, &) de.

Using standard methods (cf. [12] or [18]) one can construct a probability
measure g on T for which

c1 sup g7 H(T, g 1) < AM

i>M

. q'"M

1
52 )\t amEs)

with some universal ¢ > 0. Indeed, if A = {A;};55 and W = (w;);5ar are
admissible partitions and weights with

M o(T) < 24M(T),

48 < cAM(T)

then for each 7 > M and each A € A; we choose points t“" ¢ A and define
a measure 2 on 7" by

= Y w3 wi(Ag

j=MA41 . AeAy

Normalizing Ji we get a probability measure y satisfying (3.2).
Combining (3.2) with Propos1t1on 5.2.6 in [10] we obtain the following
useful result.
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PROPOSITION 3.3. For any M > i we have

(3.3) sup B sup | X;— X,| <eAM(T).
SCT

C 1,865
S fimite|j1—s]|<q™M

REMARK. Other interesting properties of @ (T) and AM(T) will be the
subject of a separate paper (cf. [2]). For example, as in the classical case,
they are equivalent to some expressions defined by measures on T'. Moreover,
UT) < oo iff supy~; OV (T) < 0o, and there exist probabilistic descriptions
(similar to that of {3.1)) of the purely geometric quantities @V (T) and
AM(T.

4. Metric entropy of convex hulls. Let us first treat the case of sets
T C H with I{T) = oco. Recall that ¢ > 1 is the sufficiently large fixed
natural mumber used in the definition of &Y (T) and i € Z is the largest
integer with N (T,¢~%) = 1.

THEOREM 4.1. Let T be a precompact subset of H and suppose, for
simplicity, 0 € T. Then for k € N we have

(4.1) VEmax{ey(T), ex(aco(T))} < cfivn;fi{@N (T) + ¢~ ¥VE}.

Proof. Let us first prove the estimate for the Gelfand width. Fix N > ¢

and let A = {A4;}; and w = (w;);L; be sequences of partitions and

adapted weights. In each set A € A; we choose an element s4 and set
Ty = {SA 4 e .AJ,}

Next define s; : T' — Tj by s;{t) = sa;() Recall that 4; = {T'}, thus
by assumption we may choose T; = {0} and s;(¢t) = 0. If (X;)ier is the
isonormal Gaussian process defined in (1.2), then for ¢ € Ty one has

N
Xe= D ) — Xopaol.

F=i+L
A standard chaining argument (cf. [12], proof of Thm. 6.1) now implies
(4‘2} Z(TN) = Sl;-_‘p ‘th £ C@ﬁ'w(TN) < C@x,w(T)}
telN

thus by taking the infimum over all .4, w, from (4.2} we derive
(4.3) UTw) < cON(T).
Now we are in a position to apply Proposition 2.2 and cbtain

(4.4) VE ey (Ty) < @Y (1)
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for any & > 1. Next observe that diam(A4) < 2¢~" whenever 4 € Ay, hence
by the choice of Ty it constitutes a 2¢g~N-net of T, i.e.

(4.5) T C Ty +B(2g ")
(here and later on B(e) denotes the open e-ball centered at zero). Then (4.4)
implies
Vier(T) € VEeu(Tn) + 20 VE < cOY(T) + 24V VE
< (0N (T) + ¢ VVE),
completing the proof in this case,

Next we prove the corresponding estimate for the entropy numbers of
aco(T"). First observe that this does not follow from the estimate for cx(7")
via Proposition 2.1 because the right hand side of (4.1) depends on k. With
the same notation as in the first part of the proof, (4.5) implies

aco(T) C aco(Tw) + B{2g~"),
which easily gives
(4.6) ex(aco(T)} < ex(aco(Tw)) + 2¢~ 7.
Using (4.3), by (4.6) and Sudakov’s minorization theorem (Proposition 2.2
combined with Proposition 2.1 for by = vk) we finally obtain
VEeg{aco(T)) < cl(Tw) + 2vVEg™N < c(@N(T) + ¢~ VE),
which completes the proof.

REMARK. Since

oo
(4.7) e¥T) <se | VHTE de,
g—N-1
Theorem 4.1 implies Proposition 5.2 of [6] in the case of Gelfand widths. On
the other hand, in view of
ON(T)zc sup qIVHT ¢

iFEN-1
the improvement in Theorem 4.1 is subtle and important in some circum-
stances given in Section 5.

Next we treat the case of sets T C H with AM(T) — 0 as M — oo. We
shall see how the behavior of AM(T") — 0 provides information abowut the
size of aco(T).

THEOREM 4.2. Let T be a precompact subset of a Hilbert space H. Given
an integer M > 4, define N := N(T',q"™). Then for oll integers m 2 1 we
have

Vi Cmin (T) < cAM(T).
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Consequently, if k,m > 1, then

(4.8) VI e (T) < cAMEN(T)

where M (k) is the mazimal M > i for which ¢~™ > e, (T) with & (T)
defined in (2.2).

Proof Let Ty C T be an optimal g~ -net, i.e. card(Tas) = N(T, ¢~ M)
= N, and define a mapping s : 7' — Tr such that ||t — sps (8)]] < ¢~ for
allt € T If §pr C H is given by

Sur = {t - SM(t) e T},
then T C Sas 4+ T, hence by well known properties of Gelfand numbers
(cf. [14], p. 61)

emik—1(T} < em(Sar} + cx(Thr)
for all m,k > 1. For k= N + 1 = card(Tas) + 1 we have cx(Thr) = 0, thus
in view of Proposition 2.2,

(4.9) Vmemyn(T) € vVmem(Su) < el(Sar) = ¢ sup Esup | Xy — X, ).
S5CT  te§
8 finite

To estimate this further we choose an arbitrary finite subset 5 C 7T and
without losing generality we assume Ty C 8. Since

{(tsm(®):t € SYC{(t,s):t,5€ 8, |t—s] < q“M},
by Proposition 3.3 we obtain

Esup | X~ Xyl SE - sup  |X; - X < eAM(T).

t,8€
[[t=s<qg™™
This combined with (4.9) proves
VL eman(T) < cAM(T)
as asserted. Finally, (4.8) follows from
M(k) =sup{M > i: N(T,¢~™) <k}
and completes the proof.

. An application of Proposition 3.1 then implies the following (ef. Propo-
sition 5.3 in [6]).

COROLLARY 4.1. For oll k,m > 1 we have
E;G(T

)
Vmenin(T) <c | H({T¢)de.
. o]

A basic ingredient in the proof of Theorem 4.2 was that ¢ (Thy) =0
for k > card(Tas). This is no longer valid for the entropy numbers, so we
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cannot prove a similar estimate for these numbers by the same methods.
Fortunately, in most cases Proposition 2.1 applies and leads to the following.

THEOREM 4.3. Let §;, be o decreasing sequence of positive numbers such
that

(4.10) Bx < 4B for somey > 1.
If

(4.11) AMEN Y < B, for all k€N,
then

\/Eek(aco(T)) <chp, kel
Proof. If we combine assumption (4.11) with (4.8), then this implies
Vo (T) < cAMENT) < ¢y
Enlarging the constant ¢ > 0, by (4.10) this even yields
VEer(T) < cBs

for each k € N. An application of Proposition 2.1 with by = 8, 1/k com-
pletes the proof.

5. Convex hulls of sets with few vectors. Next we want to apply
the preceding results to sets 7' C H with T = {t1,t,...}, satisfying ||¢;]| <
aj, 3 =1,2,..., for some sequence (a;)j2, tending to zero monotonically.
One asks for good upper estimates of ex(co(T)) in terms of the a;'’s. If
a; = j7% for some a > 0 (fast decay case), the answer is known in a weak
form, namely, ex(co(T)) < ck=>~12 (cf. [1] or [9]). Here “weak” means
that we do not know of a general estimate of ex{co(T)) in terms of the
a;’s only, valid for any polynomial sequence (a;)52; (cf. [5] and [16] for
recent progress). We shall state and prove such an explicit formula which
is sharp for the slow decay case, i.e. if the a;’s tend to zero in logarithmic
order. In particular, we obtain optimal estimates in the critical case a; =
(log /)~1/2.J (log §) with .J slowly varying. For non-constant functions J this
could not be handled by previously known methods. Recall that for |jt;|| <
e{log 7)~1/2 one necessarily has I(T) < oo, thus by Sudakov’s minorization

ex(aco(T)) < ck™1/2
and this is known to be best possible. Qur results rest upon sharp estimates

for @ (T') and AM(T"). Before stating and proving them, let us first mention
that we may identify T = {t1,%3,...} with N endowed with the metric

d(n, mY? = fita — tml1® < 2([tal® + £ |?) < 2002 +aly).
For simplicity, let us always assume 1/2 < a; £ 1, so that the enumeration
of partitions starts at ¢ = 1. '
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For q > 1 fixed as before, we write o(k) := card{m € N : a;, > g7}

ProrosiTiON 5.1. If T is as above, then

(5.1) ON(T) < c(1+ sup g *+/logo(k)).
1<hS N

Proof. Define a sequence A = {A;}7, of partitions of N by

"4.7 = {{1}= . '7{J(j)}’Bj}

where B; = {o(j) +1,...}. Since diam(B;) < 2¢77, A satisfies the agsump-
tions on partitions made in Section 3. Now for 1 £ 7 £ N we define weights
w; by w;(By) = 1/2 and

wj{{m}) ==

1
ame BN/ 1< m < ald),
where
Ky =g sup q"k\/loga(k).
1<ESN
We have ZAeA,- w;(A) € 1 because

o{N) N

R T S

=1 gk <ascqH ot

¢ exp(logo (k) — ¢** sup ¢ Ylog a(1))
1<ISN

£
If

1

)=

¢ " < q/(g~1).

k=1
So by definition
N X 1
OV Ty <sup ¥ g —_—
meN Zl log w;(A;(m))
For m > o(N) we have
- 1
g’ < log 2,
;1 ey R

while for m < o (),

Z 7 \/ wj (A

m log .
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Note that for m < o(j) or, equivalently, g7 < am, we have

1 2q 1 Ky
10g—~—w§\/lo -——+\/1 —-I-——*
Y8 wi({m) Bg—1TV*® am

> g7 <,

g i<am

and

so that we finally obtain (recall that we assume aj < 1)
N 1
sup =7, {log ———— < {1+ Kn),
20 248 Gy < oK)
which proves {5.1) by definition of Ky.

REMARK. Observe that by Proposition 3.1,

sup ¢ P\ H(T,q %) < O (1)

1<k<N-1

for any precompact subset T ¢ H. Thus (5.1) is asymptotically optimal if
T is an orthogonal set with ||¢;]| = a;, which implies H(T,¢ %) = log (k).
Moreover, one should compare (5.1) with the weaker estimate

N
e¥(T) <ey g7iy/logo(d),
=1
which follows from (4.7).
Next we investigate AM(T) for T as above.

PROPOSITION 5.2. Let T be a subset of H as before. Then

(5.2) AM(T) < Cis;lz\% ¢ +/logol(l).

Proof, Define Apri1, Anrrie, ... as before, that is, A; = {{1},..-,
{o()}, Bj}. Now for § > M we construct weights w; by

1 for 1 < m < o(M),
wy({m)) = { )
J ‘ - 2/ al
Q'S 1 qMa E—CM/a'm for O’(M) <mz J(j)s
¢

w;(By) :==1/3,
where
: Cur = g sup ¢""/logo(l).
I>M
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We have 3 4c 4, w;j{A} <1 because

oo
R 2 gk
E a;e The/a5 = E E a;e Chala;

J?_U(M) k:Mq—kSaj<q._k+1
- h—2
2 2k

< Y aFHo(k)em O

=M

- k1 qZ M
< =kl 24
- k:zjq g—1 4

By the construction

P IOgm < eq™\/log o (M)

for 1 <m < o(M). If m > o(M), then
o0

o
2. T8 )

F=M+1
Z q- + q log
i \/ {m}) i %+1

< 1}log + 4/lo M )+cq M
“‘J<am
< -M 1
<elg™ A+ Cur o, loga o
m

< e(Cur + ¢~ M)

where we used a,, < g~*. This completes the proof by definition of Cyy.

ReEMARK. As above, by Proposition 3.2 estimate (5.2) is optimal for
orthogonal T' = {t1,ty, ...} with ||;]] = a,.

Now we are in a position to prove the announced concrete estimates for

the entropy of sets generated by a countable number of vectors in a Hilbert
gpace.

TueOREM 5.1. Let T = {t1,t3,...} C H and assume that ||t;|| < aj, 7=

1,2,..., for some sequence (a; Y21 of real numbers tending monotonically

to zero.
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1. If (log§)*/%a; is increasing, then
(5.3) max{e(T), ex(aco(T))} < cage.
2. If (log4)*/%a; is decreasing and

(5.4) a; Lyag;  for somey =1,
then
(5.5) max{c(T), ex(aco(T))} < ek~ ?(log k) *ax.

3.If fora>0and J R,
(5.6) ap =ag =1, a; =min{l, (log 7)~*(loglog§)?), =3,
then the estimates (5.3) and (5.5) are optimal.

Proof. We start with the proof of (5.3). Let

(5.7) by = (log )*/?aj,
which by assumption is increasing. For I € N, by definition of o(I) we have
(5.8) o1 < 0 < aggy = (log o (1)) ba (1),

which implies, by Proposition 5.1,
ON(T) <c sup ¢ '/logo(l} <c sup by = cho(my
1IN 1IN

< chyqvyar = cllog(o(N) + 1)) 2ap(nyar < cllog (V)2
Hence, in view of Theorem 4.1 it follows that
(5.9) VEer(T) < eg~ " [(log o (V)2 + V]
for all k, N € N. Now for given k € N we choose N such that
QMN——l S ok < q_N:
which implies o(N) < 2*. Combining these estimates with (5.9) shows (5.3)
for the Qelfand width. Of course, the same arguments also imply the corre-
sponding inequality for the entropy numbers of aco{T).
To verify (5.5), define, for k € N,

M(k) == max{M > 1:¢"™ > &(T)},

m(k) := max{M >1: ¢~ > az}.
Then M (k) > m{k) since ex(T") < aj. Hence, by Theorem 4.2 and Proposi-
tion 5.2,

(5.10) Vcar(T) < eAMENT) < ¢ s;;gk)q“lx/log o (1)
>
<c¢ sup g ty/loge(l).

t>m(k)
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Define the b;’s again by (5.7), but this time they are assumed to be decreas-
ing. From (5.10) we have

(5.11) Vhea(T) < e e Doty = Bo(m(k)) = CGo(miiny) (log o (m(k)))*/
>m

< g (mey)+1(log o (m (k)7
where we used (5.4) in the last line. By definition of o(m(k)) and of m(k)
we easily get

—m(k)—

(5.12) Ootmp)+1 <4 ™™ =g-q ' < gay.

On the other hand, agp1 < ax < ¢~™*), which implies o(m(k)) < k.
Summing up, estimates (5.11) and (5.12) combined with o(m(k)) < k yield

can(T) < k™2 (log k)Y 204,

This proves (5.5) for Gelfand widths by (5.4). The corresponding estimate
for entropy numbers is then a consequence of (5.4} and Proposition 2.1 or
Theorem 4.3, respectively.

To verify that (5.3) and (5.5) are optimal, define the a;’s by (5.6) and
choose t;’s in H orthogonal with {|t;{ = a;. Using the results of C. Schiitt [15]
and A. Garnaev and E. Gluskin [11] as in [6], we may estimate ei(aco(T))
as well as cg(7T) from below by

k~(log k)P, o< 1/2,

k=1 2(log k)~ (a1 2(loglog k)P, o > 1/2,

k~1/2(log k)P, a=1/2, >0,

k™1 /*(loglog k)?, a=1/2, <0,

ie. (5.3) and (5.5) cannot be improved for those a;’s. This completes the
proof of the theorem.

REMARK. The preceding theorem partially answers a question raised in
[1]. There the authors asked for a direct estimate of the entropy of co(T'),
T = {ty,ts,...}, |[t;]| € aj, by a function of the a;’s. Estimates (5.3) and
(5.5) are of this form. However, (5.5) does not lead to sharp estimates in
the fast decay case, i.e. for polynomial o;’s. Here (5.5) gives an extra square
root of a log-term and the results of [5] and [16] are better in this case.

Because of its importance, let us state a special case of Theorem 5.1
separately.

COROLLARY 5.1. Let T be as before and suppose a; = (log j)~/2J(log )
for some slowly varying function J. Then

k=127 (k) for J in ]
o (aco(T) < L € creasing,
k{aco(T)) < {ck—l/ZJ(log k) for J decreasing.
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