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Hypercyclic and chaotic weighted shifts

by
K.-G. GROSSE-ERDMANN (Hagen)

Abstract. Extending previous results of H. Salas we obtain a characterisation of
bypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit
vectors (en) form a Schauder basis. If the basis is unconditional we give a characterisation
of those hypercyclic weighted shifts that are even chaotic.

0. Introduction. A continuous linear operator T on a topological vector
space X is called hypercyclic if there is an element z in X whose orbit
{T"z : n € Ng} under T is dense in X. The vector z is then also called
hypercyclic.

The best known, and historically earliest, examples of hypercyclic oper-
ators are due to G. D. Birkhoff [7], G. R. MacLane [24] and S. Rolewicz [29].
Each of these papers had a profound influence on the literature on hyper-
cyclicity. Birkhofl’s result on the hypercyclicity of the operator of translation
on the space H(C) of entire functions has led to an extensive study of hyper-
cyclic composition cperators {cf. [14, Section 4a]), while MacLane’s result on
the hypercyclicity of the differentiation operator Df = f' on H(C) initiated
the study of hypercyclic (partial) differential operators (cf. [14, Section 4c]).

On the other hand, the operator D can also be regarded as a particular
weighted backward shift operator since we have

Den =nep-1  (n € No),

where (en)nen, denotes the canonical basis in H(C) given by en(z) = 2",
and where e_; = 0. Shift operators in a Banach space setting were first
studied by Rolewicz who showed that for any ¢ > 1 the multiple cB of the
backward shift B on the sequence spaces I?, 1 < p < oc, or ¢p Is hypercyclic.
Since then the hypercyclicity of shift operators has been studied by several
authors (cf. [19], [10], [2], [31], [11], [3], [26], (32}, [15], [22] and [6], see
also [14, Section 5)). Shift operators are of interest because many classical
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48 K.-G. Grosse-Erdmann

operators can be viewed as such operators and also because they have been
“a favorite testing ground for operator-theorists” [32, p. 994].

In the same recent paper [32] H. Salas has extended Rolewicz’ result
by completely characterising the hypercyclic weighted shifts on /2. He notes
that his proof alsc works in any of the sequence spaces I?, 1 < p < oo.
A simplified proof of the sufficiency of Salas’ conditions was given by Ledn
and Montes [22]. In the present paper we show that Salas’ result is capable
of a far-reaching generalisation. Among other results we shall obtain the
following characterisations that also contain MacLane’s theorem as a special
case. The notation and terminology will be explained below.

THEOREM 1. Let X be an F-sequence space in which the canonical unit
vectors e, {n € N) form a basis. Let T : X — X be a unilateral weighted
backward shift with weight sequence (an)nen. Then T is hypercyclic if and
only if there is an increasing sequence (ny) of positive integers such that

(ﬁ a,,) _lenk -0 X
r=1
as k — oo.

We add that unilateral weighted forward shifts can never be hypercyclic
(see Proposition 1 below).

COROLLARY. Let T : H(C) — H(C} be a weighted backward shift with
weight sequence (Gn)new, - Then T is hypercyclic if and only if there is an
increasing sequence (ng) of positive integers such that
b 1/nk

<32
p=0

—r 0O

as k — ooc.

THEOREM 2. Let X be ¢ bilateral F-sequence space in which the canonical
unit vectors ey, (n € Z} form o basis (in some ordering). Let T : X — X
be o bilateral weighted backward shift with weight sequence (an)nez. Then T
is hypercyclic if end only if there is an increasing sequence (ng) of positive
integers such that, for every § € Z,

nk -1 nk—l
(H aj+,,) €j1n, =0 and ( H a,ju,,)ej_nk -0 inX
w=1 v=(}

as k — 00.

_ For bilateral shifts the distinction between forward and backward shifts
is immaterial and reduces to a question of notation. Thus, Theorem 2 also
immediately gives a characterisation of hypercyclic bilateral forward shifts.
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The two theorems are obtained in Section 4 as consequences of our main
result, derived in Sections 2 and 3, which characterises the hypercyclicity of
the so-called pseudo-shift operators. In Section 5 we obtain a characterisa-
tion of those hypercyclic weighted shifts that are even chaotic. Here we have
to assume that (e, ) is an unconditional basis.

Special cases of our results in Sections 4 and 5 were obtained indepen-
dently and with different proofs by Martinez and Peris [25]. In another
recent paper [20], deLaubenfels and Emamirad have studied when functions
f(B) of the (unweighted) backward shift operator B are chaotic on weighted
[P-gpaces.

1. Preliminaries

la. F-spaces. It had been our original intention to generalise Salas’ re-
sults to Fréchet sequence spaces. An imspection of the proofs, however,
showed that local convexity was nowhere required, which allowed us to work
in F-spaces, that is, in completely metrisable topological vector spaces. In
this way we can also include interesting spaces like the sequence spaces I for
0 < p < 1 in our study. For the theory of F-spaces we refer to [17] and [30].

It will be convenient to assume that the topology of an F-space is induced
by an F-norm, which is always possible (cf. [17, pp. 2-5]). Recall that a
mapping X — R, ¢ — |jz!|, on a vector space X is called an F-norm if the
following conditions are satisfied for z,y € X and ¢ € K, where K =R or C:

lzl >0 ifz#0,
lexl| < [fzf} forlef <1,

tm ez =0,
o+ 1 < ol + 11

In a Banach space the norm provides us with an F-norm, in a. Fréchet space
one can take the Fréchet combination [|z]| = 35, (1/2")pa(z) /(1 + pu(2)) of
an increasing sequence (p,) of seminorms that defines the topology of the
space.

1b. Sequence spaces. In this paper we shall work in the setting of se-
quence spaces because they are the natural domains of shift operators. We
need to emphasise, however, that our results are not limited to sequence
spaces, as already exemplified by the differentiation operator on the fu.nc-
tion space H(C). Throughout this paper we shall identify H{C) and similar
spaces of holomorphic functions in a canonical way with a sequence space
by identifying each function f with the sequence (en)nen, of its Taylor co-
efficients at 0. In this interpretation the operator of differentiation becomes
a weighted shift operator.
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A sequence space is a (linear) subspace of the space w = w(N) = K¥ of
all scalar sequences. Apart from these unilateral sequence spaces we shall
also consider bilateral sequence spaces, that is, subspaces of w{Z) = KZ.
It turns out to be convenient—though, strictly speaking, not necessary—to
allow arbitrary countably infinite sets [ as index sets. Then a sequence spuce
over I is a subspace of the space w(I) = K! of all scalar families (2;):e;.
The space «w(I) is endowed with its natural product topology. By e; (i € I)
we denote the canonical unit vectors e; = {8 )rer

A topological sequence space X over I (also called a K-space owver I
{cf. [36])) is a sequence space over I that is endowed with a linear topol-
ogy in such a way that the inclusion mapping X — w(I) is continuous
or, equivalently, that every coordinate functional f; : X — K, (@p)ger —

x; (¢ € I), is continuous. A Banach (Fréchet, F-, ...) sequence space over
I is a topological sequence space over I that is a Banach (Fréchet, F-, ...)
space.

The family (e;)ies of unit vectors is called an M-basis (or Markushevich
basis) in a topological sequence space X over I if span{e; : i € I} is a dense
subspace of X (cf. [34]). We shall call (e;};cr an OP-basis (or Qusepian-
Petczyiski basis) if it is an M-basis and if the family of coordinate projections
z — zie; (1 € I) on X is equicontinuous. This terminology was suggested
by & well known theorem of Ovsepian and Pelczyriski [27, Theorem 1] (cf.
[23, 1.1.4]), which can be stated equivalently as saying that every separable
Banach space is isomorphic to a Banach sequence space in which {en)nen
is an OP-basis (note that in a Banach sequence space over I the family of
coordinate projections is equicontinuous if and only if sup,c; ||e:]| || £]] < o0).

Now suppose that X is an F-sequence space. Then, clearly, if (en)nen is a
basis in X it is also an OP-basis, and the converse is true under the stronger
assumption that the sequence of partial sum operators @ — E;:zl Trep
(n € N} is equicontinuous (cf. [33, Chapter I, Theorem 4.1] or [36, 10.3.19])
We give a standard example to show that not every OP-basis is a basis.

EXAMPLE. Let Car be the Banach space of continuous 2m-periodic func-
tions, endowed with the supremum norm. Writing e, (t) = e™ (n € Z) we
can regard this space as a bilateral Banach sequence space when we iden-
tify a function f € Cy, with its sequence (cp)nez of Fourier coefficients. Tt
follows from Fejér’s theorem that (én)nez is an M-basis in Ch,, and since
lenen |l = len]l < |if]| for all n we see that it is also an OP-basis. On the
other hand, it is well known not to be a basis.

Other interesting examples of spaces in which (en) is an OP-basis without
being a basis are the Hardy space H' and the disc algebra A, both considered
in the canonical way as sequence spaces (cf. [9] and [23, p. 37]). We add that
in the Hardy spaces H? with 0 < p < 1 the sequence (en) is an M-basis but
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not an OP-basis ([17, p. 35] and [9, Theorem 6.4]), while for 1 < p < oo the
en even form a basis in HP (cf. [35, (12.88)]).

Le. Shift operators. We turn to the definition of shift and pseudo-shift
operators. Let X be a bilateral topological sequence space. Then a continu-
ous linear operator T on X is called a bilateral weighted backward or forward
shift if for some sequence (G, )nez of non-zero scalars we have

T(zn)nez = (@n+1Zn+1)nez
or
T(m'ﬂ)nez = (a‘n~lmn—~l)nEZ:
respectively. The sequence (an)nez is called the weight sequence.
The unilateral weighted bockward and forward shifts are defined analo-
gously on topological sequence spaces (over N), where we set ap = g = 0.

In Sections 2 and 3 we shall in fact study more general kinds of operators
that were suggested by Bernal’s notion of a Taylor shift (cf. [4])-

DErFmITION. Let X and Y be topological sequence spaces over I and J,
respectively. Then a continuous linear operator 7' : X — Y is called a
weighted pseudo-shift if there is a sequence (b;);es of non-zero scalars and
an injective mapping ¢ : J — I such that '

T(z:)ier = (bjzp))ies

for (m;) € X. We then write T = T}, and (b;)jes is called the weight
sequence.

We note that if X and ¥ are F-sequence spaces then, by a sta,ndar.d
argument using the closed graph theorem, the continuity of T'is automatic
once it is known that T maps each sequence from X into ¥ (cf. also [36,

42.8)).

REMARKS. (1) Every unilateral or bilateral weighted backward shift is a
weighted pseudo-shift with by, = an4y and p(n) = n+1, and every hilateral
weighted forward shift is a weighted pseudo-shift with by, = an—1 and p(n) =
71— 1. In contrast, unilateral weighted forward shifts are never pseudo-shifts
due to their definition in the first component. Also, Bernal’s Taylor shifts
are particular weighted psendo-shifts (cf. (4, 3.1 and 3.2]). .

(2) If X =Y then the identity operator on X defines a pseudo-shift,
albeit not a very interesting one.

(3) The term “pseudo-shift” was suggested by one of the re.ferees, who
also pointed out that if we regard X and Y as spaces of functions on the
sets I and J, respectively, then in the language of function space theory
weighted pseudo-shifts are the same as weighted composition operators.
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In order to describe the action of a pseudo-shift on the sequences e;
(2 € I) we need to consider the inverse

Y=t ip(d) = J

of the mapping . In addition we set
b¢(i) =0 and Eyp(i) = 0 ifie I\(,D(J),

that is, if 1(¢) is “undefined”. With these definitions we have, for all i € I,

Thpei = byi)ep(i):

1d. Universality. We recall ([12]) that a sequence (Th)nen, of continu-

ous mappings T, : X — Y between topological spaces X and Y is called
untversal if there is an element 2 in X such that the set {T,z : n € Ny}
is dense in Y. The element x is then called universal for (T3,). Clearly, an
operator T': X' — X is hypercyclic if and only if the sequence (T™)nen, is
universal.

We refer to [14] for a comprehensive survey of universality and hyper-
cyclicity.

2. Universal sequences of weighted pseudo-shifts. In this section
we want to characterise the universality of sequences of weighted pseudo-
shifts. The following definition will turn out to be important. We have bor-
rowed the terminology from Bernal and Montes [5] who show that a related
concept for antomorphisms of domains in € is crucial for the universality of

sequences of composition operators on spaces of holomorphic functions (cf.
[5, Theorems 3.1 and 3.6]).

DEFINITION. A sequence (¢n)nen, of mappings ¢, : J — I is called a
run-awaey sequence if for each pair of finite subsets Iy © I and Jy C J there
exists an np € Ny such that, for every n > ng, en{Jo) NIy =0,

With this we can now state the basic result of this paper; note the
definition of 1, as inverses of ¢,, (cf. Section Ic).

THEOREM 3. Let X and Y be F-sequence spaces over I and J , respec-
tively, in which (e;)icr and (e;)jes are OP-bases. Let Tn=Th, pn : X—Y
(n € Ny} be weighted pseudo-shifts with weights b, = (bn,j)ics- If (on) 45 a
run-away sequence, then the following assertions are equivalent:

(i) the sequence (Ty,) has a dense set of universal elements;

(ii) there exists an increasing sequence (ni) of positive integers such that
(U1)
(U2)

as k — o0.

b;,cl,_.,-e%k(j) =0 in X, forevery j € J,
bn,“%k(i]e%k(i) —+0 Y, foreveryi eI,
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If one of these conditions holds then the set of universal elements is a
dense Gg-subset of X, hence residual in X,

Proof. For the proof of sufficiency we rely on a generalisation of the
Hypercyclicity Criterion of Kitai, Gethner and Shapiro: A sequence (17,)
of continuous linear operators T,, : X — Y between an F-space X and a
separable metrisable topological vector space Y has a dense Gj-set of uni-
versal elements if we can find dense subsets X3 of X and ¥ of ¥, mappings
S, : Yy = X (n € Ny) and a sequence (ni) such that (T,) and (Sn,)
converge pointwise to 0 on Xy and Yp, respectively, and T, .5, is the identity
on Yy for all n € Ny (see [13], [11, Corcllary 1.4] and [14, Theorem 2]).
In our case we set Xg = span{e; : ¢ € I} and Yy = span{e; : § € J},
which are dense sets since (¢;);er and (e;);es are M-bases, and we define
linear mappings S, : Yy — X by Spe; = b;;;.e%(j) (ne Np, j €J). Since
T.e; = bn,¢n(i)e1‘gn(i) and TnSnej gy formne Ng,i€ T and § € J, we
see that, under condition (i), (T%,) has a dense Gs-set of universal elements,
and hence condition (i) holds.

‘We turn to the converse implication and assume that (i) holds. It suffices
to show that for every pair of finite subsets Iy of I and Jop of J, for every
e > 0 and every N € N there exists an n > N such that

(U1) 6560l <2 in X, for j € Jo,
(U2’) ||bn’1pn(i)8¢n(.,;)” <e inY,forie Iy,
where || - || denotes the F-norm in X and Y, respectively. To see this we fix
enumerations (i) and (j) of I and J, respectively, and set Ir = {41,..., %k}
and Jy = {j1,.-.,Jkx} We then define inductively an increasing sequence

{ni) of positive integers by letting nz be a number n satisfying (U1") and
(U2 for Iy = I, Jo = Ji, € = 1/k and N = ny;, where we set ng = 0.
Tt is clear that the sequence (ny) satisfies (U1) and (U2}, so that condition
(ii) holds. ‘ ‘

We therefore have to prove (U1’) and (U2') under the assumption of (i).
Let € > 0, finite subsets Iy C I, Jo C J, and N € N be given. By the
equicontinuity of the coordinate projections in X and ¥ there is some 6>0
30 that we have, forz € X andy €Y,

(2.1) lziesll < /2 foriel, if ||zl <4
and .
(2.2) lysesll <e/2 forjeJ, if [l <4

Since by (i) the universal elements of (T,) are dense in X there exist z € X
and n & Ny, n > N, with
(2.3) Hm—Zei <§ and ‘Tnm— Zej” < 4.

i€l jedo
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By continuous inclusion of X and ¥ into w(I) and w(J) we can in addition
achieve

(2.4) sup |z; — 1| < 1/2 and sup |y; — 1] £ 1/2,
igly j€Jo

where y 1= Tp,z. Since (i) is a run-away sequence we can moreover have
(2.5) wn{do) NI = D.
By (2.1), the first inequality in {2.3) implies that

lmies]l < e/2  if i & Iy,
hence by (2.5),

(2.6) |2 () o |l < €/2  forj € Jo.
By the second inequality in (2.4} we have, for j € Jy,

br.i%e, ) — 1 < 1/2,
hence z,, ;) # 0 and

2.7) !

bu,i%en(s)
Now, (2.8) and (2.7} imply that, for § € J,

—1’<1.

bl N = , .
[bn i€ H b g iy P ) Cenl)

< 12pntiyentil + H (

< 2lzgniyeen il <&
where we have used properties of F-norms. Hence condition {U1’) holds.
As for (U2'), we deduce from {2.5) and the definition of the ¢, that

(2.8) (Lo Npn(J)) N Jg = 0.
By (2.2), the second inequality in (2.3} implies that
lon.s 2o, yesll < £/2 if 5 & Jo,

oY)
=1 ), ti\Eu. (4
bn,jmlpn(j) wn(§)Cen ()

hence by (2.8),

(2.9) an,wn(i)wie%m H < 8/2 for i € Ip;
note that ey, () = 0if ¢ & w,(J). By the first inequality in (2.4) we have
(2.10) le;| > 1/2  for i€ I,

in particular x; # 0. Now, (2.9) and (2.10) imply that

1Bn g (iyenn@ |l =

1 _
9, on s %1€ ) || < [ 2bn,n (i Bieun || < £

for all ¢ € Iy, where we have again used pro i :
, perties of F-norms. Hence al
(U2') holds. = S
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REMARKS. (1) The condition that (¢,) be a run-away sequence is clearly
not necessary for universality. It is not difficult to construct a sequence (T7,)
of weighted pseudo-shifts with a dense set of universal elements even for the
mappings @, = idy, the identity on I. However, in the next section we shali
see that in the case of greatest interest to us, namely when the T,, arise as
iterates of a weighted pseudo-shift, the run-away condition is indeed also
necessary (cf. Theorem 5 and its proof).

(2} We note for possible future applications that our assumptions on
the canonical unit vectors can be relaxed. As the proof shows, for the im-
plication (ii}=(i) it suffices that (¢;)icr and (e;);ecs are M-bases in X and
Y, respectively, while for the implication (i)=>(ii) we need only assume the
equicontinuity of the coordinate projections in X and Y. A similar remark
applies to Theorems 5, 6 and 7 below.

In many situations, each i & I lies outside ¢, (J) for all sufficiently large
n, which implies in particular that the sequence (i, ) is run-away. This is so,
for instance, if the T, are iterates of a unilateral weighted backward shift.
In this case the statement of Theorem 3 can be simplified and strengthened.
By the additional assumption we see that

(2.11) Tnei = bnyn () =0 Y

for every i € I because ey, (;y is eventually O by the definition of 4, (cf. Sec-
tion 1lc). This shows that condition (U2) is automatically satisfied, which
allows one to modify the proof in that equation (2.2) is no longer needed
(it was only needed to obtain (U2), hence (U2)). As a consequence, the
assumptions of completeness and the equicontinuity of the coordinate pro-
jections for the space ¥ can be dropped. In addition, (2.11) and the fact that
(e;)ies is an M-basis in X imply that (T,) converges pointwise on & dense
subset of X and hence, by Satz 1.4.2 of [12], that a single universal element
suffices to make the set of universal elements residual in X. We therefore
have the following result.

THEOREM 4. Let X be an F-sequence space over I in which (&:)icr is an
OP-basis, and let ¥ be o metrisable sequence space over J in which (ej)jed
is an M-basis. Let T =Th, o : X — Y (n € Ng) be weighted pseudo-shifts
with weights by, = (bnj)jes so that each i € I lies outside wp{J) for all
sufficiently large n. Then the following assertions are equivalent:

(i) the sequence (Th) has a universal element;

(ii) there ezists an increasing sequence {nx) of positive integers such that

(U1) pt o, () 0 in X, for every j € J,

NioJ

as k -+ 00,
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If one of these conditions holds then the set of universal elements is o
dense Gs-subset of X, hence residual in X.

REMARK. We shall see in the Example after Theorem 7 that it does not
suffice if condition (U1) is only satisfied for one element j € J.

We consider the special situation where X =Y = H(Dg), the space of
holomorphic functions on D = {z € C: {2| < R}, 0 < R < oc, endowed,
as usual, with the topology induced by the seminorms p.{f) = sup{|f(z)|:
[z < r}, 0 < r < R. In the canonical way, H(IDg) becomes a Fréchet
sequence space over Ny in which (en)nen, is a basis. We then obtain the
following as an application of Theorem 4.

COROLLARY. Let T, = Ty, : H(Dg) — H{Dgr) (0 < R < o0) be
weighted pseudo-shifts with weights b, = (bn,;)jen, 50 that minjen, ©n(j)
— o0 as n — 0. Then the following assertions are eguivalent:

(1) the sequence (T},) has a universal element;
(ii) there exists an increasing sequence (ny) of positive integers such that

tim inf b, ;|00 > R for all j € Np.

If one of these conditions holds then the set of universal elements is a dense
Gg-subset of H(Dg), hence residual in H(Dg).

'This corollary covers the Taylor shifts considered by Bernal [4] and thus
contains his Theorem 4.2 and improves on it. In addition, it implies Corol-
lary 1 and part of Theorem 4 of [3]. We also remark that Propositions 3.1
and 3.4 of Bés and Peris [6] follow from Theorems 4 and 3, respectively.

3. Hypercyclic weighted pseudo-shifts. Let 7 =T}, : X — X bea
weighted pseudo-shift. In this section we characterise the universality of the
sequence (T5,) of iterates Ty, = T™ of T, that is, the hypercyclicity of T'. We
ﬁrs’;}l note that each T™ (n € Np) is a weighted pseudo-shift. More precisely,
we have

T™(@i)icr = (bn,iZo, )il
with
pnli) i= 9" (i) = (po...0Q)3) (n-fold),
n—1
b = Biby(iy -« Bymrsy = [ byia)-
=0

For the meaning of 1 we refer to Section lc, where we now add that by (3)
=0 and eyn(;; = 0 whenever ¢™(3) is undefined.
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THEOREM 5. Let X be an F-sequence space over I in which (e;)icr is
an OP-basis. Let T =Ty, : X — X be o weighted pseudo-shift. Then the
following assertions are equivalent:

(1) T" is hypercyclic;

(il) («) the mapping ¢ : I — I has no periodic points;

(8) there exists an increasing sequence (ny) of positive integers such
that, for everyie I,

Nnp-1

(H1) ( II bwv(i>)M16«o“k ORadY
V=0nk

(H2) (H bwvm)e«mm —~0
p=1

in X, as k — oo.

Proof. First assume that ¢ has a periodic point, that is, ¢™ (i) = i for
gome i € I and N &€ N, Since the entry of T™z at position 7 is

n—1
(H ﬁu)ﬁn with B, = by () and &y = Tyn(s),
w==0
and since both (8,), and (£,)n are periodic sequences we see that for no
in X can these entries form a dense set in K as n varies. Since X contains e;
and is continuously included in K’ this shows that {T"z : n € Np} cannot
be dense in X for any element 7, hence that T is not hypercyclic.
On the other hand, if o has no periodic points then for every finite subset
Ip of I and any ¢ € I there is an ng € N with @™ (1) & Iy for n > ng. This
shows that (™) is a run-away sequence. Thus we can apply Theorem 3
to obtain the present theorem; note that every hypercyclic operator has a
dense set of hypercyclic vectors because, obviously, any vector in the orbit
of a hypercyclic vector is again hypercyclic. =

REMARKS. (1) The proofs of Theorems 3 and 5 show that in the situation
of Theorem 5 every hypercyclic weighted pseudo-shift satisfies the Hyper-
cyclicity Criterion in the weak form given in [21, pp. 526-527] or in [6] (c_f.
also [14]). It is an open problem (cf. [22, Section 6], [6]) if every hypercyclic
operator satisfies this criterion. ‘

(2) Condition (H2) is always satisfied if Ne2, ™) = 8, for example if T
is a unilateral weighted backward shift; see our discussion before Theorem 4.

4. Hypercyclic weighted shifts. We turn to the study of -hypercyclic
weighted (backward or forward) shifts. In particular, we shall give here the
proofs of the results that we gtated in the Introduction.
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We begin with the case of bilateral weighted backward shifts. As we have
already mentioned in Section lc, these are weighted pseudo-shifts 73, on
bilateral sequence spaces X with ¢(n) = n+ 1 and b, = ayy; for n € Z

Following Salas [32] we shall consider more generally the direct sum
T= @ﬁ;l T, of m such operators on the space X™. We recall that while the
hypercyclicity of each T}, is necessary for the hypercyclicity of the direct sum,
it is not a sufficient condition (cf. [31, Remark 2(a)]). The hypercyclicity of

D=1 Ty is of interest because it says that there is an m-tuple (z1,. .., 2Zm)
of vectors in X such that the vectors (T72q,...,Tm2m), n € Ny, get arbi-
trarily close to any preassigned m-tuple (y1,...,¥m), that is, these vectors

approximate every given “configuration” in X™, with a uniform exponent n.

THEOREM 6. Let X be a hilateral F-sequence space in which (en)nez 18
an OP-basis. Let T, : X — X, p=1,...,m, be bilateral weighted backward
shifts with weight sequences (0p n)ncz. Then the direct sum operator T =
@E;l T, is hypercyclic on X™ if and only if there is an increasing sequence
(nx} of positive integers such that, for every § €7 and 1 < u < m,

g —1

ik
-1
(H aﬂ,j+y) €itm, —+ 0 ond (H a”,j__,,)ej_nk —0 inX
=1 r=0
as k — 00.

Proof In order to be able to apply Theorem 5 we show that T =
@:f:l Ty is a particular weighted pseudo-shift. First, identifying the m-tuple
({&1,n)neZs - - - s (Tmm)nez) of sequences with the family (z,,n)1<u<m, nez We
see that we can regard X™ as a sequence space over {1,...,m} x Z. In this
interpretation, T = EB:;I T, is the operator given by

T(@pn)i<pgmnez = (Tu(@unnez)1sugm = (Gpnt1Zp011)1<pgm, nez.
Hence T is a weighted pseudo-shift T}, with

bun = @unt1 and  @(p,n) = (4,n+1)
for (gr,n) € {1,...,m} x Z. We then have

o (pym) = (ym+v) and ¥{(u,n) = (u,n—v).

Now the theorem follows from Theorem 5 when we note that with X also

X™ is an F-sequence space in which the canonical unit vectors form an
OP-basis. =

REMARKS. (1) Taking m = 1 we obtain Theorem 2 as a special cage.
Of course, the assumption there that (e,) is a basis can be replaced by the
weaker assumption that it is an QP-basis.

(2) The characterising condition for the bilateral weighted forward shifts
follows similarly, or it can be deduced from that for the backward shift after
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realising that a forward shift for (e,) is a backward shift for (e_,). The
condition turns out to be the following: There exists an increasing sequence
{ny) of positive integers such that, for every j € Z and 1 < p < m,

Tk -1 ng—1
(H a#,j_,,) €j—n, — 0 and (
v=1

—
H a#,j+,,) ejpn, 0 in X

v=0

as k — oo. This contains and generalises Theorems 2.1 and 2.5 of Salas [32].
In particular, we see that Salas’ results remain true verbatim for all spaces
P, 0 < p < 0o, and for the Hardy spaces H?, 1 < p < oo; see our discussion
at the end of Section 1b.

We next consider unilateral weighted backward shifts. They are weighted
pseudo-shifts T, on sequence spaces (over N} with ¢(n) := n + 1 and
by = ap1; for n € N. We shall see that for unilateral shifts the characterising
conditions simplify considerably, which is a consequence of the following.

LeEMMA. Let M be a metric space and v, (n € N) and v elements in M.
If there is an increasing sequence (ng) of positive integers such that

Upp—j — UGS k — 00, for every j €N,
then there exists an increasing sequence (n}) of positive integers such that
Ul 4j =V as k — oo, for every j €N

Proof. It follows from the assumption that for every & € N there is some
N € N with d{uy_j,v) < 1/k for j =0,..., k, where d is the metric in X.
If we define n}, = N — k then, for every j € N, we have d(vnr 45,0} < 1/E i
k > j. This implies the result when we pass to an increasing subsequence of
{ny), if necessary. m

THEOREM 7. Let X be an F-sequence space i which (€n)nen is an OP-
bagis. Let Ty, : X — X, p=1,...,m, be unilateral weighted backwar«%ﬁ shifts
with weight sequences (a, n)nexn. Then the direct sum operator T = ST
is hypercyclic on X™ if and only if there is an inereasing sequence ng) of
positive integers such that, for 1 < p <m,

I 1
(4.1) (II Guw) em =0 X

v=1
as k - 0o,

Proof. As in the proof of Theorem 6 we regard X™ as an E—sequence
space over {1,...,m} x N and identify T as a weighted pseudo-shift T3, on
X™ with b, n = Gun1 and ¢(p,n) = (pg,n+1) for_ (p,m) € {13 o .m}x N
By an application of Theorem 5 we deduce that T is hypercyclic if and only



60 K.-G. Grosse-Erdmann

if there is an increasing sequence (n},) of positive integers such that

n, »
(H a#,_ﬂ_,,) éjtn, >0 ImX forl<p<mandjeN,
v=1

as & — oo, which is the same as

J-+ny, 1
42) (I aus) ejem, —0 X frl<p<mandjeN

rr==]
note that by Remark (2) to Theorem 5 condition (H2) always holds in our
present situation. This condition, which is clearly stronger than the one
given in the theorem, is in fact equivalent to it. To see this, assume that
there is some (nz) such that (4.1) holds. We then consider the elements

n -1 Lt -1
Un = ((H al,y) Enyeeny (H am,y) en), n € N,
v=1 v=1

in X™. By (4.1) we have v,, — 0 in X™. It follows from the definition of
the operator T that T™uv,, = v,_;, and hence, since 7" is continuous, that we
also have v, _; — 0 in X™ for every 5 € N. We can now apply the lemma
to the sequence (v,) and obtain a sequence (n}) such that Ups 15~ 0 in
X™ for every j € N, which implies (4.2). This had to be shown. =

REMARKS. (1) Theorem 1 follows from Theorem 7 as the special case
m = 1; cf. also Remark (1) to Theorem 6.

(2) The theorem contains and generalises Theorem 2.8 of Salas [32].
Again it also shows that Salas’ result remains true verbatim for all spaces
?, 0 < p < oo, and the Hardy spaces HP, 1 <p< oo

Theorem 7 is remarkable in that considerably fewer conditions than in
the previous theorems ensure universality. In fact, in the case of one operator
T we have just one condition instead of countably many. We give an example

to show that even for operators that are slightly more general than the ones
considered in Theorem 7 the reduction is not possible.

EXAMPLE. Let T : w — w be the unilatera) weighted backward shift
with weight sequence (an) = (1,1,2,3,3,3,4,4,... ), where w = w(N) is the
space of all sequences, and define 7, : I* — w by T}, = T"|;1 (n € Ng). Then
the 17, are weighted pseudo-shifts that satisfy the assumptions of Theorem 4
and also condition (U1) in Theorem 4 for j = 1 {corresponding to condition
(4.1)). But (T,) does not have a universal element because one cannot find a

sequence (n) such that (U1) is satisfied for J=1and j = 2 simultaneously.

Salas [32, Remark after Corollary 2.6] has shown that no unilateral
weighted forward shift on 12 can be hypercyclic. This result, in fact, holds
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in much greater generality. We emphasise that unilateral forward shifts are
never pseudo-shifts.

ProPOSITION 1. No uniloteral weighted forward shift on any topological
sequence space X # {0} can be hypercyclic.

Proof. Since X s {0} some coordinate functional f; : X = K (j e N)
is surjective. Now, if € X were a hypercyclic vector then the finite set
{f;(T"™z) : n € No} would be dense in K, which is impossible. =

REMARK. The corollary to Theorem 1 follows immediately from Theo-
rem 1 if one recalls that the topology of H(C) is induced by the seminorms
pe(f) = sup{|f(z)| : |z] £ r}, 0 < r < co. This corollary contains some
known results as special cases. For a, = n {(n > 1) we recover MacLa.nejs
theorem. More generally, a weighted backward shift on H(C) is hypercyclic
whenever a,, — oo. This was first obtained by Mathew [26]; his second con-
dition, sup,, |ax| 1/n < 50, is simply the characterising condition for T to map
H(C) into itself, as is easily seen. On the other hand, no constant sequence
defines a hypercyclic backward shift, as was already observed by Godefroy
and Shapiro {11, 5.4].

5. Chaotic weighted shifts. Godefroy and Shapiro [11, Section 6} have
introduced the study of chaos to the theory of hypercyclicity. According to
a definition proposed by Devaney [8] a continuous mapping f : M — M on
a metric space M is called chaotic if

(i) it is topologically transitive, that is, if for any pair U, V of non-empty

open sets in M there is some n € N with f*(T) NV # o, '

(ii) it has a dense set of periodic points, that is, points z for which there
is some n € N with f*(z) =, and o

(iii) it has a certain property called sensitive dependence on initial con-
ditions. |

Banks et ol. [1] have shown that sensitive dependence on initial cond%-
tions is a consequence of the other two conditions (.cf.. ?,lso_ (11, Proposi-
tion 6.1]), and it is well known that topological tral?sfcwray is the same as
the existence of a dense orbit if the underlying space is a separable complete
metric space without isolated points (cf. [14, Sections _Iz?, a,'nd 1b]). TI;U.S, ag
operator on a separable F-space is chaotic if and only if it is hypercyclic an
it has a dense set of periodic points. : -

Godefroy and Shapiro [11, Theorem 6.3] have identi’.ﬁed the ghaotlc ]fpli
erators among a certain class of weighted backward‘ shifts on 1*. We sha
here characterise completely the chaotic Weightec_l shifts on any F-sequence
space in which the e, form an unconditicnal basis.
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As a by-product we obtain the surprising fact that for the operators
studied here the existence of a single non-trivial, that is, non-zero periodic
point implies that the operator is hypercyclic and, indeed, chaotic. In gen-
eral, not every hypercyclic operator that has a non-trivial periodic point is
chaotic. Examples of such operators were first given by Herrero and Wang
(16, Corollary 2.5] and Salas 31, Remark 3]. Another example will be given
at the end of this section. Our example will also show that the assumption
in the following theorem that the basis be unconditional cannot be dropped.

Recall that in a topological sequence space X over I the family (e;);er is
an unconditional basis if for every (z;)icr € X and every bijection 7: N —
I the series 3,7 Zr(n)en(n) converges in X. The following collects some
known facts (cf. [30, 3.8.2], [18, 3.3.8 and 3.3.9]).

ProOPOSITION 2. Let X be an F-sequence space over 1. Consider the
following assertions:

(1) (eidier s an unconditional basis;
(i) (ei)icr is a basis in some ordering, and if {z;) € X then also (g;2;)
€ X whenever each g; is etther 0 or 1;
(iil) (e;)ier is @ basis in some ordering and if (z;) € X then also (cixz:)
€ X whenever (¢;) i a bounded sequence of scalars.
Then we have the following implications: (1)< (ii)<=(iil). If X is in adds-
tion locally conver or locally bounded then oll three assertions are equivalent.

We remark that a sequence space that satisfies the second condition
in (ii) is called monotone, one that satisfies the second condition in (iii) is
called solid.

THEOREM 8. Let X be an F-sequence space in which (eq)nen 15 an un-
conditional basis. Let T : X — X be o unilateral weighted backward shift
with weight sequence (an)nen. Then the following assertions are equivalent:

(i) T' is chaotic;

(i) T is hypercyclic and has a non-trivial periodic point;

(ili) T has a non-trivial periodic point;

(iv} the series 3 o ([[h_y @) ten converges in X.

Proof. Since the implications (i)=-(ii) and (il)=>(iii) are trivial we need
only show that (iii)=(iv) and (iv)=-(i} hold.

(iif)=>(iv). Let = = (2,,) € X be a non-trivial periodic point for T, that
is, there are N € N and j € N with 7%z = z and z; # 0. Comparing the
entries at positions j + kN, k € Ny, of z and ¥z we find that

N
Ti+kN = (H “j+kN+V)”j+(k+1)N:

v=1
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so that we have, for k € Ny,
J+kN i+kN

TjphN = ( 11 a,,)_lmj = c( II a,y)_l

v=7-+1 v=1

with ¢ = (H{,zl )2y # 0. Since (ey,) is an unconditional basis and x € X
it follows from Proposition 2 that

E = €I RN = = Y Tk NEj+kN
GFEN I+ Z I+ 7
o) ] HA. € k=0

converges in X. Without loss of generality we may assume that j > N.
Applying the operators T, 72, ..., TN =1 to this series and noting that T'e, =
Onen—1 for n > 2 we deduce that

- 1
converges in X for | = 0,...,N — 1. Adding these N series we see that
condition {iv) holds.

(iv)=(i). It follows from Theorem 1 that under condition (iv) the op-
erator T' is hypercyclic. Hence it remains to show that T" has a dense set
of periodic points. Since (e,) is an unconditional basis, condition (iv) with
Proposition 2 implies that for each j € N and N € N the series

PWNY . X — — e
D D (H “") > T a EikN
k=0 L Lye=jt1 v w=l k=0 tlb=1 %

converges and defines an element in X. Moreover, if N 2 j then
(5.1) TN g(0N) = gl

so that each ¢@¥} (j € N) is a periodic point for T.

We shall now show that T has a dense set of periodic points. Since (e.) is
a basis it suffices to show that for every element @ € span{en : n € l‘i}; there
is a periodic point y arbitrarily close to it. To see this, let © = > .., @5e5
and & > 0. We can assume without loss of generality that

4
(5.2) ‘mj Hau

el

<1 forj=1,...,m.

Since (e,) is an unconditional basis condition (iv) implies that there is an
N > m such that

En=m  En .
Huzl Qy m

n=N+1

(5.3)
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for every sequence (£,) taking values 0 or 1 (cf. [30, p. 153]). By (5.1) the
element

m
y = Z = PAtiy)
=1
of X is a periodic point for T, and we have

m
Iy - =) = |]lej<g<ﬂ"”) —eil|
£

i(!ﬂj ﬁ ay) (i ——1——ﬁj+kz\r) H

kN
i=1 v=1 k=1 Hu:l Ay

91 £5] ) o m—y

v=1 k=1 Hu:l Qv

m

<>
i=1
= 1

SZ Z FTEN _ SitkN

g=1lg=1 I e

<e by (5.3).
This had to be shown. u

o

by (5.2)

REMARKS. (1) Under the assumptions of the theorem condition (iv) can
be stated succinctly as

(iv') the sequence (1/[I_, au)new belongs to X.

(2) In the case when X is a complex and locally convex space one may
follow the elegant proof of Godefroy and Shapiro [11, pp. 266—267] to obtain

the.implication (iv)=>(i). The idea for the present proof was taken from
Peris [28].

COROLLARY 1. Let T : H(C) — H(C) be o wes ift wi
. : ghted backward shift with
weight sequence (an}nen, . Then T is chaotic if and only if .

n
I[a

v=({}

1/n
— o

as n — 00,

Thus, each of the weighted shifts on H(C) considered by Mathew [26]
nan.aely those with weights tending to oo, is chaotic. In particular, the differ-’
entiation operator D is chaotic, as was first shown by Godefroy a,nd Shapiro
[11, Theorem 6.2] (see also [28]). In view of Theorem 8 one might be tem;)ted

to pronounce that the existence of the e i i
; xponential function as i
makes the differentiation operator D chaotic. * fixed point
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COROLLARY 2. Buvery unilateral weighted backward shift on the space w
of all sequences 1s chaotic.
We consider another special case of Theorem 8.
ExaMPLE. Let s be the Fréchet space of all rapidly decreasing sequences,

5= {m = (Zn)neN, ¢ Pr(z) = (i 2 2 (n + l)’“)l/2 <ooforall ke N},

==

whose topology is defined by the seminorms pi (k € N). Then the weighted
backward shift T' defined by

Te, = \/"'—'Len—l (nz 1)

ig chaotic because

|-

'(n-i—l)k <oo forallkeN

3

o o]
n=0

This result has recently been obtained by Gulisashvili and MacCluer [15]
who have shown that T arises as the annihilation operator of the quantum
harmonic oscillator in physics. Thus, as the authors note, linear chaos can
occur in a quasi-physical system.

One might ask if the characterisation of chaotic shifts given in Theorem 8
remaing true without assuming that the basis is unconditional. ‘We show by
a counterexample that this is not the case.

ExampLE. Let X be the Banach sequence space defined by

o2

x={m=(mn>=uwu=z
1

=

$_n _ Tr4-1

&T
<ooand—ﬂ—>0asn——+00};
n n+ n

that is, z € X if and ouly if (z/n) belongs to the familiar sequence space byg
(cf. [36, Section 7.3]). Then (€n) is a basis in X, but it is not unconditional
because X is not solid (cf. Proposition 2).

We want to show that the (unweighted) backward shift B on X given by
Blwty) = (zn+1) is hypercyclic, has non-trivial periodic points and satisfies
condition (iv) of Theorem 8 but is not chaotic.

First, a simple calculation shows that B indeed maps X into X and
hence is a continuous operator. Now, since B has weights a, = 1 for all
n and since Y00, e, converges in X, condition (iv) of Theorem 8 holds.
By Theorem 1, B is therefore hypercyclic. And since all constant sequences
belong to X, B has non-trivial periodic points.

But the constant sequences are the only periodic points, which shows that
B canmot be chaotic. Indeed, let @ = (z,) be a non-constant sequence that
is periodic for B. Then there are 4,N € N with z;4xny = @ and Z;4kN41 = b
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for k € Ny with constants o % b. We then have

el =3

k=0
which is & contradiction.

Ti+kN TitkN+1 ’ _ i’ (F+E&N)a—b)+a

J+EN  j+EN+1 +kN)(j+kN+1)‘=oo’

We next characterise chaotic bilateral shifts. The proof of the result is
similar to that of Theorem & and is therefore omitted.

THEOREM 9. Let X be o bilateral F-sequence space in which (en)nez s
an unconditional basis. Let T : X — X be a bilateral weighted backward shift
with weight sequence (an)nez- Then the following assertions are equivalent:

(i) T is chaotic;

(i) T is hypercyclic and has a non-trivial periodic point;

(iif) T has ¢ non-trivial periodic point;

{iv) the series

oo n—l1 oo 1
Z(H ”’—V)e—n + 3 mm——en
n=0 uv=0 n=1 Hu:1 Gy

converges in X .

REMARK. The corresponding condition for bilateral weighted forward
shifts reads: The series

o 1 oo -1l
Z H'n. a eon+ Z( ay) En
n=1 tdp=1""V n=0 »=0

converges in X.

In a recent paper [20] deLaubenfels and Emamirad obtain further classes

of operators for which the existence of one non-trivial periodic point implies
chaos.

The author is very grateful to the referees for many valuable comments

concerning the exposition of the paper and for several helpful suggestions
on terminology.
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The L? solvability of the Dirichlet problems
for parabolic eguations

by

XTANGXING TAQ (Ningbo)

Abstract. For two general second order parabolic equations in divergence form in
Lip(1,1/2) cylinders, we give a criterion for the preservation of LP solvability of the
Dirichlet problems.

1. Introduction. The purpose of this article is to study the solvabil-
ity of the LP Dirichlet problem for second order parabolic divergence form
operators with time dependent coefficients in a Llp(l 1/2) cylinder £2. The
operators L we consider are of the form

Lu = div(A(z,t)Vu) — du  in 7 € B*H!

where 27 is a finite cylinder having lateral boundary St and parabolic
boundary 8,02p, and the matrix A(z,t) is assumed to be symmetric,
bounded, measurable and to satisfy the ellipticity condition; that is, there
exists a positive constant A such that for all {z,£) € R*™! and ¢ € R™,

MTHEP < Y Ayl < MEP
hi=1
It is well known that if f € O(8,(27) is given, then the classical Dirichlet
problem
Lu=90 in {27, ulapﬂT =fe O(ap.QT),

is solvable. The solvability of the L? Dirichlet problem for L is related to
the D(p, Sg) property. If there exists a p € {1, 00) such that the solution
function wu satisfies

| N ()| po(sr,doy < CllFllLe(sedoy,  f € C(ST),

2000 Mathematics Subject Classification: Primary 35K20, 42B25.
Key words and phrases: parabolic equation, LP solvability, Dirichlet problems,
Lip(1,1/2) cylinder.
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