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The L? solvability of the Dirichlet problems
for parabolic eguations

by

XTANGXING TAQ (Ningbo)

Abstract. For two general second order parabolic equations in divergence form in
Lip(1,1/2) cylinders, we give a criterion for the preservation of LP solvability of the
Dirichlet problems.

1. Introduction. The purpose of this article is to study the solvabil-
ity of the LP Dirichlet problem for second order parabolic divergence form
operators with time dependent coefficients in a Llp(l 1/2) cylinder £2. The
operators L we consider are of the form

Lu = div(A(z,t)Vu) — du  in 7 € B*H!

where 27 is a finite cylinder having lateral boundary St and parabolic
boundary 8,02p, and the matrix A(z,t) is assumed to be symmetric,
bounded, measurable and to satisfy the ellipticity condition; that is, there
exists a positive constant A such that for all {z,£) € R*™! and ¢ € R™,

MTHEP < Y Ayl < MEP
hi=1
It is well known that if f € O(8,(27) is given, then the classical Dirichlet
problem
Lu=90 in {27, ulapﬂT =fe O(ap.QT),

is solvable. The solvability of the L? Dirichlet problem for L is related to
the D(p, Sg) property. If there exists a p € {1, 00) such that the solution
function wu satisfies

| N ()| po(sr,doy < CllFllLe(sedoy,  f € C(ST),

2000 Mathematics Subject Classification: Primary 35K20, 42B25.
Key words and phrases: parabolic equation, LP solvability, Dirichlet problems,
Lip(1,1/2) cylinder.
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where N denotes the non-tangential maximal operator, then we say that
D(p, S7) holds for L.

From similar arguments to those used in [N] and [K], we know that if
D(p, S¢) holds for L, then given f € L#{deo, S7) there exists a unique u with
Ly = 0 in {21 such that lim; o+ u(z,t) = 0 uniformly on compact subsets
of 2N {t =0}, and for do-a.e. (@,s) € St,

lim w(x,t) = s
(2,8) €7 (Q,5)N {27, (w,t)—{Q,8) (z,8) = $(@:5)
where I,(Q, s) is an appropriate parabolic non-tangential cone at (@, s),
and

| Ne ()l 2 (57.d0) € CUF |l zo(50,do)-
"This shows that if D(p, S7) holds for L, then we can, for data in IP(de, S7),
uniquely solve the Dirichlet problem for L in £2¢ with an L?(do, St )-estimate
for the non-tangential maximal function.

Recently, Nystrom [N] obtained the parabaolic analog of the elliptic per-
turbation theory developed in [FKP]. Let Ly = div{4g(z,t)V) — 8; and
Ly = div(Ai(x, t)V) ~ 0; be two parabolic operators of the type described
above with caloric measures wp and w;. Define

a’(mi t) = sup IA}_(IE,t) - A‘U(ml t)l)

O, 1y /a(z )N{t>0}
where §{z, t) = §(x,t, S7) is the parabolic distance from (z,?) to the lateral
boundary St and Oj(, 1),4(x, t) is a parabolic cylinder of size §(z, ¢) centered
at (z,t). It has been proved in [N, Theorem 6.4] that if D(p, S7) holds for
the operator Ly and there exists a constant ' such that

(11) sup S “4}—_ ( S a(w,t)z

——aerrdrdt |do(Q,s) £ C
O<r<ro £ o(Ly) 8(z, t, Sp)ntl Tz ) o(Q,s) <

Ly,r(Qis)

for any surface cubes A, in the lateral boundary Sr, then D(q, Sr) holds
for the operator L; with some other g.

In this paper, we will give a criterion depending on p for preservation
of LP solvability of the Dirichlet problem for data in L?(dw, S7), for the
same p.

2. Notation and preliminaries. We retain the notations used in the
introduction. In particular, we let £2 be a Lip(1,1/2) cylinder with con-
stants M and rp, whose boundary &2 may be covered by a finite collec-
tion of congruent coordinate cylinders Z;, i = 1,..., N. For each 4, Z; =
{(z,8) = (&', 2n,8) : |5l <70, j =1,...,n — 1, |za| < 2mMry, t € R} in
some coordinate system on R™? (depending on ). We let 2Z; denote the
concentric double of Z;. There exists a function ¢ : R* — (—Mrg, Mrp) sat-
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isfying the Lip(1,1/2) condition [p(z',£)—e(y/', )| < M(|e' —y' 2 +|t—s])/?
such that
2Z2N00 ={(z',2n,t) : o = p(z', )} N 22,
22002 ={(z',zn,t) 1 2o > (2, 1)} N 2Z.

We denote by S the lateral boundary of {2 and by 8,2 the parabolic
boundary of (2. In this paper, we consider the finite cylinder 2r = 2N {0 <
t < T} with lateral boundary Sy = SN {0 < ¢t < T}. Let 6(z,t,y,5) =
\z~y|+1t—s]'/? be the parabolic metric, and let &(z, t) denote the parabolic
distance from (z,%) to Sg. For (Q, s) € Sy and 0 < r < ro we define

7r(Q,8) = {(m’,mn,t) S @] <y jEn - ge] < 2nMr, |5 < TZ}’
A(Q,5) = (@, Qn + BnMr,t 4 4r7),
A(Q.8) = (Q, Qn + 8nMr, t — 4r%).

We also denote by ﬁr(Q, 8} = ¥, (Q, 8)N {27 a Carleson region, by O,.(Q, s) =
B2 N, (Q, 5) a parabolic surface cube with size r and center at (Q,s) €
0,02, and by A, (Q,8) = SpN¥,.(Q, s) the lateral surface cube with center
at (@Q,s) € Sp.

‘We remark that a Lip(1,1/2} domain is L-regular, that is, for any ¢ €
C{90) there exists a unique u € C>*{R)NC(§2) such that Lu = 0in 2 and
for any (Q,s) € 002, lim(zy(Q,s), (,t)e2 ¥(T, 1) = $(Q, 5). The function
u may be constructed using the Perron-Wiener—Bauer method. For each
(z,t) € 2 the L-caloric measure w(z,t,) is the unique probability Borel
meagure on J,f2 with the property that the function

wa,t) = | ¢, dw(z,t.y,1)
B2
is the unique solution of the Dirichlet problem Lu = 0 in 2 and ujs, iz = ¢
The Green funciion of L on 2 with pole at (x,t) € 2 is denoted by
G(z,t,y,0) and defined as

Gzt ) = Doty — | Tz, 1) dwlz, t, 2,7),
802
where I'(z,%,9y,1) is the fundamental solution of L. We know that the L-
caloric measure w has the doubling property:
W(XD:Ta DZT‘(Q’ '5)) S CLU(XO, Ta D'r‘ (Q'l S))

for any (Q,s8) € 8,02, 0 < s < T — 6, 0 <r < /4 « 1, where C is a
positive constant independent of (@, s) and r.

We shall use the following results about parabolic operators (see [A],
[M], [FGS], [N] for details). -
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TueEorREM 2.1 {Local comparison theorem). Let (@,s) € S, 0 <8 <1,
and wu,v be two positive solutions of Lu = 0 in W40, (Q,s) vanishing
continuously on ¥yyer(Q,s) N S. Then there exisis a constant c =
C(M,n, A, 8) such that if r < g and (z,t) € F(1-9),(@, 5), then

u(,t) _ CU(Z(1+6)1’/2(Q)5))
v(z,t) = w(Apeyr (@ 5)
This theorem could be proved by slightly adjusting the arguments in

[FGS], and it is related to a version in terms of the Green function and
caloric measure for L.

LEMMA 2.2. Suppose G{w,t,y,s) denotes the Green function on 2N

{-1 <t < T}. Let (Q,5) € 8021 and 0 < t < min{re/2, /(T —s)/4}. If
(z,t) € 2N {s+4r? <t < T} then

C "Gz, t, A.(Q,8) < w(z,t,0.(Q, 5)) < Cr*Glz, t, 4,(Q, s))
with a positive constant C' = C{M,n, ).
Using the Carleson estimate, the maximum principle and the Holder
continuity (see Remark 2.2 in [N]), we also have the following lemma.
LeMMA 2.3. Let (Q, 8) € 8p027, @ > 0, and u be a non-negative solution
of Lu =0 in 1.0y (@, 5) vanishing continuously on U11e)-(Q, 8) for r =
298 < r9/2, where § >0, j € N. Then
sup u(z,1) < 27 u(A (1 10)/2(Q) 8))
Q'/‘;(Q,s)
where o = a(M,n, A, #) is a positive number independent of v, 8, and 7.
‘We now recall the maximal function operators which play a key role in

the study of the Dirichlet problem. Given a measure g and a function f on
S, the Hardy-Littlewood mazimal function of f with respect to u is

1
M, Q,s) = ———— 0.
(@) (tz;hssl)lg.ar u(Ar) AST Al

‘We also define the parabolic interior cone with aperture o > 1 and vertex
at (Q,s) € 902 to be IL{Q, s) = {(v,t) € 2:(y,£,Q, 5) < ad(y,t)}. Then
the non-tongential mazimal function of a function u on (2 is N, (u){Q,s) =
sup{|u(z,t)| : (z,t) € Iy}, and the averaged non-tangential mazimal func-
tion, a variant of NV, is

- 1/2
N, (u)(Q,8) = sup ( uly, 7)|? dy d’r) ,
(m)t)EI‘n (st)

O] |
0 b

I 5(m,t)/4(x )t OE(m,t)/Al(m:t) .
where O,(z,t) is the parabolic cube {(y,s) : |[z—y| < r, |s—¢t]| < r?}. By

the same argument as in [FKP, p. 76], we observe that N, (u) and Ny(u)
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are equivalent when w is a solution. Finally, the area integral S of u is given
by
S2u(Q,s) = S |Valz, t)|6(x, t)>~™ de dt,
Ty (Q’S)
where Vu is understood in terms of L? averages by the energy inequality.

REMARK 2.4. As mentioned above, if u is the solution of the classical
Dirichlet problem Lu = 0 in 2 and ulg 0, = f € C(8p{2r), then we can
write u(x,t) = SBPQT &y, 1) dw(z,t, y,1). Using Theorem 4.3 of [N], we have

Na(”)(@a '5) < GMw(f)(Qa S)
for all (@, s) € Gp82¢. If f > 0, we also have the opposite inequality.

3. Solvability of I? Dirichlet problems. Now we consider two para-
bolic operators Ly = div(4g(z,t)V) — & and Ly = div(A;{(z,t)V) — 0; as
in Section 1. Denote by wg and w; the associated caloric measures, and by
do the surface measure on 9,(2. The Green functions are Go(z,t,y,s) and
G1(z,t,y,8). Fix (Xo,T) € £27 and take w; = w;(Xo,T,-) and Gi(y,s) =
Gi(Xo, Ty, s) for ¢ = 1,2. Set e(x,t) = Ap(z,t) — Ai{z,t}, and define the
disagreement function

15({‘3:1&)] = sup !Eij(mit)lv a(y’ S) = sup
%5 (2.} 050y, 5)/2(¥9)

le(z, ).

We now formulate our main results.

THEOREM 3.1. Suppose 1 < p < co and D(p, Sr) holds for the parabolic
operator Lo. If there emists a constant C such that for every surface cube
A g ST!

oy, D? |Gy, 1% do(Q,5)1 Y0
(3.1) {(Q,‘§)EA FQ(SQ,s) 50y, 1y | 8y, ) dy dl _J(A) }
wl(A)
ENPTINE

where 1/p+1/q =1, then D(p, St) holds for the parabolic operator L.
Proof. Let u; be the solutions of the Dirichlet problem for L;, ¢ =0, 1.
We need to show the a priori estimate |N(u1)|lp € C||filp- By using the
Riesz decomposition for the parabolic operator Ly in {27 (see [Do]), one can
write
Flz,t) = v (z,t) — uo(a,t) = S VyGilz, t,y, 1) e(y, 1) - Vyuoly, 1) dy dl.
Qp
Therefore, all we have to do is to prove | N(F)|lp < C| | f|lp. Without loss
of generality, we may assume by the Harnack principle that e(z,t) = 0 if
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(z,1) € 2701 {(y,8) : 6(y,5) > ro}, and we assume rgp < 1. From now on,
let (Qg,s0) € St and (z,t) € I'(Qq, 59) be fixed, and break F(z, ) into two
parts when (z,7) € Og(z¢4(z, ) = O(z, £):

(32) F(Z,’F) = S vyGI(Z:T:ya l) 'E(yn j“) ) v'yu’ﬂ(y7 l) dydl
O{z,1)
+ | Vi) -e,]) - Vyuly,Ddydl
£2p\O(m,t)
= F(z,7)+ Falz, 7).
Now we show that the theorem follows from the inequality

(33)  N(FL){(Qo,s0) + N(F2)(Qo, s0)
< C5(uo)(Qo, 50) + C{M S (1)) (Qo. s0)} /7

where M = M, and the constant C is independent of (Qo, 5¢). Indeed, from
{3.3) one can deduce that N{ui}{(Q,s) < CS{u){Qo,30) + CN(ug}{Q, 3) +
C{M,[S(u06)?1(Qo, s0)}/?. Note that the maximal function M satisfies a
weak type (1, 1) estimate {(cf. [Mu}), and furthermore uq is a solution; so we
can prove that N(up) satisfies a weak type (p,p) estimate with respect to
the surface measure:

(@) € S N@:)(@:9) > 0} < 150 Bogarsny < ol F Bgansey
Now using Remark 2.4, we conclude that M, (f) satisfies the corresponding
weak type (p,p) estimate with respect to the surface measure o. But the
weak type (p,p) estimate for the Hardy-Littlewood maximal operator M,
is in fact equivalent to the strong type (p,p) estimate | M, (f)]zr(as) <
Cl|fllz»(doy- Furthermore, by Remark 2.4 again we have NV (ua)ll e (de) <
C|| Moy (F)ll 27 (40), which completes the proof of Theorem 3.1.

We now turn to the proof of the inequality (3.3). We use the notation
established above and remark that the square functions over cones of dif-

ferent apertures are comparable [St]. We will complete the proof with two
lemmas, 3.2 and 3.3.

LeMMA 3.2. We have
N(F1)(Qo. 50) < CS(20)(Qo, s0).
Proof. To estimate N {F1}(Qo, S0), the averages
1 . 1/2
(——m_lo(ﬂ%tﬂ O(i,t) |Fh(z, )| dzd'r)

are used. We consider Fy(z,7), the part of the potential near the pole
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of G1(z,7,9,1), which may be estimated by the follovgjng adaptation of
the argument in [N, p. 236]. For (z,7) € O(z,1), let G1(z,7,9,1) be the
Green function Ef the domain 20(z,t) for L;, and define K(z,7,%,1) =
Gi(z,7y,0) —~ Gi(z,7,9,0). We write Fi(z,7) = Fii(z,7) + Fiz(z, 1),
where
Filz,r)= S VyGi(z, 7y, De(y, )V yuo(y, 1) dy di,
O(z.t)
Fi(zr) = | VyK(z 7y 0e(y,)Vyuoly, ) dy di.
O{z,t)

Now letting x g denote the characteristic function of the set E, we first
find that Fi; is the solution of

L1 Fia(2,7) = — div{e(z, T)Vauo (2, T)Xo0@ey (2, 7)) in 20(z, 1),

and Fll‘BP(ZO(m,t)) = 0. Using the ellipticity and integration by parts, we
have

A | IVEuPdzdr< | AVEL-VFuadzdr

20{z,t) 20(x.t)
1 B Fy)?
= S Fy div(eVugxe) dzdr — 5 S —-(—-a—lq_li dzdr
20(m,t) - 20(z,t)
1
= — S eVF1 - Vupdzdr — = S 1‘_'11(—’3,‘1'0)2 dz
O (1) 20 (2, )N{r=ro=t+6%/4}

< — S EVF11 . V‘Ug dzdr.
O(xz,t)

Hence, the Holder inequality and Sobolev inequality show that

1 . 1
(w O(i,t) \Fll(z’q-)l dZd.T)

1 1/2
—— v R 2dzd ) ,
505(“%‘5)(|0(m,t)| Oéﬂ| oz, 7P dz dr

which gives No(F11)(Qo, 0} < CSa(t0)(Qo, 50) for some a sufficiently large,
by taking the supremum over I (Qu, So)-

On the other hand, we note that L{K(z,7,y,!) = 0 for (y,1) € 20(x.1)
and (z,7) fixed. Using Cauchy-Schwarz and the energy estimate on K, one
can get ‘
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Fua(zm)| <C | [VE(z 7,1 [Vue(y, )| dydl
O(z,t)

<o | KetulPad) (| 1vuwoPaya)”

40(z,t) Ofz:t)
) 1/2
< ol T S |K(m,t,y,l)|2dydl> Sa(“D)(QDsSU)
I‘B"O(.’E,t)l 4
§O(mvt)

for & sufficiently large. Then the Harnack principle and Aronson’s [A] es-
timates on Gy and Gp imply that |Fia(z, 7)| < CSa(ug){@a, s0). Now we
have obtained

Na(F1)(Qu, 50) < CSalu)(Qo, 50) < CS(up)(Qo, 50)-

LEmMmMA 3.3. We have

N{F2)(Q,s) < CS(ug)(Q, s} + C{M[S(u0)*|(Q, s)}'/7.

Proof. We shall handle Fy pointwise by breaking up the region (27
O(x,t) further into dyadic ring-type regions as follows: Let § = &(z, t), and
for i € N set

2 = Vps(Qo,50) N p,  Ri=2\ iy, (X3,Ti) = Aps(Qo, s0),
and let A; = 2, N S7. For D C 2¢ we also define

FD)= |
D\O(z,t)

vy@l (:B, t,y, l)s(y, l)vy(y: l) dy dl.

Let i be the largest integer such that 2;,NO(z,t) = B, and jg be the largest
integer such that 2°¢(x,¢) < rg. Then

(3.4) Fy(z,t) = F(24,) + i F(R;) + F (07 \ 24),
i=ig+1

and each of these integrals can be bounded, which gives us bounds for IV (Fp).
The essential part of the proof is the bound for F(12;,). The additional pieces
of the potential will then be estimated by similar methods, and summed up
appropriately.

We first remark that £2;, can be covered by parabolic boxes whose di-
mension compares with their distance from St and whose projection onto
St is a dyadic surface cube contained in A;;. Let I',(Q, s) be the truncated
cone of height h ~ diam(A,;,). We can write
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Fel<e b | e
Lig T (Q,8)

X [VyGi(z, t,y, )| [ Vualy, DI6(y, )™ dy dl do(Q, )
<C S Z r(I)~(n+Y)

A"O ICA,‘D

x| e, D1V Gilz. tyy, D) Vuo(y, )] dy dldo(Q, )
1 (Q,9)

where I’s are the parabolic dyadic cubes contained in Ay, T {(Q,s) = It N
I (@, s), It is the corresponding box in {27 whose projection is just the cube
I and whose length r{I*) compares with the distance from Sz. Let I* be the
smallest rectangle such that I'f (@, s) C I* C I't. Then the Cauchy-Schwarz
inequality and the energy estimate give

F(2) <c {3 sup e hr()2
Bry Tern, WDETE(@8)

(1o tnnpaa)” (| vwraya)” do@ ).
I

ST
g1 A

We note that there is a fixed constant C such that |I*| < C|I'j| for any cubes
I, and there is a sufficiently large -y such that 3I* C I, . Let G(z,t,9,1)
denote the Green function on £2 N {-1 <t < T}. Then one can see from
the maximum principle in adjoint variables that G(z, t,y,1) = G{z, t,y,1) if
(y,1) € £21. By the local comparison theorem and Lemma 2.2 we may move
the pole of the Green function Gi(z,t,y,1), for any (y,1) € I*, from (z,t)
to (Xo,7") and conclude that

Gi(z,t,y,0) Giz,t,y, 1) < C
Gi(Xo, Ty, 1) Gi(Xo, Ty, 1) ~ wa(lyy)’

where we have used the doubling property of w;. Hence |F{{2;,}| is bounded
by a constant multiple of

T (ii) | Z r(1)~(n 1)

Aﬂ;o ICA,‘D

Gl(ya l)

2 1/2
d dl)
0y | Y

1/2
x( | Vol D2 dydl) do(Q,s)
I Q,s)

et §

2T+
21

% sup
()l (@:8)
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C ( a(y,)? |Gi(y, O )1/2
< — dy dl
e 4\ 2%, g 00 D

[Vuo(y, D)i? 1/2
. s dydl ) do(Q,s)
(ICZ% U (SQ,.:» o )
CU(Aio} 1 a(y’l)2 Gl(y, l) 2 q/2 . 1/q
S WI(AiD) {J(Ain} Axio (F'§,h 5(y’ l)n+2 5(y1l) ’ dydl) dU(Q: )}

(ordr S, Bt aa) e}

in I(Q,s)
Now we apply condition (3.1) to obtain
(3.5) |F(02i)] < CLMIS (20)](Qo, 50)} 7%

We next estimate F(R;) for i = ip + 1,...,j0. We further subdivide
R\O(z,) = [(R\O(z, ))NT(Qo, 50)]U[(R:\O(z, )\ I'(Qo. 50)] = RIURE.
Then F(R}!) may be estimated by the expression

Galwt,y, DR N
¢ u%}|a(y,l)£(5 ————-ﬁ——u—u—dydl)

8
Ica Itn I+NR} i

x( S |Vu0(y,l)|dydl)l/2,

I+nRl
where r; = 2°8. At this point, we need to move the pole of the Green function
from (z,t) to (Xiy1,Ti+1). Using Lemma 2.3 we have
Gy(z,t,9,0) < C27*G1 (Xim1, Tie1, 9, 1)
for any (y,1) € Ry, if (z,t) € ;1. We note G1(z,t,y,1) # 0 only if | <,
and apply the Harnack principle and Lemma 2.3 again to get
) e
Gi(z,t,y,l) < C27* G (X1, Tig1, 4, 1) £ CQ“MM
w1 (D)

for any (y,!) € R;, where the last inequality may be obtained by the compar-
ison theorem as before. Continuing our estimate, and noting that r; = 8(y, 1)
for (y,1) € R}, we have the bound

. co a(y,1)? |Galy, 1)
mEN < Sy (é 5, ™2 | (v 1)

Now we observe that R} C I',(Q, s) for all (Q,s) € A, for a fixed aperture

2 1/2
dy dl) S(16)(Qo, 50)-
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«~ that does not depend on 1. Thus the above is bounded by

c2— S ( S a(y,)? 1Gi(y, 1)
Ai n+2
LG I AL D s I D)

x S{ug)(Qo, 50) < C27*5(u0)(Qo, s0),

by Hélder’s inequality and condition (3.1), where ' is independent of 1.

It remains to estimate F(R?). Without loss of generality we can as-
sume that R? may be covered by at most K, K independent of ¢, domains
¥, (Qx, sk) where g ~ r; and (Qk,sk) € R? v Sy. Applying the similar
argument, plus the doubling property of the surface measure, we conclude

|F (W (Qrr 51))] < C27{MIS (u0)7](Qo, 50)}/7,

with  independent of ¢ and k.
Altogether, we have shown the estimate

2 1/2
dy dl) do{Q,s)

(36) |F(2)+ > {F(R:)
f=ip-+1

< CS(10) (Qo, s0) + C{M[S(0}?}(Qo, 50)}'/*

for any (Qo, s0) € St.

Finally, we should bound the last piece, ({27 \ {2;,). Note that if we
let R = [(27 \ 2;,)\ Oz, ) n {{x1) : §(y,1) < 7o}, then the region R
can be broken up into k = 1,..., K Carleson type regions ¥, (Q, sx) of
length = g, where K depends only on the dimension. Then for each k, we
can bound F(¥,, (Qx, 5x)) with the familiar methods used repeatedly above,
except that we require the following lemma 3.4 which will enable us to use
the condition (3.1) without moving the pole of G1(z,t,,1).

LEMMA 3.4. If the condition (3.1) holds, then for A C ST NOR, there 1s
a constant C' such that

{ S G.(y, l)2 Gi(z,1,y, Z) ’ dy dl q/2@_@_ﬂ}l/q
n4-2 [ A
Q.)€ RATR(@,9) 8(y, 1) 8y, 1) a(A)
L:J]_(.’,C,t, A)
<C )

This lemma can be deduced from Lemma 2.1, Lemma 2.2 and the parabo-
lic Harnack principle. Now we can obtain |F{R)| < C{M[S(u0)?1(Qo, so) 7,
and this completes the proof of Lemma 3.3.

REMARK 3.5. A similar argument allows one to show that Lemmas 3.2
and 3.3 hold for any point (Qa, s9) € Gpflr.
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Elements of C*-algebras commuting with their
Moore—Penrose inverse

by

J. J. KOLIHA (Melbourne, Vic.)

Abstract. We give new necessary and sufficient conditions for an element of a C*-
algebra to commute with its Moore—Penrose inverse. We then study conditions which
engure that this property is preserved under multiplication. As a special case of our results
we recover a recent theorem of Hartwig and Katz on EP matrices.

1. Introduction. The novelty of our approach to the study of Moore-
Penrose inverse in C*-algebras is considering it in terms of the Drazin in-
verse. For elements of a C*-algebra that commute with their Moore—Penrose
inverse, the Moore—Penrose inverse in fact coincides with the Drazin inverse.
Proofs found in the literature may resort to special constructions, often very
ingenious. Many of these arguments can now be presented more systemati-
cally relying on standard properties of the Drazin inverse and on properties
of spectral idempotents.

We retain the notation of [10]. In particular, 2 is a unital C*-algebra
with unit e; next, A1, QN(2) and A" denote the sets of all invertible,
quasinilpotent and regular elements of 2, respectively. An element a € 2
is quasipolar if 0 is an isolated—possibly removable—singularity of the re-
solvent of a, and polar if O is at most a pole of the resolvent. By o(a) we
denote the spectrum of a € %,

The set of all quasipolar elements of 2l will be denoted by . Observe
that A2 NAT o AL, We write L(H) for the C*-algebra of all bounded linear
operators on a Hilbert space H.

ProPOSITION 1.1 [9, Theorem 4.2]. Let a € %X, Then the following con-
ditions are equivalent:

(i) a € AP,
2000 Muathematies Subject Classification: 46105, 46H30, 4TA60.
Key words and phrases: C*-algebra, Moore-Penrose inverse, Drazin inverse.
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