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Elements of C*-algebras commuting with their
Moore—Penrose inverse

by

J. J. KOLIHA (Melbourne, Vic.)

Abstract. We give new necessary and sufficient conditions for an element of a C*-
algebra to commute with its Moore—Penrose inverse. We then study conditions which
engure that this property is preserved under multiplication. As a special case of our results
we recover a recent theorem of Hartwig and Katz on EP matrices.

1. Introduction. The novelty of our approach to the study of Moore-
Penrose inverse in C*-algebras is considering it in terms of the Drazin in-
verse. For elements of a C*-algebra that commute with their Moore—Penrose
inverse, the Moore—Penrose inverse in fact coincides with the Drazin inverse.
Proofs found in the literature may resort to special constructions, often very
ingenious. Many of these arguments can now be presented more systemati-
cally relying on standard properties of the Drazin inverse and on properties
of spectral idempotents.

We retain the notation of [10]. In particular, 2 is a unital C*-algebra
with unit e; next, A1, QN(2) and A" denote the sets of all invertible,
quasinilpotent and regular elements of 2, respectively. An element a € 2
is quasipolar if 0 is an isolated—possibly removable—singularity of the re-
solvent of a, and polar if O is at most a pole of the resolvent. By o(a) we
denote the spectrum of a € %,

The set of all quasipolar elements of 2l will be denoted by . Observe
that A2 NAT o AL, We write L(H) for the C*-algebra of all bounded linear
operators on a Hilbert space H.

ProPOSITION 1.1 [9, Theorem 4.2]. Let a € %X, Then the following con-
ditions are equivalent:

(i) a € AP,
2000 Muathematies Subject Classification: 46105, 46H30, 4TA60.
Key words and phrases: C*-algebra, Moore-Penrose inverse, Drazin inverse.
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(iiy There exists (a unique) x € A such that
(1.1 ax = za, X =, ara=a+u, v QN(2).

(iii) There exists (a unigque) p=p® € A such that ap = pa € QN(RL) and
a+pecAUl

An element z in (i) is the Drazin énverse of a, written z = aP. (The
original definition of this inverse [4] required that u be nilpotent.) The idem-
potent p satisfying (iil) is the spectrel idempotent of a € AP at 0, written
p = a™. We recall that a is polar if and only if a®a™ = 0 for some nonnegative
integer k; if aa™ = 0, then a is simply polar. It is known [9] that
(1.2) a"=e—aPa and o =(a+a") He—a").
We observe that if a is quasipolar, then so is ¢*, and (¢*)" = (a™)*.

PropPoSITION 1.2 [5, Theorem 6], {10, Theorem 2.8]. Let a € A. Then
a € At if and only if there exists (a unigue) element z € 2 satisfying the
equations
(1.3) zar =z, ata=ga, (az)"=ax, (za)"=za;
x is colled the Moore—Penrose inverse of a, written 2 = al. {The original
definition of this inverse was given in [13] for matrices.)

The two inverses are related by the following result.

PROPOSITION 1.3 [10, Theorem 2.5]. Let a € A. Then a € AT if and only
if a*a (respectively aa*) is simply polar, in which case
(1.4) al = (a*a)Pa* = a*(aa™)".
If a is regular, then so is a*, and {a*) = (af)*.

For future use we need the following two lemmas and some notation.
Following (6], for any a € % we define the nullspace ideals

a”H0)={zeh:ax=0}, a_1(0)={xecU:xa=0}

LEMMA 1.4 (see also [5, Theorem 9)). Let o € A be simply polar with the
spectral idempotent o™ ot 0. Then

a”H0) =a™%, A= (a")H0), a_1(0)=Aa", Aa=aT,(0),
and A =a"1(0) B aA = a_1(0) @ Yo with o and Yo closed.

Proof. We prove only the results for a=1(0} and a2, the rest follows by
symmetry.

Let az = 0. Then o™z = (¢ —aPa)z =z, and ¢ 7*(0) C a™A. If z = 0™y,
then ax = aa™y = 0, and a™2A C a71(0).

Let © = au for some u € A. Then ¢"2 = a"au = 0, and a2 C (a™)1(0).
Let @™z = 0. Then (¢~ aa®)z = 0, and = = aaPz; hence (a™)~1(0) C a2l
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Since @™ is an idempotent, A = a™A & (™) 71(0).

LEMMA 1.5. Let a € AT, Then

(1.5) ot = (a*a+ (a*a)") 'a* = a*(aa” + (aa®)™)" T,
(1.6) A =o' and Ao = A al,
(1.7) a*7H0) = (a")71(0) and o2, (0) =al,(0).

Proof. First we observe that, for any a € ', a{a*a)™ = 0 and (a*a)"a*
= 0. The first equation follows from a(a*a)” = ale — a'a) = 0, the second
is obtained by taking adjoints. By (1.2) and (1.4),

of = (a*a)Pa* = (a*a + (a*a)") (e ~ (a*a)")a” = (a"a + {a*a)™) ta*.
The second part of (1.5) is proved similarly. This proves (1.6), and (1.7)
follows.

Condition (1.6) appears in the proof of [6, Theorem 10] as equation (10.6).

2. Elements commuting with their Moore—Penrose inverse. In
this paper we are concerned with the elements a € At satisfying afe = aal.
Matrices with this property are called EP,. or EP matrices [1, 7]. We give a
new characterization—in terms of spectral idempotents—of the elements of
a C*-algebra which commute with their Moore-Penrose inverse.

THEOREM 2.1. Let a € A, Then ala = aal if and only if o is simply
polar with a selfadjoint spectral idempotent at 0. In this case

(2.1) a" = (a*)" = (a*a)" = (aa™}".

Proof. From Proposition 1.1 we deduce that if @ is simply polar, then
a* is also simply polar with (a*)™ = (a™)*. If p = &™ is selfadjoint, then
(a*a)p = p{a*a} =0 and
a*a+p={a*+p)a+p) A"
By Proposition 1.1 again, a*a is simply polar and (a*a)™ = a™. The equality
(ag*)" = a™ follows by symmetry. By Proposition 1.3, (1.4) and the first

part of (1.2), we have a € 2T and

afa = (a*a)Pa*a = e~ (a*a)" = e — (aa")" = an*(aa*)P = aal.

Conversely, let o € 2t and let afa = aa’. Since a'aal = o and aafa =
@+ u with w = 0, a® exists and «® = af. Further, aa™ = ale — aPa) =
ale — ata) = 0, and a is simply polar. Finally,

(&™) = (e — aPa)* = (e - ala)* =e— (afa)" =e— ate =a™.

The following corollary can be deduced from Theorem 2.1 and its proof.

The equivalence of (i) and (i) is [L0, Proposition 2.2]. We omit the proof,
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COROLLARY 2.2. Let a € U. Then the following conditions are equive-
lent:

(i) a € At and ata = aa';
(ii) a € AT NAP and of = a7
(ili) a is simply polar and (2*)™ = a™;
(iv} a is simply poler and o™ = (e*e)™ (respectively o™ = (aa*)™);
(v) ae At and (a*a)™ = (ac™)".

We now show that the commuting Meore-Penrose inverse can be ex-
pressed in terms of the holomorphic calculus.

COROLLARY 2.3. Let a € At. Then a'a = aal if and only if
(2-2) a' = f(a)
for some function f holomorphic in o neighbourhood of o(a).

Proof. Let afa = aat. By the preceding corollary, af = aP. According to
[8, Theorem 4.4], a® = f(a), where f is holomorphic in a neighbourhood of
o(a), and f(A) = 0 in a neighbourhood of 0, f(A) = A~! in a neighbourhood
of o(a)\{0}.

Conversely, if af = f(a) for some function holomorphic in a neighbour-

hood of o(a), then by a property of the holomorphic calculus, o’ commutes
with a.

Corollary 2.3 yields a result of Wong [14, Theorem 2], who showed that a
matrix A commutes with AT if and only if AT = f(A) for some polynomial f.

It is interesting to observe that if a¥ commutes with & € 9L, then it double
commutes with g, that is, ‘

oz =za=alz=zal, ze

This follows from the holomorphic calculus representation (2.2) of at.

3. Further conditions. Previously Brock [2] characterized the bounded
linear operators A on a Hilbert space satisfying ATA = A4, and Harte and
Mbekhta [6] generalized this characterization to C*-algebras. We extend
their results in the following theorem.

THEOREM 3.1. If a € A, then the following are equivalent.
(i) aa’ = atq;

(ii) a%a’ = a = a'a?;

(iif) (e*a)"a = 0 = a{aa*)";

(iv) a™}(0) = a7 (0);

(v) a-1(0) = aZ4(0);

(vi) o = o*%;
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(vil) Aa = Aa*;

(viii) a1 = a* A1,
(ix} A le = A 1a*;
(x) @ € AN AUal;
(xi) @ € aTAT N A Lat.

Proof. (i), (i) and (iii) are easily seen to be equivalent. (Recall that
{(a*a)" = e —ata and (ae*)" = e — aal))

We prove that (i) implies (iv)—(xi). Suppose that (i) holds. According to
Theorem 2.1, ¢ is simply polar and the spectral idempotent a™ is selfadjoint.
By Lemma 1.4,

a™}(0) = 0™ = (a”)*A = (a*)"A = a*"}{0)
and
a2l = (@")7H0) = (@")* 71 (0) = ((a")") H(0) = o’

The equalities a_1(0) = a*,(0) and Aa = Aa* follow by taking adjoints.
This proves (iv), (v), (vi} and (vii). To prove (xi) we write ¢ = a?a! =
(a + &™)%a’ and observe that @ + a™ € A~ by Proposition 1.1; similarly
a = at{a + a™)2. Condition (x) follows from (xi), and (viii) and (ix) follow
from (xi) and (1.6).

Conversely, we show that any of the conditions (iv)—(xi) implies (ii). We
note that (viil) and (ix) are equivalent (take adjoints), and together they
imply (xi); (xi) in turn implies (x). Conditions (vi) and (vil) are equivalent
(adjoints), and together they also imply (x). From (x) we deduce (ii): Indeed,
if @ = ua', then o — c®a’ = u(a’ — ataal) = 0; if & = alv, then o — afa? =
{at — ataa’)v = 0. Conditions (iv) and (v) are equivalent (take adjoints)
and together they imply (ii): ¢ — aa’ € (a)=1(0) = (a*)~1(0) = 271(0) by
(1.7) and (iv), and similarly e — afa € a_1(0) by (1.7) and (v).

We have recovered [6, Theorem 10] which gives the equivalence of (i},
(iv), (v), (viil) and (ix) of the preceding theorem.

In [2], Brock proved the equivalence of the following conditions for op-
erators on a Hilbert space. We write N{A) for the nullspace of A € L{H),
and R(A) for the range of A.

COROLLARY 3.2 (Brock [2]). Let A € L{H) be a closed range operator
on a Hilbert space H. Then the following conditions are equivalent:

(i) ATA = AAT,
(i) H = N(4) @+ R(A);
(i) N(4) = N(4");
(iv) A* = PA for some P € L(H)™".
Proof. Let A = L(H), the full algebra of bounded linear operators
on H. Brock’s condition (i)« (ii) follows from Theorem 2.1 (A simply po-
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lar with a selfadjoint spectral projection). The equivalence (i)¢(iv) follows
from Theorem 3.1(ix). To recover (i}«>(iii), we observe that, for any pair of
bounded linear operators 4, B on H,

3.1) [N(La) C N(Lp)] + [N(4) C N(B)]
(where Ly : U — TU on L(H)), and apply Theorem 3.1(iv).

COROLLARY 3.3. Let A € L(H) be an upper semi-Fredholm operator on
a Hilbert space H. Then the following conditions are equivalent:

(i) ATA = AAT;
(i) (A*A)"A =0
(iii) A(AA%)™ = 0.

Proof. Recall that an operator A € L{H) is upper semi-Fredholm if
R(A) is closed and N(A) finite-dimensional. Closed range operators on a
Hilbert space are Moore—Penrose invertible.

If ATA = AAT, then (ii) and (iii) hold by Theorem 3.1(ii).

Conversely, if (it) (which is the first half of condition (iii) in Theorem 3.1)
is satisfied, then A*(A*A)" = 0, which means that

N(A) = N(A*A) = R((A*A)™) C N(4™).
Since N(A) has a finite dimension equal to that of N(A*), we have N(A4) =
N(A*). This implies that ATA = AAT by Corollary 3.2.
Finally, (iii) is condition (ii) with A* in place of A, and hence, by the
preceding argument, (4*)" commutes with A*, which then implies (i).

From. this corollary we recover the result of Marek and Zitny [12, p. 143],
who proved the foregoing criterion under the assumption that A is a linear
operator on a finite-dimensional Hilbert space. Their result follows since
linear operators on a finite-dimensional space are Fredholun.

4. The product of elements commuting with their Moore—Pen-
rose inverse. By 2!, we denote the class of all elements a € AT such that
ate = aal. It is well known that 2!;  is not closed under multiplication of
elements in 2(; this is evident even for finite matrices.

EXAMPLE 4.1. In the C*-algebra 2 = C3*3 Jet
0 10 1 0 2
A=1]1 0 0|, B=|0 2 0|, so AB=
0o 00 2 01 0 0 0

Then 4,B € Al as AT = A and Bt = B~1. But the matrices (4B)f,

0 2 0
1 0 2.
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(AB)(AB)! and (AB)!(AB) are equal to
1 0 2 0 1 00 1 1 0 2
=ls 00, ool Zlo1of,

0 4 0 0 0 0 2 0 4
respectively, and (AB)(AB)' # (AB)(AB).

Adding commutativity makes a difference. The following result is known
for matrices [8].

THEOREM 4.2. Suppose that a,b &€ Al,,, and ab = ba. Then ab € Al
and (ab)t = afdl = blat.

Proof. By Corollary 2.2, af = a® and bt = bP. The set {a,b,a?, b}
is commutative. By [9, Theorem 5.5], ab is Drazin invertible with (ab)P =
aPhP = bPaP. We verify that ab is simply polar with a selfadjoint spectral
idempotent.

We have

(ab)(ab)™ == ab(e — (ab){ab)") = ab(e — aa®bb?)
= ab — (a?aP)(b*b") = ab — ab =10,
which shows that ab is simply polar. By Theorem 2.1, the spectral idempo-

tents a™ = e — aPa and b™ = e — bPb are selfadjoint; hence a®a and bPb are
selfadjoint, and

((ab)(ab)P)* = (aaPbdP)* = (86°)* (aa®)* = bbPaa® = (ab) (ab)P.

Therefore (ab)™ = e — (ab)(ab)P is selfadjoint, ab € A, by Theorem 2.1,
and (ab)t = (ab)® = aPbP = afbt.

Hartwig and Katz [7, Theorem 1] recently gave necessary and sufficient
conditions for the product of two EP matrices to be an EP matrix. The
following theorem, the main result of this section, generalizes their result to
C*-algebras.

THEOREM 4.3. Let a,b € Al ., and let a=*(0), b71(0) be finite-dimen-
sional vector subspaces of 2. Then the following conditions are equivalent:

(i) ab € Q[iomZ

(ii) (ab)a™ = 0 and b"(ab) = 0;

(iii) a~1(0) C (ab)~*(0) and b_1(0) C (ab)-1(0);

(iv) (ab)~1(0) = a=*(0) + b~1(0) and (ab)-1(0) = a—1(0) + b1 (0).

Proof. (i)=-(ii). By Theorem 3.1(vii), there is ¢ € & such that ab =
¢(b*a*). Since o™ is selfadjoint, (ab)a™ = cb*a*a™ = cb*(a™a)* = 0. From
ab € AL, it follows that b*a* € Al__; hence (b*a*)b™ = 0 by the foregoing
argument. Hence 6 (ab) = 0.
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(ii)=>(iii). Since (ab)a™ = 0 by assumption and since a™2 = & 1(0)
by Lemma 1.4, we have a=(0) C (ab)~1(0). Similarly, b"{ab) = O and
2Ab™ = b_1(0) imply b_1(0) C (ab)_1(0).

(iii)=-(iv). We note that 5=1(0) C (ab)~1(0). Write

X =(ab)"3(0), U=a"%0), V=b10), Y =0

Define f : X/V — 2 by f(x + V) = bz. The map f is linear and injective
with f(X/V)=UnY. Therefore X/V and UNY are isomorphic as vector

spaces. Since U NY and V are finite-dimensional, so is X. By Lemma 1.4,
A=bAPb~1(0) =Y V. Then

(UnY)ys(UnNVYCU and (UNY)aVCU+VCX,
taking into account the hypothesis U = a~*(0) C (ab)~1(0) = X. Then
dm((UNY) @ V) =dm@ NY) +dimV = dim(X/V) + dim V = dim X.

We conclude that (UNY)dV =U+V = X, that is, (ab)"1{0) = a=*(0) +
b1(0). We note that b_1(0) C (ab)_1(0) implies 5*1(0) C (ab)*~(0).
Applying the foregoing result to b*, a*, b*a* in place of @, b, @b, we obtain
l()b*az’;))“l(ﬂ) = @*71(0)+5*~1(0). This, in turn, implies (ab)_; (0) = a_(0)+
_1 .

(iv)=>(i). By Theorem 3.1, a=*(0) = o*~*(0) and b1(0) = &*~*(0).
Further, (ab}—1(0} = a1 (0)+b..1 (0) is equivalent to (ab)* ~*(0) = a~~*(0)+
b*~1(0). Hence

(ab)*7}(0) = &7 (0) + 571 (0) = (ab) (0},
and ab € AL, follows on another application of Theorem 3.1.

The preceding theorem can be modified for the C*-algebra 2 = L(H) to
obtain a result for bounded linear operators on a Hilbert space.

COROLLARY 4.4. Let A, B be bounded linear upper semi-Fredholm oper-
ators on o Hilbert space H satisfying ATA = AAY and B'B = BB'. Then
the following conditions are equivalent:

(i) (AB)'AB = AB(AB)Y;

(ii) (AB}A™ = 0 and B™(AB) = 0;

(iii) N(A) C N(AB) and R(AB) C R(B);

(iv) N(AB) = N(A) + N(B) and R(AB) = R(A) N R(B).

Proof. Theorem 4.3 cannot be directly applied in the setting of Hilbert

space operators since the spaces N(L4), N(Lg) (where Ly : U — TU) may
be infinite-dimensional even though N (A) and N(B) are finite-dimensional.
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Instead we retrace the proof of that theorem replacing formally
¥ by R(B),

a~'(0), 87H(0), (ab)7H0) by N(A), N(B), N(4B),

a1(0), b_1(0), (ab)_1(0) by N(A®), N(B*), N(B"A*),
respectively. To this end we note that

b_1(0) C (ab)_1(0) & &*"(0) C (b*a")"H(0),
(ab)-1(0) = a_1(0) +5_1(0) & (5*a*)"1(0) = a*1(0) + 5" "1(0).
Also, for any hounded linear operators A, B on H we have
N(B*)c N(B*A*) & R(AB) C R(B),
N{B*A*) = N(A*}+ N(B*) & R(AB) = R(A)N R(B).

We can then check that the proof of Theorem 4.3 appropriately modified
vields the required vesult.

When the preceding corollary is specialized to matrices we get the prod-
uct theorem of Hartwig and Katz [7], which answered a problem that was
open for over 25 years (see [L]). For a proof of the Hartwig—Katz theorem
it is enough to observe that matrices are Fredholm operators on a finite-
dimensional Hilbert space, and to verify that

N{A) c N(AB) & RS(AB) C RS(A),
N(AB) = N(A) + N{B) & RS(AB) = RS(A) NRS(B),
where RS(4) is the row space of the matrix A.

COROLLARY 4.5 [7, Theorem 1]. Let A, B be EP matrices. Then the
following are equivalent:

(i) R(AB) = R(A) N R(B) ond RS(AB) = RS(4) NRS(B});

(ii) R(AB) C R(B) and RS(AB) C RS(A);

(iii) AB 4s EP.

A simple direct proof of the Hartwig-Katz theorem for matrices was
given in [11].

Added in proof (March 2000). Recently Djordjevi¢ [15, Theorem 1]
proved that, for closed range EP operators on a Hilbert space (R(A*) =
R(A)), conditions (i) and (iv) of Corollary 4.4 are equivalent. LeSnjak (18,
Example] showed that, for general EP operators on a Hilbert space, condi-
tion {iii) of Corollary 4.4 need not imply condition (iv).

Acknowledgements. The author thanks Professor Zemdnek for draw-
ing his attention to references [12] and [14]. This led to the inclusion of
Corollaries 2.3 and 3.3.
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On operator bands
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ROMAN DRNOVSEEK (Ljubljana), LEO LIVSHITS (Waterville, ME),
GORDON W. MACDONALD (Charlottetown, PEIL),
BEN MATHES (Waterville, ME), HEYDAR RADJAVI (Halifax, NS)
and PETER SEMRL (Ljubljana)

Abstract. A multiplicative semigroup of idempotent operators is called an operator
band. We prove that for each K > 1 there exists an irreducible operator band on the
Hilbert space 1?2 which is norm-bounded by K. This implies that there exists an irreducibie
operator band on a Banach space such that each member has operator norm equal to 1.

Civen a positive integer r, we introduce a notion of weak r-transitivity of a set of
bounded operators on a Banach space. We construct an operator band on 1% that is
weakly r-transitive and is not weakly (r 4+ 1)-transitive.

We alsc study operator bands & satisfying a polynomial identity p(A4, B) = 0 for all
non-zero A, B € &, where p is a given polynomial in two non-commuting variables. It turns
out that the polynomial p(A, B) = (AB — BAY? has a special role in these considerations.

1. Introduction. Let B(X) denote the algebra of all bounded linear
operators on a (real or complex) Banach space X. A subset § of B(X) is
said to be irreducible if the only closed subspaces of X invariant under all
members of & are {0} and X. Otherwise, S is called reducible. A set & of
B(X) is said to be ¢riangularizable if there is a chain of closed subspaces
that are invariant under every member of & and this chain is maximal in
the lattice of all closed subspaces of X.

An operator A on a vector space V is called idempotent if A? = A
A semigroup S of idempotents on V is called an operator band. If V is a
Banach space, we also assume that all operators in § are bounded. Re-
ducibility of operator bands on Hilbert spaces has recently been studied in
[2], (5], and [6]. In [2] an irreducible operator band on the Hilbert space I2 has
been constructed. After having such an example it is natural to ask about
the existence of irreducible operator bands with some additional properties.
Sections 2 and 3 are devoted to this question. In Section 2 we construct an
irreducible operator band on {2 which is norm-bounded. This implies that
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