90 J. J. Koliha

References

[1] T.S. Baskett and I J. Katz, Theorems on products of EPr matrices, Linear
Algebra Appl. 2 (1969), 87-103.

[2] K.G.Brock, 4 note on commutativity of o linear operator and its Moore-Penrose
inverse, Numer. Funct. Anal. Optim. 11 (1990), 673-678.

[3] 8. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Tronsforma-
tions, Pitman, London, 1979.

[4] M. P. Drazin, Pseudo-inverse in ossociative rings ond semigroups, Amer. Math.
Monthly 65 (1958), 506-514.

[5] R.E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia
Math. 103 (1992), 71-77.

8] —, —, Generalized inverses in C*-algebras II, ibid. 106 {1993}, 129-138.

7] R.Hartwigandl J. Katz, On products of EP matrics, Linear Algebra Appl. 252
(1997), 339-345.

8] I 1. Kats, Weigman type theorems for EP; matrices, Duke Math. J. 32 (1965),

423-428.
[9] J.J.Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
[t0] —, The Drazin and Moore—Penrose inverse in C*-algebras, Proc. Roy. Irish Acad.
Sect. A 99 (1999), 17-27.
[11] —, A simple proof of the product theorem for EP maotrices, Linear Algebra Appl.

294 (1999), 213-215.

[12] I Marek and K. Zitny§, Matriz Analysis for Applied Sciences, Vol. 2, Teubner,
Leipzig, 1986.

[13] R.Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51
{1955), 406—413.

[14] E. T. Wong, Does the generalized inverse of A commute with A7, Math. Mag. 59
{1986), 230232,

References added in proof:

[15] D. Djordjevié, Products of EP operators on Hilbert spaces, Proc. Amer. Math.
Soc., to appear.

(18] G.Le&njak, Semigroups of EP linear transformations, Linear Algebra Appl. 304
(2000), 109-118.

Department of Mathematics and Statistics
The University of Melbourne

Melbouzrne, VIC 3010

Australia

E-mail: j.koliha@ms.unimelb.edu.au

Received March 23, 1999 (4288)
Revised version January 28, 2000

icm

STUDIA MATHEMATICA 139 (1) (2000)
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and PETER SEMRL (Ljubljana)

Abstract. A multiplicative semigroup of idempotent operators is called an operator
band. We prove that for each K > 1 there exists an irreducible operator band on the
Hilbert space 1?2 which is norm-bounded by K. This implies that there exists an irreducibie
operator band on a Banach space such that each member has operator norm equal to 1.

Civen a positive integer r, we introduce a notion of weak r-transitivity of a set of
bounded operators on a Banach space. We construct an operator band on 1% that is
weakly r-transitive and is not weakly (r 4+ 1)-transitive.

We alsc study operator bands & satisfying a polynomial identity p(A4, B) = 0 for all
non-zero A, B € &, where p is a given polynomial in two non-commuting variables. It turns
out that the polynomial p(A, B) = (AB — BAY? has a special role in these considerations.

1. Introduction. Let B(X) denote the algebra of all bounded linear
operators on a (real or complex) Banach space X. A subset § of B(X) is
said to be irreducible if the only closed subspaces of X invariant under all
members of & are {0} and X. Otherwise, S is called reducible. A set & of
B(X) is said to be ¢riangularizable if there is a chain of closed subspaces
that are invariant under every member of & and this chain is maximal in
the lattice of all closed subspaces of X.

An operator A on a vector space V is called idempotent if A? = A
A semigroup S of idempotents on V is called an operator band. If V is a
Banach space, we also assume that all operators in § are bounded. Re-
ducibility of operator bands on Hilbert spaces has recently been studied in
[2], (5], and [6]. In [2] an irreducible operator band on the Hilbert space I2 has
been constructed. After having such an example it is natural to ask about
the existence of irreducible operator bands with some additional properties.
Sections 2 and 3 are devoted to this question. In Section 2 we construct an
irreducible operator band on {2 which is norm-bounded. This implies that
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there exist an irreducible operator band S on {? and an equivalent norm on
12 with respect to which each member of § has operator norm equal to L. In
Section 3 we introduce a notion of weak r-transitivity of a set of bounded
operators on a Banach space, where r is a given positive integer. We con-
struct an operator band on {2 that is weakly r-transitive and is not wealkly
{r 4+ 1)-transitive.

In [6] it is shown that every operator band & on a Hilbert space satisfying
(AB — BA)* = ( for all A, B € S is triangularizable. This result motivates
the study of operator bands S satisfying a polynomial identity p(A, B} =0
for all non-zero A,B € S, where p is a given polynomial in two non-
commuting variables. The results of Section 4 show that the pelynomial
p(A, B) = (AB — BA)? has a special role in these considerations.

A reference for what follows is [7]. It should be noted that the definitions
and remarks below are not needed to understand Theorems 2.2 and 2.3 and
their proofs.

Define a relation < on an operator band § by
A=<B& ABA = A.

Then = is a pre-order on & (it is reflexive and transitive). This (in fact,
each) pre-order determines an equivalence relation ~ on & by

A~B& A< Band B <A

Let C4 denote the equivalence class of A € S. Then C4 is a subband of &. We
refer to the equivalence classes as componenis of §. Define the multiplication
on the set §/~ of all components of S by

CaCp =Cup.

This operation is well defined and S/~ is an abelian band under it. The

band pre-order on &/~ is a partial order. We denote it by <. It is easy to
see that

Ca<lp&< A= B

An ideal of a semigroup § is a subset of § which is closed under right
and left multiplications by elements of §. An ideal generated by one element
of S is said to be a principal ideal A principal-ideal band is a band with

identity in which every ideal is principal. Principal-ideal matrix bands have
been studied in [3].

2. Norm-bounded irreducible operator bands. In [2] an irreducible
operator band on the Hilbert space 12 has been constructed. Essentially, this
construction is based upon the following operators on (2.
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Given k& x k matrices A and B, let P4 p be the 3k x 3k matrix

A AB —-AB A
Pyp=|Al[B —-B I|=|AB —AB A},
I B -B I

where I is the identity matrix of order k. Let T4 p be the infinite block-
diagonal matrix

Ta,p = diag{Dy, Dy, Dy,.. .},
where the block D; is equal to P4 p if the number 4 is representable in the
ternary system by 0’s and 1's only, and D; equals the identity matrix of

order 3k otherwise. We regard T4, g as an operator on I?. One readily shows
that

(1) 1Tazl* < 4lAB|* + 2 A* + 2B + 1 < 2 AP + )2 1B + 1).

It is easy to see that Ty g Tp,p = Ta p for all k x k matrices A, B, C and
D. In particular, T3 5 = Ta,z.

After the publication of [2}, M. D. Choi posed the question of whether
there exists an irreducible operator band on a Hilbert space that is also
norm bounded. This problem can be reformulated in the following way:

PROBLEM 2.1. Let 8 be an operator band on o Hilbert space such that
for some K > 1 we have ||S|| < K for all § € 8. Is 8§ necessarily reducible ?

If we also assume that K = 1, then every member of S is Hermitian (see
e.g. [1, Proposition 3.3]). In this case we have ST = (S8T)* = T*S* =TS
for all S,T & &, so that S is a commutative band, and hence reducible.
However, for K > 1 the following result holds.

THEOREM 2.2. Let K > 1. Then there exists an operator band & on the
Hilbert space I? such that .

(a) |S|| £ K forall S€ 8,
(b) the semigroup Rt S := {\S: A> 0, § € S} is weakly dense in B(I*),
and so § is irreducible.

Proof. Let d:= +/(K —1)/2 and ¢ := d/K. For each positive integer n
let Sy, denote the set of all operators T4 p as A and B range over all 3™ x 3%
matrices with norm at most ¢, and let 7, denote the set of all operators
Tap as A and B range over all 3" x 3" matrices with norm at most d.
Tt is obvious that S, and 7, are both operator bands satisfying &, C 7.
Furthermore, by (1) we have |T4 5|l < 24*+1= K for all Ta g € Ty

We shall prove that S, 7, C 7, and 7,5, € T, for all positive integers
m and n with m < n. Pick Tap € 8, and § € 7,,. Then there exists a
an % 3" matrix M with norm at most K such that

S= di&g{Oo, 01, Cz, . .},
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where the block C; is equal to M if the number ¢ is representable in the
ternary system by 0’s and 1’s only, and C equals the identity matrix of
order 3" otherwise. From

A M 0 0 A
Al[B -B I]|0 M 0|=|A|[BM -BM I]
T 0 0 I I

it follows that Ta pS = Tamm. Since |[BM|| < |B||[M| < <K = 4,
we conclude that Ta gy € Tn. This completes the proof of the inclusion
8nTon C T, The proof of the other inclusion is similar.

Now let & be the semnigroup generated by the union Une_; Sn. We claim
that S is an operator band and that (a) holds. To this end, pick § € §. Then
S is a finite product of some members of 7., Sn. Let p be the smallest
integer such that these members belong to the finite union (Jf_; Sn. Using
the above inclusions and the facts that S, and Ty, are semigroups, we easily
conclude that S € 7,,. Therefore § is an idempotent with norm at most K.

In order to prove (b) we consider T € B(I%) and z,y € !*. There is no
loss of generality in assuming that [|T'|] < c. For each n € N there exists
a 3™ x 3" matrix A, with norm at most ¢ such that the operators T and
Ty i=Ta,cr € S & & have the same upper-left 3® x 3" corner. The rest
of the proof goes along the lines of the last part of the proof from [2]. The
weak density of BT S also implies that & is irreducible. m

In the case of Banach spaces we have the following:

THEOREM 2.3. There exist an irreducible operator band S on 12 and an
equivalent norm on 1 with respect to which each member of & has operator
norm equal to 1.

Proof. It is well known and easily shown that for each bounded semi-
group & of operators on a Banach space containing the identity, we can
define an equivalent norm on the Banach space by

2]l = sup{||Szi : § € 5},

with respect to which every member of § has norm at most 1, Now take for
& any operator band obtained in Theorem 2.2, and adjoin the identity to
it. w

Theorem 2.2 (and therefore Theorem 2.3 as well) can be improved as
follows.

THEOREM 2.4. Let K > 1. Then there exists an operator band P on 12
such that

(a) P is norm-bounded by K,
(b) R*P is weakly dense in B(i%) (and so P is irreducible),
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(c) P is a principal-ideal band with countably many elements, and each
component of P is finite.

Proof. Let us use the notation from the proof of Theorem 2.2. For each
positive integer n let {Wy;}ren be a sequence of 3™ x 3" matrices that is
dense in the ball of all 3® x 3" matrices of norm at most e. Furthermore,
let P, be the natural embedding of C3" into 2. Define the double sequence
{Znk}n,ken of bounded operators on {2 by Z,x = P, Wy Py Let {Antnen
be a renumbering of the terms of the sequence

211, Z12, Lav, 213, Loz, £31y Z14, Do, D32, Zg1, .

Define an increasing sequence {P, }nen of semigroups inductively. Let Py
be the operator band on I* generated by Tpy A, Py c1 and the identity, and
let Pp, be the semigroup generated by Pn.1 and the operators Tpx 4, P, ,cr,
TpsayPpiels +v oy LP2 APy el Since §pTm € Ty and 1,8, C T, for all posi-
tive integers m and n with m < n, we conclude that P, C {I}UTU.. . UZy,
and so the semigroup P, is an operator band. By the famous theorem of
Green and Rees [4] every finitely generated band is finite, so that P, has
finitely many elements. Note that for each n € IV,

TpsasPoer ~ Tpragppyer ~ o ~Tpra, b, er,

and

Tps AiPoel * TPy a; 8,00 ~ TP a,Pel ~ TP2 A;Pryel " TPrA Pyl

for all n > m and 4,7 & M. (See the proof of the inclusions S,7m C 7T, and
TmSn C T, for n > m.) It follows that P, gains only one component in
addition to those which make up Pr—1, and this component is the smallest
one (with respect to <) of P,. In particular, Py, is a principal-ideal band.
Then P = |}, Pn is a countable principal-ideal band with finite compe-
nents, and so (c) holds. Since P \ {I} is contained the union of all 7, P is
norm-bounded by K. '

For each positive integer n define @, = P, P}, For the proof of (b) it is
encugh to show that each T' € B(I?) satisfying QmT Q@m = T for scme m isin
the weak closure of Rt P, because the set of such operators is weakly dense
in B(12). Pix z,y € 1%, and 1 > & > 0. We may assume that ||T|| < ¢. Then
there exists 7 > m such that for each n > 7 the operator Ty, = Tre s, P, cr €
P, satisfies the estimate |@n(T —T5)@n| £ &. (Note that QpTnQn = cA;.)
Decompose [2 into the direct sum of the range and the kernel of Q. Then
the matrix of T — T}, is of the form

E, U,

Vo Wel’
where the norm of the 3™ x 3™ matrix E, is at most 5. Writing = = {23, x2)
and y = (y1,v2) with respect to the same decomposition of the space 12, we
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have
(T = Ta)z,p)l < | Ball fzall | + 1Tl iz2l: lluel
+ [ Vallllzl el + [Wall a2 ly2]l-
Note that by (1),
max{||Un |, [Vall, [Wall} < [T = Tult S IT1+ |75l

< T + o/ 21 P A Pa | + 1)(262 + 1)

< (1T ++/ @A 12 + 126 + 1),

Since [|QnT@n —cAsll = [[Qn(T — To)Qnll < &, We bave [cAy|| < [|QnTQn||
+¢& < ||T|| + 1. It follows that there exists a constant L not depending on n
(depending on [T and ¢ only) such that max{||Unl|, |Vall, [Wnl} < L.
Hence

(T — Ta)z, 0] < ellzll lyll + Lyl =2l + el llvz]] + |2 {vall)-

If n tends to infinity, then max{||zsl[, ||y2]l} is arbitrarily small, which implies
that 7" is in the weak closure of P. This completes the proof of (b). m

3. Weakly-transitive operator bands. Let r be a positive integer,
and let X be a Banach space. We say that a subset S of B(X) is weakly
r-transitive if for each linearly independent set {z1,...,z,} in X, for each
subset {y1,...,¥-} of X and for each weak neighborhood V of 0 € X there
exists § € & such that Sz; —y; € V for each 2 = 1,...,r. It is easy
to see that a subset 8 of B(X) is weakly r-transitive if for each linearly
independent set {z1,...,z,} in X and for each subset {y1,...,4} of X
there is a sequence {9, }new in 8 such that for each i =1,..., r the sequence
{SnZi}nen converges weakly to ;. It is not difficult to see that a subset
of B(X) is weakly dense if and only if it is weakly r-transitive for every
positive integer r. Furthermore, every weakly l-transitive subset of B(X)
is irreducible. On the other hand, not every bounded irreducible operator
band on I is weakly l-transitive, as can be quickly checked.

Let v be a fixed positive integer. In view of the above remarks every
weakly dense subset of B(X) is weakly r-transitive. The converse assertion
is not true, even within the class of operator bands. Moreover, the following
theorem holds.

THEOREM 3.1. Let v be a positive integer. Then there exists a principal-
ideal operator band R on I* that is weakly r-transitive and is not weakly
(r -+ 1)-transitive.

Proof. For each positive integer n satisfying 3™ > r, let R,, denote the
set of all operators T4 5 as A and B range over all 3™ x 3" matrices such
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that the rank of A is at most r. Denote by R the union of the identity
and all R,. It is easy to verify that R is a principal-ideal operator band.
To prove that R is weakly r-transitive, choose linearly independent vectors
£1,-..,2Zr € 2, and choose any vectors y1,...,yr € 12. Then there exists an
operator R € B(I?) of rank at most r such that Rz; = y; forallé=1,...,7.
For each n € N satisfying 3™ > r there exists an operator R, 1= T4,.,7 € Rn
such that the matrix of R — R, is of the form

0 U,
Vo Wn)’
where the 0 is the 3™ x 3" zero matrix. Choose any vector z € [2, and write

®; = (w?), w§2)) (i=1,...,r) and z = (21, 2(?)} with respect to the above

decomposition of the space 1. Then, for any i = 1,...,r,
(R = Ra)i, 2)] < T[] 129
Vil 1= (2@ )+ (W) 282123,
Note that
max{[Un |, 1Vall, [Wal} < IR = Rall < §B] + 1R
< | R+ v3@[ A2+ 1)
< | R| + v3@IRIF+1).
If we let M := | R|| + +/3(2||R]* + 1), we have

2 2
(R~ Ra)os, 2| < M|zl poax (271 + 2012 max Jlz31)
for any i = 1,...,r. If n is sufficiently large, then max{Ha:gg)“,...,”wg)ﬂ,

2|} is arbitrarily small. Since Rz; = y;, it follows that the semigroup
is weakly r-transitive.

Next we demonstrate that R is not weakly (r+1)-transitive. Let e1, ez, . . -
be the standard ortho-basis vectors of I2. Define z; = 2 = ¢; for i =
1,...,r+1, 41 = eg, Yo = &1, and 3 = g; for 3 < i < 7+ 1 (provided
r > 2). Suppose that R is weakly (r + 1)-transitive. Then for each n € N
there exists T4, 5, € R such that

(T4, B, — Yir2k)| <277

for all 4,k = 1,...,7 + 1. Denote by P the natural embedding of Cr+ into
12, and by €,...,En+1 the standard ortho-basis vectors of C™t1. We then
conclude that the sequence { P*T4,, 5, P}nen convergesin the operator norm
to the operator J on C'** defined by J& = &, Je; = &, and Je;, = &
for 3 < i < r+ 1. In particular, there exists an integer n such that the
operator P*Ty, g, P on €' is invertible. But the matrix of this operator
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is a principal (r +1) x (r +1) submatrix of the matrix A, B,, which has rank
at most r. This contradiction completes the proof. u

4. Operator bands satisfying a polynomial identity. Throughout
the section, V denotes a real or complex vector space. In [6] the following
results on commutators in operator bands have been shown.

THEOREM 4.1. Let S be an operator band on V. Then (AB— BA)® =0
forall A/B € S.

THEOREM 4.2. Let & be an operator band on o Banach space satisfying
(AB ~ BA)? =0 for all A,B € 8. Then S is tricngularizable.

We remark that the preceding theorem is proved in [6] in a Hilbert space
setting. However, it is clear from that proof that the theorem is true in a
Banach space setting as well. Note also that every operator band on a vector
space is algebraically triangularizable (see [6]).

The above results motivate the consideration of operator bands & on V'
satisfying a polynomial identity p(A4, B) = 0 for all 4, B € §\ {0}, where p
is a given polynomial in two non-commuting variables. We first observe that
the subband generated by A and B has at most 6 elements: A, B, AB, BA,
ABA, and BAB. Hence, we may assume with no loss of generality that the
polynomial p has the form

p(A,B) = SlA + 59 B + tlAB -+ thA +u1 ABA + ’Ll.zBAB,

where at least one of the scalars s1, 3, 1, t2, u1, and ug is non-zero. We
shall now state the main result of this section.

THEOREM 4.3. Let p be as above, and let & be an operaior band on
V' with more than one non-zero component such that p{A, B) = 0 for all
A,B e 8\{0}. Then (AB— BA? =0 for all A,B € 8. In a Banach space
setting this implies that & is friangularizable.

The following proposition covers the special case of Theorem 4.3 when
81 =83 =0.

PROPOSITION 4.4. Assume that ot least one of scalars ty, tz, 11, and up
is non-zero. Let & be an operator band on a vector space such that

(2) t1AB +taBA 4+ uyABA + uy BAB = 0
forall ABeS. Then (AB—~ BA)? =0 forall AJB€ S.

Proof. We may assume that S is non-zero. Putting A = B # 0 in (2)
we obtain

t1 +t2 +ur +ug = 0.
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We now multiply (2) on the right by A to get
(t1 +u1)ABA+ (tg +u) BA =0,
and so
(t1 + w1 )(ABA -~ BA) =0.
If t +uy # 0, we have ABA = BA for all A,B € &. It follows that
BAB = AB by interchanging the roles of A and B. Thus
(AB —~ BA)Y* = AB—~ ABA—BAB+ BA=0

forall A, Begd.
Assume now that 1 + u; = 0, and 80 £ + vy = 0 as well. Multiplying
(2) on the left by B we obtain '

(t1 + Uz)BAB + (tz + ul)BA =0,
and hence
(t1+u2})(BAB—BA)=0.

If ¢ + ug # 0, we conclude (just as before) that (AB ~ BAY? = 0. So, we
must consider only the case when t) +uy = 0, t2 +upz =0, and #1 +uz = 0.
Then we have £, = tg = —uy = ~ug, so that (2) becomes

AB+BA-ABA—-BAB =10

for all A, B € 8. It follows that (AB — BA)? =0forall 4,B€S. u

Proof of Theorem 4.8. Let Ag and By be non-zero elements of & which
come from two distinct components. Then AgBg < Ag and ApBy = Bo.
Moreover, either AgBp 7 Ag or ApBy ¢ Bg. Since AgBp ~ BpdAy, there is
no loss of generality in assuming that AgBg ¢ Ag. Define Cp == ApBp. We
then have

g1 Ag + 85Co + £ ACo + toCoAn + w1 40C0 A0 + weCpApCo =0,
or equivalently,
§1Ap + (82 &1 + uz)C'o -+ (tg + a7 YO Ag = 0.
Multiplying by Aq on the right, we get
s1.40 + (Sg +t3 + ug +t2 + ul)CQAQ = (),

It follows that s; = 0, and by symmetry also s = 0. Hence Proposition 4.4
can be applied to complete the proof the theorem. m

Consider now the case when & has exactly one non-zero component. If
A,B € 8\ {0}, then ABA = A and BAB = B, so that there is no loss of
generality in assuming that the coefficients uy and wusy of the polynomial p
are zero.
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PROPOSITION 4.5. Assume that ot least one of the scalars sy, 82, ty,
and ta 18 non-zero. Let & be an operator band with ezactly one non-zero
component such that

(3) $1A+ 53B +t AB +1,BA =0
for all non-zero A,B € 8. Then (AB — BA)* =0 for all A,B € S.

Proof If A,B € 8\ {0}, then A == ABA and B = BAB, so that
(3) implies t1AB + t3BA + 51ABA + 50 BAB = 0. Hence Proposition 4.4
completes the proof. m
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