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Two-parameter Hardy-Littlewood inequality and its variants
by
CHANG-PAO CHEN and DAH-CHIN LUOR (Hsinchu)

Abstract. Let 5* denote the maximal function associated with the rectangular par-
tial sums smn(z,y) of a given double function series with coefficients c;j,. The following
generalized Hardy-Littlewood inequality is investigated:

e oo 1/p
15" llps < cp,a,ﬁ{z Z(i)f’"“‘z(%)P—M;%;P} ,

=0 k=0

where £ = max(£,1), 0 < p < oo, and g is a suitable positive Borel measure. We give
sufficiens conditions on ¢;; and u under which the above Hardy-Littlewood inequality
holds. Several vartants of this inequality are also examined. As a consequence, the || - ||p,p-
convergence property of 8mn(z,y) is established. These results generalize the work of
Asgkey-Wainger [1}, Balashov [2], Boas [3], Chen [5], [6], [8], [9], Marzug [15], Mdricz
[16]-{18], [19], M&ricz—Bchipp-Wade [20], Ram~Bhatia [22], Stechkin [24], Weisz [26]-[28],
and Young [30].

1. Introduction. Let & = {¢,}5%, be a uniformly bounded family of
Borel measurable functions defined on a finite interval I C R. We assume
that the following condition is satisfied by some g € I:

(1.1) sup |(t — to)Dn(t)] < o0,
n>0itel )

where Dp(t) = 3% ¢5(t). Then

ENEEEDD chk¢j($)¢k(y) (myn 20 z,y €l)

Jrl) w2 ) .
are known as the rectangular partial sums of the double function series

(1.2) Do cirdi(@)n(y)  (my€El)

F==0 ks=0
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We are interested in finding conditions on the coefficients c;y, the value of
p, and the positive Borel measure p under which sp,(%,y) converges in
L?(I? dy) as min(m, n) ~+ oo. Here IP(I2, du) denotes the space of all f for
which || fl|p,. < o0, where

Y
£l = (§ 1w )
Iz
| Flloays = esssup |(,v)!
(zw)er?

(0 < p < ool

For dp = dzdy, we write || f||p instead of || f]|p,u, where dady is the Lebesgue
measure on 2.

The above-mentioned problem has drawn attention of mathematicians
for a long time. It is closely related to the magnitude problem for ||s*||p,,,
where

S(my)= sup [smn(z,y)] (zy &),

e 'n.
In [7], the first author and G.-B. Chen discussed the case p = oco. Their
results generalize the work of Chaundy-Jolliffe [4], Jolliffe [12], Nurcombe
[21], and Xie—Zhou [29].
In this paper, we focus our attention on the case 0 < p < oo. Associated
with the sequence {c; : j, k > 0}, we introduce the following four types of
numbers:

o = Ezmh e ={j i}{zk:}MwGuul,

o = {g:}{ S paneal, = EHIS pane

Here £ = max(£,1) and the finite differences Agpeyy are defined by

Aagejp = ZE( 1)5“( )( )Cj—l-a,k+t-

8= =0
Denote by Ny the set of all nonnegative integers. Set 2, = {to} and 12; =

{tel:1/(F+1) <|t—1tg] <1/5} for j € Ny. Corresponding to p, let ,u#
denote the measure on Ny x Ny with

FUGRD) =l x 2 (3,k 2 0),
and || - ||, ,# is defined by

s} e = (32 3 ldguut (. 00p)

i=0 k=0

(0 < p < o).
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In Theorem 2.1, we shall investigate the validity of the following inequality:
(1.3) 5% g, < Cop,p Z H{C
0<y,6<1

where Clp . s a constant. We prove that (1.3) is true for all 0 < p < oo
provided the following two conditions are satisfied:

(1.4) cik — 0 as max(j, k) — oo,
(1.5) (I X 50) = (20 x ) = 0.
Our result is the Ly-version of [7, Lemma 2.1].
For vg > 0, we introduce a new measure ,ufo on Ny x Ny, defined by
{2y % ﬂk) (4, % > wo);
# iy = d B2 x Ty (2 02k <wg);
MUQ({(J’k)}) (IX Qk) (O SJ <'UOE k_>,_’UU);
( (O S j: k < 'UD)‘

In Theorem 3.4, we transform (1.3) into the form

(1.6) 5™ o < Cprwo ek} g, e

where || - ||, u# v, is obtained from || - ||, .+ by changing pu# to uf . We shall
verify that (1.6) is true for 1 € p < oo provided (1.4)-(1.5) and the following
two conditions are satisfled for some constant C:

(A7) 2 X B8 < Culiul < %)) (5> w05 0% k< oo),
(1.8) w2 x 28°) < Cu{kul{2; x )} (0 <7 < o005 k2 wp),

where (20 = Uk—- 2. The measure uf and the number || - |5 .4, are
mtroduced in orcler to overcome the problem that {2; = 0 for small j € Np.
This problem arises for some function systems, such as the bounded Vilenkin
system and the Paley—Walsh system. For these two systems, we see {2y = ()
(cf. the paragraph after Corollary 3.5).

Conditions (1.5) and (1.7)-(1.8} are satisfled by the measure dy =
|z — to|*ly — to|*dedy, where o, 8 > —1 and wvp is the smallest nonnega-
tive integer with sup,ey [t —to| > 1/(vp 4 1). For such g and 1 < p < oo, we
shall prove that (1.6) reduces to

(L9 [*l5, < Cpe ,ﬁ}:}: yrme=2 gy == 2{22[411%\}

j=0 k=0 u=jv=k

Our result generalizes Askey-Wainger [1] and Ram-Bhatia [22] (cf. Corol-
lary 3.5). Let Rez and Imz denote the real and imaginary parts of z, re-
spectively. Consider the case

(1.10) Re Ajiei 2 0, Im Ayesn =0 (4,k 2 0).
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Then (1.9) can be further reduced to

[ < S o] _ _ 1/p
011) 57l < Crap{ 2 S G2 el

F=0 k=0
(cf. Corollary 3.6). This extends Méricz [16]-[18], Stechkin [24], and Weisz
[26]-[28] from the case @ = § = 0 to the range o, 3 > —1, and generalizes
Chen [8], [9], Marzug [15]. The particular case o = 8 = 0 of inequality (1.11)
is known as the two-parameter Hardy-Littlewood inequality.

Related to the work of [6], we consider du = |¢(z)¥(y)|dzdy, where ¢
and ¢ are Borel measurable functions defined on I. Assume that 8 and 9 are
positive functions defined on [1, co) such that the following two inequalities
hold for some constants Cy and Cy:

¢(z) . .
(1.12) I\HL 7t 2= Cf0)  (20),
(1.13) = dy < Cyd(k) (k> 0).
I\nw

In Corollary 3.7, we shall prove that (1.6) with p = 1 reduces to

(1.14) 8" l1,0 < Copup ZZ (79

J=0 k=0

This generalizes Balashov [2], Boas [3], Chen [5], [6], Marzug [15], Méricz
[17], [19], Méricz-Schipp-Wade [20], and Young [30].

In 84, we extend the theory developed in §2-§3 to the trigonometric
system {e™*}52 . Following the proofs given in §2-§4, we also see that
the whole theory can be extended to any dimension without difficulty.

Throughout this paper, the symbol Cj, ,, and its variants denote positive
constants depending on the parameters concerned. The constants are not
necessarily the same at each occurrence. If no ambiguity can arise, we also
use {cjx} to denote both {c; : §,k > 0} and {ejk 1 —00 < 4,k < oo}

(k)| Ayrcirl-

2. Inequality (1.3).Let 0 < p < co and 7, 6 = 0, 1. Denote by S;i# the

space of all sequences {c;x : 4,k > 0} satisfying (1.4) and {e] }||p,“# < oo,

Condition (1.4) implies inequalities of the type |cjx| < Y2
We should keep this fact in mind whenever we use (1.4). Set

k{1 il > mor k] >n,
Xmn(J, k) == { 0 otherwise,

; 1410¢ik|, ete.

and cjx(m, n) = Ymn(j, k)c;jz- Define the sums c}f:(m n) from c 5 by chang-
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ing ¢jk to jx(m,n). The first main result of this paper reads as follows. It
is the Lp-version of {7, Lemma 2.1].

THEOREM 2.1. Assume that 0 < p < co and w satisfies (1.5). Then

there exists Cp,, < 0o such that (1.3) holds for all {ein} € Nocrs<1 S;i#

Moreover, for such {cjx}, smn converges in LP(I2, du) fo some function f
as min(m,n) — oo, and

(2.1) Il S Coe > 2T Hip,
0<y,6<1

(2.2) lomn = Fllop S Coe Y 1{cTa(m, ) Hlp, -
0<,d<1

Proof. Let M = [1/|z —to|] and N = [1/|y — t,|], where [] means the
greatest integral part. Then for m,n > 0, we have

|8mn (2, ¥)| < Z11 + Dia + Tay + Doa,
where

‘Z Z XN (k)i

=0 k=0

4=0 Z-;c\;() | =
A28, wheri)\ = 5UP, [[frlloo- Set T = sup,sp.er [(t — to)Dn(t)]. Then
|Di(¥)| £ 27N for all k. By (1.4) and summation by parts, we get

Xkt = X(o.m)> and X3 = X o,a1]- Obviously, ¥1; < A2 52N

n

2a = |zm:Z

F=0 k=0

+ |32 3k (0 + Dejnra9i() Daly)|
j=0

’ M oo
ZZE-AOI XN Csk
J=

0 k=0 j=
=

Analogously, £a1 < 4drc}?y. We have |D;(z 2rM and |Dy(y)] < 27N
for all 4,k > 0. The clouble summatxon by parts implies

() Ao (ks b5 (2) Daw)|

3

Z ]Ao'lc_,:k] = 4ATC%N

Ma

O

T < ‘17“217‘77‘722 | An (e ()3 (k) ege)]| < 167°ch
F=0 k=0

Putting these together yields
(2.3) |S*(.’L' ‘y)| < )\2 N + 4:ATCMN + 4’\TCMN + IBTZCE}N
= Jl(w,y)+J2(m; y) -|-J3(!E,y) —|—~J4(ﬂ.'},y), say.
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For j,k > 0 and (x,y) € §2; x {2, we have M = j and N = k, and so
Ji(z,y) = A%). By (1.5), we get

P = ii H |J1{z, y)|P du

24) |4l
§=0 k=0 rz,- X 82
= A% ZZlC w2y x ) = A”’II{C?;?HQH#-
3=0 k=0

Similarly, we have

(2.5) 172115, S ()P {FeHIE

(2.6) 1 F5]15,. < (ATPI{eRHIE s

(2.7) 17413, < (L6722 I{eia I -

Putting (2.3)-(2.7) together yields (1.3). Denote by s, . (z,y} the maximal
function associated with the rectangular partial sums of the double function
series ..~ o D peo Cik(My n)@;(2)¢k(y). Then the previous result implies

]
8ranllpe S Cpp Zo<7,5<1 ”{c;/k (m, n)}”p . For M > max(m, n), we have

Imn ~ 363l = HZZ% m, m)os (s

7=0 k=0
< 5rmnlion € Cop D IHeJe () Hlpym
07,651
—0 as min(m,n) — cc.
Hence, {sprar}33—, forms a Cauchy sequence in L?(I?, dyu). Let f be its limit
in LP(I?,dp). Then
I£llpw < 5% o < Coe D, T Hlpet
W= P = Dy kP, u¥
0<md<l
. &
8mn — Fllow = MIEJOO | $mm — saratllp,n < Cpu 0<X;<1 ||{c'Y {(m, 1) |,y m
=7

8. Variants of (1.3). Let 5.1, (vespectively, S3% 5, S5% 5 SEL) be
the space of all sequences {c;x : 4,k > 0} for which (1. 4) is satisfied and the
right-hand side of (1.6) (respectively, (1.9), (1.11), (1.14)) is finite. Denote by
S%* the set of all {¢; : j,k > 0} subject to (1.4) and (1.10). The purpose of
thls section is to investigate the validity of the following mclusmn relations:

Sil N Sgg,ﬁ - S;,la,ﬁ p,'-ﬂ# v & ﬂ u#’
0<,6<1
S 1 u# vo?

and then, to derive (1.6), (1.9), (1.11) (1.14) from Theorem. 2.1.
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As defined in [14], we say that a nonnegative sequence {ay, }32., is quasi-
decreasing if there exists v > 0 such thas

(3.1) itk S Yan (1<k<mn).

Analogously, {@pmn : m,n > 1} is said to be quasi-decreasing if am, > 0 for
all m,n > 1 and there exists v > 0 such that

(32) Gmtjn S VCmn (1 Sy} S m; n 2 1)1

(3'3) Gtk < Vamn (M21; 1<k < n).

In the following, (1,n) denotes the interval {1 < z < n}, A, denotes the

closure of A, in R, and k € Ar means that k runs over all positive integers
in 4,.

LEMMA 3.1. Let A, > 0 {n =1,2,...) and {4,}32, be {(1,n)}32, or
{(n, c0)}2%,. Assumne there exists 0 < a < 0o such that

(3.4) 3 <and, (n=1,2,..)
kcA,

Then for 1 < p < oo, there exists Cp o (= aPpP) < oo such that

(3.5) i An( > ak)p < Cpa i An (nean }P

=l ke(l,00)\An n=1

Jor all nonnegative sequences {a,}52 . Ineguality (3.5) remains true for 0 <
p < 1 provided that the Cp . is replaced by Cp oy and {a,}72 is further
assumed to be quasi-decreasing, where v is defined by (3.1).

Lemma 3.1 is a generalization of an inequality of Hardy and Littlewood.
It can be proved directly from [13] and {14, Theorem B]. Applying it twice,
we can easily obtain the following extension of [18, Lemma 1]. Méricz’s result
corresponds to the special case Amn = m~%n—%%2,

LeMMA 3.2. Let Apn = 0 (m,n = 1,2,...) and any of {Ax}3, and
{Bi}52; be of the form {(1,k)}32; or {(k,00)}52,. Assume there ewists
0 € o < oo such that

(3.6 3 Ain S omdmn  (myn21),
jEAm

(3.7) S Ak € 0nApa (myn 2 1).
keh,

Then for 1 < p < oo, there ezists Cp o (= a®Pp*P) < 0o such that
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(3.8) ii;\m( 3 3 aﬂ«)p

m=1n=1 Je(l,c0\Am kE(L,00)\Bx
oo oo
< Cp,a 5 Amn mnamn p
=1 n=1

for all nonnegative sequences {amn : m,n = 1}. Inequality (3.8) remains
true for 0 < p < 1 provided that the Cp o 48 replaced by Cp oy ond {tmn
m,n > 1} is further assumed to be quasi-decreasing, where v is defined by
(3.2) and (3.3}

THECREM 3.3. Let 1 < p < 0o and vg = 0. Assume that u satisfies (1.5)

and (1.7)~(1.8). Then S*! ot o C no<a,,651 .S’;’i#. Moreover, there ewists
Chp,yiug < 00 such that for o, B=0,1,

(3.9) H{C } 1?,## < CP,MW H{cjk}“p,u#,uu ({Cﬂﬂ} € S;,l,u#,vo)'

Ineguality (3.9) remains true for 0 < p < 1 provided that the Cp ., i
replaced by Cyp uwoy and the cjp is further assumed fo satisfy conditions
(8.10)-(3.13) below for some v > O

(3.10) lemaikl < Ylemsl

(m>wp; k20 1<j<m—uvg+1),

(3.11) |ejner] € V[egnl ((z0n>v; L<k<n~vp+1),

(3.12)  |Arecjntx| ¥ Awcin]  (GZ0n>u; 1Sk<n—vo+ 1),

(3.13)  |Aoremjkl £ vidoiemr| (mZwe; k20; 1< 5 <m—ug+1).
Proof. First, consider 1 < p < oo and @ = 3 = 0. Set

dik = CikXivg,00) % [vo,00) (3 £
Fik = CikX[0,u0)x[vg,00) (s K},

Fik = CikX[ue,00)x[0,u0) (I k)
h‘jk - chGX[U,'UQ)X[O,vo)(j7 k)
Then
”{ng}”p,p# < H{doinc |py e + H{f?k?}up,## + H{Q';?g}”p,,u# + “{h’?g}np,u#'

Let App = I—’J('Qm+vo—l X Qn-l—vo—l) and omn = idm~|~'uo-1,nll-'uow1|- By (1'7)
and (1.8), we get

D An = (82
j=m

??'?'I-‘Uu—l X pivy—1) < Cu(l + vo) (MAmn),

S Ak = i mevgm1 X 25240 _1) < Cul(l + v0)(nAmn).
k=n

icm
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Applying Lemma 3.2 to this case yields

(314) [HALHE o= 5 meﬂ(ii%)”

m=1 n=1 u=]w=1

< Copue Z Z)\mn (mnamn)?

m=1 n=1
< Cp s HARHE o < Copno I EHIE 1t 1o

Set Am = p(Pmpvo—1 X I) and am = T2 | frnivo-10]- Then (1.5) and
(1.7) ensure the validity of (3.4) with a = C,(1 + vo). Hence, Lemma 3.1

implies
(315)  {FRHE . < Z)\ (Z%) < Cprne Z A (100 )?
=1 u=1

< p,u,mll{f}é}llp S CP,MUU”{ ik it o

Similarly, we have

(3.16)  [{ogH P 5 < CopmoHg7RE 1 uy < Corpoon {5 ot -
From the definition of A, we get

w—Llug—1

(317) AN o < (0 2 lestl ) BU®) < Coura HERNIE b

i=0 k=0

Putting (3.14)~(3.17) together gives (3.9) for the case a = 3 =0.
Now, change the definitions of Ay and ama to Ajn = (25 X pqe—1)
and ajn = J ¥ opes [A100untve—1]- Then (1.4), (1.8), and Lemma 3.1 to-

gether give
[aa) oo [~ o] o0

(3.18) ”{d}g}“;,u Z Z (Z a’J‘U) < Cp, o Z Z Ajn{najn)?

=0 n=1 pe=1 i=0n=1

S GP!P‘:'UOH{ %}”p p,# < CP-U“’:""U “{C }HP g ug "

The same argument also implies

(3'19) ”{g }Hp ,u:# < CP:P‘:“DH{QJIC}HP,H# S Gp)ﬁa’”ﬂ“{c }HP,P’#,’UD
By the definition of f;x and (1.4)—(1 5), we obtain

(3200 AN 0 < Z({a 3 }{ > }[Amfw) Zu(ﬂ x )

_ g({ji}{ S}t funl) 2y % 1)

B

174
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oo wg—1

Copa 3, 2, (J_i |A10fuv|)pu((2j x I

=0 v=0 = u=j

-<— CP’#I“D!‘{fJ;j%}llz’##’un S pJJ:'UDH{ k}“PgM#,’U[}

Analogously, we have

(32]‘) ”{ g}”p 'u,# < OP,#,’UQH{ J]i-!}”p 'u,# up S CP:M!'UD”{C }Hp “# vy”

Thus, (3.9) with o = 1 and 2 = 0 follows from (3.18)~(3.21). We can prove
(3.9) with @ = 0 and § = 1 in a similar way. As for « = (§ = 1, it can be
derived from the definitions of || - ||, .# and || - ||p u# v, From (3.10)--(3.13),
we see that the sequences {Gmn : m,n > 1}, {640}, and {amn 5, are
quasi-decreasing, where 0 < j < ca. Therefore, the above proof still works
for 0 < p < 1. We leave it to the readers. =

THEOREM 34. Let 1 < p < oo gnd vg > 0. Assume that p satisfies
(1.5) and (1.7)—(1.8). Then there exists Cp v, < 00 such that inequality
(1.6) holds for all {c;x} € S ot ug- Moreover, for {c;x} € S;,lu#,vn, Smn
converges in LP(I% du) to some function f as min(m,n} — oo, and

(3'22) ”f”P,.u = CP1H1UD1|{CllHlp,u#,vm
(3.23) l|8mn = Fllpe < Cppruo ”{Cgk(m ”)}”p,u#,vu-

These conclusions remain irue for 0 < p < 1 provided that (3.23) is replaced
by (2.2), the Cp 4, in (1.6) and (3.22) is replaced by Cp pvpyy, and the ¢
is further assumed to satisfy (3.10)~(3.13) for some y > 0.

Proof. Consider the case 1 £ p < oo, For {¢;} € S;’l##’vn, we have

{ejr(m,n) : 4,k 20} e S o u# vo+ Theorem 3.3 tells us that

“{C }”p,.u# = CP:F:”DH{ }”p,p#,un (an@ =0, 1),
il{c (mw n)}”p,y# < GP,H.UDH{C m: n)}Hp,u#,un (a,,B =0,lim,nz> 0)‘

Thus, Theorem 3.4 with 1 £ p < oo follows directly from Theorem 2.1
As indicated in Theorem 3.3, (3.9) is still true if 0 < p < 1 and {c;x}

satisfies (3.10)-(3.13). Hence, the desired results for 0 < p < 1 still come
from Theorem 2.1. u

Obviously, 1 g = St oo for vo = 0, and (1.6) with vo = 0 reduces to
the following form

(3'24) HS*HP;.H < Cps#ll{C}i}é}llp,u#‘

This indicates that the special case vy = ( of Theorem 3.4 improves
Theorem 2.1. In what follows, we focus our attention on the case du =
|¢(x )3 (y)ldzdy # 0. In this case, condition (1.5) is automatically satisfied.

Hardy-Littlewood inequality 19

Moreover, (1.7) and (1.8} are equivalent to the following two conditions:

(325) § lo@ldes 0y § |2 as (2w,
nge 21"

(3.26) | p)ldy<Cy | g%}dy (& > vo).
.Qg" 2z

These two conditions are satisfied in many cases. For them, (1.6) can take
other forms. The first example is du = |z — t5|*|y — to|*dzdy, where o, 8 >
~1. This corresponds to ¢(z) = |z —10|* and 1¥(y) = |y—to]®. An elementary
calculation shows that (3.25) and (3.26) hold for all ,k > v, where vg is
the smallest nonnegative integer with

. —
(3.27) sup|t ol > ——= e

For j,k > 0, we have uZ ({(j,k)}) < Cu(f)~>~2(k)~#~2, which implies
(328)  I{HE o

< Cpas Z E(i)p—-a—Z(E)P—B—E{Z Z |Allcm,1}p.

3=0 k==0 u=4 v=~R

Therefore, S1L, ; C 2%, . For such p and vo, we also have

it g’

(329)  [{cHhman)HE oy < Crap p D TPk

F=0 k=0

X {i i Xmn (2, U)lAllcu.v | }P.

u=j v==Fk
By Theorem 3.4, we cbtain
COROLLARY 3.5. Let 1 < p < oo and du = |z — to]®|y — tolPdzdy,
where o, f > —1. Then there ezists Cpap < 00 such that inequality (1.9)
holds for all {c;x} € 8. ,p L g+ Moreover, for {cir} € SEL, 5y Smn converges in
LP(1?,du) to some function f s min(m,n) - oo, and

(3.30)  |FI2, < Cpas i i(i)”“‘%ﬂ““?{i 3 |A11cwl}p,

4=0 J=0 u=j v="k
o oo s
a2
(331)  smn = FlIE,. < Coag p_ 0 (AP 2Ry
§=0 k=0
oo 00 P
x {Z ZX'mn(u:v)lAllcu'u'} .
u=j v=Fk
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These conclusions remain true for 0 < p < 1 provided that (3.31) is replaced
by (2.2), the Cpo,p in (1.9) and (3.30) is replaced by Cpa,p,y, and the cj
is further assumed to satisfy (3.10)~(3.13) for some v > 0 and some vg = 0.

Consider the following cases of ¢, (£): cos nt, sinnt, ™, w,(t), and P, (t),
where {w, 122, denotes the Paley-Walsh system, or more generally, the
bounded Vilenkin system, and { P, }52, represents the Legendre system. As
proved in [11], [23], [25], and [31], these families are uniformly bounded and
satisfy (1.1). The corresponding I, to, and v are

I=[-mm], t,=0, wvy=0 (trigonometric system),

I'=10,1), to=0, wp=1 (bounded Vilenkin system),
=[0,1), fp=0, wo=1 (Paley-Walsh system),

I=[-1,1], t9=1, w=0 (Legendre system),

where tg is subject to (1.1) and vy is the smallest nonnegative integer defined
by (3.27). Hence, the theory developed so far can be applied to any of
the above systems. In particular, Corollary 3.5 works for these systems. It
extends [1] and [22] from the cosine system to any of them. Corollary 3.5
generalizes [1, Theorem 2] and [22, Theorem 2]. It extends them from the
range -1 < o, 8 <p—1toa, 5> —1. It also expands the range 1 < p < o0
to 0 < p < oo.

For {cjp} € G4, we have 300 .32 1 | Anicue| < 2i¢ji, and so

=
[+ ol a] Lo cI - o]
(332 > @@ Y 1Anew )
F=0 k=0 u=j v==r
o oo
<@ S G R el
J=0 k=0

This implies that S}' N SHQ 3 ©S3L, 5. In this case, (1.9) reduces to (1.11}.

Moreover, any {c,-k} in S3* satlsﬁes (3.10)(3.13) with v = 2 and vy = 0,
and

> = 2|cinl fi>mork>n;
Z Zan(uy'U)‘Allcm < { ‘ ? R J
w=j umk 2lemtrk] +2¢ime1! 7 <mand k< n.

By Corollary 3.5, we obtain

COROLLARY 3.6. Let 0 < p < oo and du = |z — to|®|y — to|Pdady,
where o, > —1. Then there emsts Cp,e,8 < 00 such that mequalzty {1.11)

holds for all {e;} € 53N Sp a.5- Moreover, for {c;1} € ST N SEL 4, 8
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converges in LP(I?,dyu) to some function f as min{m,n) — oo, and

(333) ”.f”p,p < Op,a“@{z i(})p—-a—Z(E)J’—ﬁ-glcj'ktP}lfp,

F=0 k=0
For 1 < p < o0, we also have
k(3

(334 llsmn = £ < Cpan{ (P2 D072 2 emsanl?

3=0 k=0
k£3

+ (0 EP2) Y He el

=) F=0

k=
o0 o0
+ 30 YRR i G, el -
3=0 k=0

Corollary 3.6 generalizes [8], [9], [15]-[18], [24], [26]-[28]. This corollary
extends [16]-[18], [24], [26]-[28] from the case o = § = 0 to the range o, § >
~1. As indicated in [10], the condition {¢;z} € S3*N SHD‘ g in Corollary 3.6
cannot be weakened to those {cjx} in S L‘ B w1th the following condition:
(335) (m!n) Z (m*>n' ) = Cmn S cm*,n‘-

Here (m,n) > (m*,n*) means m > m* and n > n™.

The second example we investigate is du = |d(z ) (y)|dzdy, where (¢,8)
and (v, 9) satisfy (1.12)—(1.13) and (3.25)—(3.26) for some vy > 0. The
inequalities {1.12)~(1.13) describe a certain concept related to the definition
of type I given in [6]. By the Fubini theorem, we get

Ml a0 = D03 [ Amacss{ 33 wwt (e, )} }

_1=0 k=0 u=0 v=0
= ZZIAIlekHE + )’
§=0 k=0

where

ik
T =Y xalu)xs(v)a

o ({(w, v)}),
u=0v=0

X1(u) = X[o,u0) (%) and x2(u) = Xlvg,00) (). Conditions (1. 12)-(1.13) and
(3.25)—(3.26) imply ¢, € L'(I,dz) and so there exist constants Cg, g, Cyp,ug
such that

{16(@)| d < Couef(G) (0= <w),

I
V() dy < Cyud(R) (0= Kk <wo).
I
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Putting these and (1.12)—(1.13) together, we get E?,f < Cpub(5)0 (k) for

~,8 =1,2 and j,k > 0. For example,

2 <t |
neg,

y) [dy} < Coud(H)I(R).

The above argument tells us that

6(7)0 (k)| Aveinl.

Ms

(= =]
(3.36) {0 < Cos Y

F=0

. The proof of {3.3

x
It

0

Therefore, Si% C s 6) also verifies

1,u# 00"
(3.37) I{cii(mm)Hlnp o S Coup ZE (7)9(k)| Arrcse(m, ).
0 k=0

By (3.36)—(3.37) and Theorem 3.4, we obtain

COROLLARY 3.7. Let du = |¢{z)¢(y)|dzdy, where (¢,8) and (¥, 9) sat-
isfy (1.12)—(1.13) and (3.25)~(3.26) for some vq = 0. Then there exisls
Cpyp < oo such that inequality (1.14) holds for all {ejx} € S5Y. More-
over, for {cjk} € Sg,ﬂ, Smn converges in LY(I? dp) to some ﬁunctwn S as
min(m, n) — oo, and

(3.38) 1 £l < szze(a)w(k | Avicinl,
§=0 k=0

(3.39) [8mn = Flip < Cou Y. > 8()0(R)| Aracin(m, m)l.
j=0 k=0

Corollary 3.7 has the same format as in [6]. Inequality (3.38) has implic-
itly appeared in the proof of [6, Theorem 1]. This corollary will apply to
any of the following systems: ¢, (f) = cosnt, sinnt, €™, w,(t), and P, (t).
An elementary calculation shows that the pairs (¢, 8) and (1,4) involved in
Corollary 3.7 can be chosen from any of (i)~(vi), stated below:

(i) ((log 1/]t — to])™%,1) (¢ > 1);

(i) ((log 1/t — tol) ™", loglog 2);

(ifi) ((log 1/1t —to) " (loglog /[t — to!) ™", logloglog t);
(iv) ((log 1/}t — to]) 7=, {log £}'7%) (0 <& < 1);

(v} (1,log £);

(vi) (jt— to|™%, %) (0 < & < 1).

icm
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The logarithm functions appearing in (i)~(v) have the original value when-
ever they are well defined; otherwise, they are defined as 0. As indicated in
[6], Corollary 3.7 generalizes 2], [3], [5], 6], [15], [19], [20], and [30]. Consider
du = drdy. By (v), (1.14) becomes

(3.40) Is*]le < ¢y " (logj)(Togk)| Arseiu|-
=0 k=0

If Ajicje > 0 for all 4,k > 0, then by double summation by parts, we can
change (3.40} to

s}

@41) st < C{Coo-l-z CJ i =+ ii L }

J= k= =1k l

Therefore, Corollary 3.7 includes [17, Theorems 1 & 2] as special cases.

4. The trigonometric system {e'*}2° __ . Inspecting the proofs
given in §2-§3, we find that the results established there can be extended to
the system {e"}2 __ without difficulty. We summarize them below. Let
I = [—n,n]. Consider the double trigonometric series

oo o
(4.1) 30N et (gy el
j:uoo k=00

Set P,y (1) = Wy... (t)—l/2 !17( _1/2+(eit+ezit+”'
and ¥_;(t) = ¥;(—t) for j > 1. Then we have

+ &%) for j > 1,
(4.2) sup |t¥;(t)] £ w < oo.
alljtel

This corresponds to (1.1) with ¢g = 0. The difference is to replace D, (%) by
¥;(t). Define the rectangular partial sums &mn(z,y) of series (4.1) and the
associated maximal function s* by

5mn Z Z Ci ke:(ga:+ky) (m:n 20 z,yE I):
F1€m |k|€n

and

3*(55:31’) = Sul;0|3mn(fﬂay)| (ﬂ:,yEI).
m!n.—

With the help of [6, Lemma 2], a modified proof of Theorem 2.1 will lead
us to

(4.3) (@, y)| < EQan + 4nChin + AMThgN + 167°C 1E N,
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where M = [1/|z]], N = [1/|y]], and

2= Y el 20 =07y {5 Naseul,
[w|<i |vlSk = lv| <k
o e ] o0

@R={ X HEY Hanewl @={i > HFX Hanewl
wi<s”  Jel=k fulmg” ek

The finite differences /_‘\fMCM are defined by the formulas

Agocuv = Cyu — Cr(u),u: Aalcuv = Cyv ™ Curiu)s

Alicur = AlgAgCue = A ATpCun-
Here [0+] = |0—] = 0, coppp = Co—,p = C0v:s Cu0+ = Cyu0— = Cyg, and the
function 7(u) is defined by 7(0+) = 1,7(0-) = -1, 7(u) = u+ 1 for u > 1,
and T(u} =u—1 for u < —1. Set ¢;x(m, n) = Xmn (J, k)cj, Where Xomn (4, k)
is defined in §2. Define the sums 'E];f (m,n) from 'c";,f by changing ¢ to
cik(m,n). Instead of (1.4), we consider
(4.4) cik — 0 as max({j|, |k|} — oc.

THEOREM 4.1. Assume that 0 < p < co and p satisfies (1.5). If the ¢y
satisfy (4.4) and ||{E;,f Ip,u# < 00 for all 7,6 = 0,1, then spy converges in
LP(I%,du) to seme function f as min(m,n) — co. Moreover,

(4.5) [ Fllpe < 8™ lpu < Copa Z ||{E?;}||p.u#'
0<y,d<1

(4.6) I8mr = Fllps € Cop 3 IHE My 1)} -
0<y,6<1

'THEOREM 4.2. Let 1 < p < 0o and vy > 0. Assume that p satisfies (1.5)
and (1.7)~(1.8). If the c;i satisfy (4.4) and [[{GEH a0, < 00, then Smn
converges in LP(1%,du) to some function f as min{m,n) — co. Moreover,

(4.7) £ llpe < U8 o < Copppool {Ei st o
(4.8) [8mn ~ Fllpu < Clp, 00 ||{Ejl!:{mﬁ n)}”p,.w#,vo'

These conclusions remain true for 0 < p < 1 provided that (4.8) is replaced
by (4.6), the Cyuu, in (4.7) is replaced by Cp gy and {cin} is further
assumed to satisfy the condition: (3.10)-(3.13) are satisfactory by replacing
{esn} with {cej51 : 5,k > O} fore,§ = 1.

CoOROLLARY 4.3. Let 1 < p < co and du = |x|*|y|%dzdy, where a, 8 >
—1. If the cji satisfies (4.4) and the last term in (4.9) is finite, then Smn
converges in LP(I?, du) to some function f as min(mn, n) —+ co. Moreover,

icm
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(4.9) IR < Is”I2,.
o0 (s o] = _ oo o> P
< g 3 Y P2 @2 30 ST IAnewl )
F=0 k=0 lul=7 |v|=k
o0 o _
(4.10) smm — £I5, < Cpag 3> (G 2(R)PP2
5=0 k=0
o0 o0 P
{3 Xennlluls [oDIAT w0l } -
lul=j |zl=k

These conclusions remain true for 0 < p < 1 provided that (4.10) is replaced
by (4.8), the Cp o p in (4.9) is replaced by Cpo,p,4, and {cjr} is further
assumed to satisfy the condition: (3.10)—(3.13) are satisfied upon replacing
{c;n} with {cejam 5,k > 0} fore,§ = 1.

COROLLARY 4.4. Let 0 < p < oo and du = |z|*|y|Pdzdy, where o, 8 >
—1. Assume that the c;i satisfy (4.4) end
(411)  ReAlcp >0, ImAlcr >0 (jk=0%+1,+2,...).

If the last term in (4.12) is finite, then sy, converges in LP(I2,du) to some
function f as min(m,n) - co, and

(4.12) 1 f o < 8™ gy
<Oneo{ 3 X (IEI)P‘“—Q(|E1)p-ﬁ—2|cjk[p}lfp_
j=—o0 k=—0oo

For 1 < p < o0, we also have

(418)  [lsmn — FIE,

< Crap{ (307 T 3 (R lowr
=0

|u|=m+1 [k|gn

n

0 I DD D ) O

k=0 |lSm. [u|=nt1

Y S (PR (R ek

COROLLARY 4.5. Let du = [¢(z)¢(y)|dedy, where (¢,8) and (1/.),19) sat-
isfy (1.12)-(1.13) and (3.25)~(3.26) for some vy > 0. If the ¢;x satisfy (4.4)
and the last term in (4.14) is finite, then Spmy converges in LY(I? du) to
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some function f as min(mn,n) — oo. Moreover,

(414) (Il S I = Cop Z Z (17O (|k) AT resn .

|J|"0“€l 0

(415)  ||smn — Fliae < Cou Z Z B(|71)0 (&) Af1csk (m, n).

|31=0k|=0

Inspecting the proofs given in §2-§3, we find that the theory developed
here can be extended to any dimension without difficulty. We leave it to the
reader.
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