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Stochastic representation of reflecting diffusions
corresponding to divergence form operators

by
ANDRZEJ ROZKOSZ and LESZEK SELOMINSKI (Torud)

Abstract. We obtain a stochastic representation of a diffusion corresponding to a
uniformly elliptic divergence form operator with co-normal reflection at the boundary of
a bounded €*-domain. We also show that the diffusion is a Dirichlet process for each
starting point mside the domain.

0. Introduction and notation. Let [ be the following non-empty
bounded domain in R%:

(0.1) D={zeR?: $(z)>0} with dD={z¢ R? : (z) = 0},

where & € C2(R?) satisfies |[V®(z)| > 1 for all z € D, and let a: RE —
RY @ R? belong to the class A(A, A) of all measurable, symmetric matrix-
valued functions which satisfy the ellipticity condition

(0.2) MEP < a(2)eié; < Al€]2, =z, €eR?

for some 0 < A < A {we employ the summation convention over repeated
indices). Consider the operator
A= D;(35()DY)

and let p be a weak Neumann function for A on D (see Section 2). Using
the estimates on p proved in Gushchin [13] we first construct a family {P* :
¢ € D} of probability measures on C([0,T7; D) such that the finite-dimen-
sional distributions of P® are determined by p and then we investigate the
structure of the canonical process X under the measures P*.

More precisely, let -y, denote the co-normal vector field on 9D, ie.
vi(z) = (1/2)a" (z)n;(z) for i = 1,...,d, where n(z) = V&(z)/|VE(z)|
is the unit inward normal to 8D. We prove that X is a Dirichlet process in
the sense of Féllmer [5] under P® for every z € D and its components admit
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the decomposition

; 1o i i
(03) X;' —z' = §(Mt + NT—t e NT)
t
- lxlpaij%(u,x,Xu)du+K§
20 P
(0.4) =M+ A, te[0,T],i=1,...,4d,

where M' (resp. N?) is a square-integrable martingale with respect to the
filtration {F;} generated by X (resp. {F:} generated by the time-reversed
process {X¢ = Xp_; 1 £ € [0, T]}) with
t ¢
(M), = {a*(X,) du (resp. (N = (0¥ (Xu) du), te[0,7],
0 0
K is an {F;}-adapted process such that K} = 0 and K" increases only
when X € 8D, and Af is an {F;}-adapted process of O-quadratic variation.
Actually, X belongs to the class D? considered in Coquet and Stominski [4],
which is strictly smaller than the class of Dirichlet processes. If, in addition,
a is continuous, then there is an {F;}-adapted non-decreasing process K
which increases only when X € 8D such that
t
(0.5) Ki=\1i(X,)dK,, te[0,T].
0

By using a theory of Dirichlet forms, in Fukushima and Tomisalki [10, 11]
a diffusion associated with A on much more general domains is constructed
and a strict Fukushima decomposition of X — X into a martingale addi-
tive functional of finite energy and an additive functional of zerc energy is
proved. Moreover, it is shown that if a*’s have bounded partial derivatives
in the sense of distributions then X is a semimartingale under P* for every
x € D and a Skorokhod representation of X is obtained. From Fukushima's
decomposition it follows in particular that there is a sequence of partitions of
[0, T] into intervals of equal length such that X is a Dirichlet process along it
under P? for almost every z € D. Qur assumptions on D are rather restric-
tive. We know, however, that for every x € D the process X is under P? a
Dirichlet process along any sequence of partitions of [0, 7] whose mesh-size
tends to zero. Secondly, our method of construction of (X, P®) based on
estimates on p allows us to obtain a Lyons-Zheng-Skorokhod representa-
tion (0.3) without any regularity assumptions on a. Of course, it would be
desirable to prove (0.3) for ¢ € 8D and (0.5) for a € A(), 4). Unfortunately,
we do not know how to do this.

In case D = R% we have K* =0 for i = 1,...,d, and so {0.3) specializes
0 the decomposition proved in Lyons and Zheng [22], Rozkosz [25], Rozkosz
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and Stomiriski [28]. The representation (0.4) corresponds to the one proved
in [25, 28]. See also Fukushima [8], Fukushima, Oshima and Takeda [9] and
Rozkosz [26], where connections between Fukushima’s decomposition and a
decomposition in the sense of Féllmer are examined in detail.

The decompositions (0.3), (0.4) allow us to develop some stochastic cal-
culus against X. In the present paper we confine ourselves to showing that
for any € D and @ € C?(D) the stochastic integral { D;p(X) dX* and the
mutual quadratic variation {D;p(X), X*} exist as limits in P* of Riemann
gums and

t
(0.6)  »(Xe) = p(z) + SDi‘P(Xu) dX} + 3{Dip(X), XY, t€[0,T1,

0
P®_a.s. This extends Itd’s formula proved in [25, 28] in case D = R? but
the basic ideas of proof had appeared previously in Fdllmer, Protter and
Shiryaev [6], Liyons and Zhang [20}, Lyons and Zheng [21]. Note also that
the fact that X € D? can be used to define integrals {Y dX, { X d¥ for
{F:}-adapted processes of the class DP with p & [1,2) (see [4]).

The paper is organized as follows. In Section 1 we show that under the
measure P® associated with a smooth a € A(A, A) the time-reversed pro-
cess X is again a diffusion with reflection in the co-normal direction, and
we identify its coefficients. In Section 2 we recall some facts from the PDE
theory that are used in Section 3 to construct a diffusion process associated
with a € A(}, A). Section 4 contains the proof of the main result. In Sec-
tion 5 we define stochastic integrals and we prove Ité’s formula. Finally, in
the Appendix we prove a general theorem on convergence of strong Markov
processes satisfying the condition UTD introduced in [4]. This result was
proved essentially in [28] but in a form not directly applicable to our situa-
tion.

We will use the following notation:

Dy = (O,T) x D, Dsgr=1{(6T)x D, Sy = (0, T)x dD.

; = 0/0z is the partial derivative in the distribution sense. A= (M A) is
the subset of A(), A) consisting of all functions having bounded continuous
derivatives of all orders in D.

C([0,T); B%) is the space of Re-valued continuous functions on [0,T7].
Given a process Y with trajectories in C([0, T];R?) and f : R¢ — R we
write _ﬂ = Yq_4, i;f =Y. — Y7, JYt = Yivs — Ys, <Y>f.. = (Y>t - (Y)s and

t i
(f-V)e={F(XD Yy, (F2¥h=— | f(X)d¥e, te[0.T],
0 T—t

whenever the integrals make sense. Var Y is the variation of ¥ on [0,T.
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Further,
Fi=o(X,:ue[0t]), Fi=o(X,:uecl0i]), tel0,T].

M (resp. M) is the space of square-integrable ({F;}, P?) (resp. ({F:}, P¥))
continuous martingales on [0, T] vanishing at zero equipped with the usual
norm (B*M2)Y? = (E=(M)7)1/2

L[Y | PT] is the law of Y under P®. By E®, EX we denote expectations
with respect to P® and P7, respectively.

C'(D) is the set of continuous functions in D, and C*(D), k = 1, 2, is the
set of all continuous functions in D having derivatives up to order k inclusive
that are continuous in D. Next, G2 (R?) is the set of all continuous functions
in R having bounded continuous derivatives up to order 2 and C§°(R%) is
the set of all smooth functions in R? having compact support. Wi(D) is
the Banach space consisting of all elements v of L,(D) having generalized
derivatives Diu from L, (D). We denote by W' (Dy) the Banach space
consisting of all elements u of L,(D7) having generalized derivatives Du
from L, (D7), and W} (Dr) is the Banach space consisting of all elements
1 of I, (Dr) having generalized derivatives du/0¢ and Dju from L, (Dr).

1. Time reversal. Suppose a € A®(A, A) and consider the operator
A=3a%(-)D;D; + 6'(-)D;, where 6 (z)=31D;a"(z).

Due to results by Stroock and Varadhan [30], for each ¢ & D there is a unique
solution P®, starting from z at time 0, to the submartingale problem on D
for a, @ and v, and we call (X,P®)} a diffusion corresponding to A with
reflection along 7,.

It is possible to construct P® analytically by first constructing a Neu-
mann function p for A on D (see (7, Exercise V.5]) and then a Markov
semigroup {P*:0< ¢ < T} on G(D) by

Pio(z) = | wlyp(t,z. ) dy, ¢ € C(D),
D

which gives rise to the strong Markov family {P® : z € D} with p as the
transition density. The Markov and the semigroup properties ensure that
for each ¢ € D) the measure P* is a solution to the submartingale problem
for a, 0, v, starting from «. Note also that for given ¢ € C(D), u : [0,T]x D
— R defined by u(t,z) = Pie(z) is a unique classical solution to the Neu-
mann problem (see [7})

2 - Au=0 on (0,T] x D,
(1.1) 9§ limpou(t,z) = p(z) on D,
(Yas V) =0 on St.
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For fixed = € D put p(t,y) = p(t, z,y) for (¢, y) € (0,T] D and define
Asp = D;(30"(-)Dip) + (a¥p™ ' Dyp}(t, -\ Dsp, A = Ar_s,

with the convention that p~'D;p(t,y) equals 0 if p(t,y) = 0. In what follows

we use ideas from Haussmann and Pardoux [14] and from [30] to show that

for each z € D, (X, P*)} is a diffusion corresponding to .4 with reflection
along v,.

THEOREM 1.1. Assume a € A®()\ A) and let ¢ = Dja¥, i=1,...,d.
Let P® be a solution to the submartingale problem on D for a, 8, v, starting

from . Then there erists a continuous non-decreasing process K : [0, %
2 — R with the property thet

t

(12) K is {F}-adapted, Ko =0, E°Kr < 00, K; = | 1ap(Xu) dK.,
8]

and for any p € C*(D),

i

1pAp(Xy) du — | {va, Voh(Xu) dK,
0

M = o(Xs) — p(Xo) —

t
1Dﬁu¢(fu) du — S {Ya v‘P) (fu) dK,
4]

are ({F:}, P*)- and ({F;}, P®)-martingales on [0, T) respectively. Moreover,

NE = o(Xy) — o(Xo) ~

& e ot O e

(1.3) (M) = \ 1pa" Dy Djp(X.) du,

fl

O e (D) ey o

(1.4) (N¥) = \1pa® DippDyp(X ) du
and (M¥®, N#}, = (M#); for t € [0,T]. Finally,
i

(18)  ¢(X) — p(Xo) = 5(MF + FF = V) + | (10, V) (Xu) dKe
0

for t € [0, 7], where V¥ = Sg 1pa¥p™1D;pD;p(u, Xy) du.
Proof Existence of K and the fact that M% is a martingale are well

known (see [30, Theorem 2.4]}). To prove that N¥ is a martingale we first

show that
t

S¢ = o(X3) ~ p(Xo) — | 1pAup(Xu) du;  t€[0,T,
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is an ({F;}, P*) supermartingale for any ¢ € ¢ 2(D) satisfying {v., V) =
on 8D. To this end, fix a non-negative g € C(D) and set

w(n,z) = B°g(Xepsmu) = | gW)p(t+ s ~w,c,y)dy, u€[0,t+5).
D
Then ¢ is the unique classical solution to the Neumann problem

(5 ~I—A>w:0 on [0,t+s) x D,
du

lim w(u,z) = g(x),

u,t+s <7“’v“})‘5t+, = 0.

Since X is a Markov process under P*,
E®p(X3)g(Xirs) = EH{E™(p(Xe)g(X1+s) | F2)}
= E*{p(X:) E* (X,)} = E°o(Xe)u(t, X:)
for t,s > 0. Therefore

E®p(X115)9(Xers) = BT p(X)g(Xiys)
= E"p(Xyps)w(t + 8, Xits) ~

t+s
a
p-3 i . =
> F S lp(au +A> (pw)(u, Xy)du=T

i

Ep(Xw(t, Xe)

because M¥¥ is a martingale and (v, V(ew)) = (ya,wVp) > 0 on Sp.

Elementary computations show that

i-+a 3
(16) I=E" | 1D{(p(—+A)w
, ou
(1 1 ij
+a EWDiquﬂ+Di§0Djw -l-é-ija Dip ¢ (u, Xy) du
i3

= SduS%

a¥(D; Djp)up(u,y) dy
+ | dul ¥ (DipDw)p(u, y) dy

1, .
+ § du | - (Dja¥ Dip)uwp(u, y) dy.
t D

Let o denote the surface measure on 8D. Integrating by parts gives

icm
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(1.7) S du S a? (DypDjw)p(u, y) d
4 D
i+s
= S du | Di(a¥pDipyw(u,y)dy+2 | du | (va, Vio)up(u,y) do(y)
13 D t aD
t-+a . t4a
> — | dulo¥(DiDseywp(u,y)dy — | du | D;(ap) Digw(u, ) dy.
1 D t D

Combining (1.6) with (1.7) and taking into account that by [14, Lemma
A.2], we have a¥ D;p(u,y) = 0 a.e. on {(u,¥) : p(u,y) = 0} we obtain
t+8

1, 1 . g
1z | du S{“‘"z"aijiDj‘P'f' (iDjaJ ~p le(aJp))DisO}wp(u,y) dy
11 D
t-4e t-3
=~ | duf(Awpup(uy)dy=— | B*1p(Awplwlu, Xu) du
t D t

48

= - B°{ | 1pAup(X.) dug(Xsps) |-
*

By the above,
t+s ’
Em{ [‘P(XH-S) — (X)) + | 1pAup(X) du}g(XHs)} >0,
i

and hence
Tt
B { [p(Fr-) — p(Xr—-a) = | 1 Aue(X) dulg(Xr—1-)} < 0.
T'—t—s

In other words, B®[(Sf,, — 5¥)g (X:)] €0 for t,5 > 0 such that t-+5 < T
Since (X P?) is a Markov family and g is an arbitrary non-negative function
from C(DY, it follows that £*({Sf,, — S¢) | F+) < 0. Thus, {57 : t € [0, T]}
is an ({F,}, P*)-supermartingale for any € C*(D D) satisfying {va, Vi) = 0
on 8D, We can now apply arguments from the proof of [30, Theorem 2.4} to
show that there is an {F;}-adapted non-decreasing process L : [0, T] x 2 —

R such that L is {F;}-adapted, Ly = 0, B*Lr < oo, Iy = So 15p(Xu) dL,,
and for any ¢ € C*(D),

£
Nt = Sga + S (Vasv‘P)(Xu) dL'u.
]

is a martingale on [0, T] with (N¥¢); = {; 1pa¥ DipD;p(X ) dufor t € [0,T].
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We check at once that

(18)  N¢ = p(X:) ~ o(Xo) + | LoAuwp(Xa) du+ | (e, Vo) (Xu) dLu
Q 0

t t
= M{ +2{ 1pAp(Xu) du + Vi + | (e, Vo) (Xu) d( Ky + Lu).
[} 0

Therefore

i
(M#) = (N*)y = (N?)T_, = | 1pa" DipD;p(X.) du
a
and (M®, N¥), = (M¥*), for t € [0,T]. Thus, what is left is to show that
L = —K. For this purpose, write
t t

Y= — ME + N — VP —2{1pAp(Xy) du = {{va, Vo) (X)) d(Ky + L)
a] [¢]

and observe that (1.3), (1.4) lead to

t t
:SlD(Xu)dM'f) Nfzle(Xu)dN:f: tG[O,T].
0 0

(1.9) ME

Hence Y,” = S 1p(X,)dY,? = 0fort € [0, T}, since K, L increase only when
Xe BD Therefore, setting ¥ for ¥¥ with ¢(z) = z; we obtain

d & : ¢
O:ZM m|2(Xu)dY1f=§)d(Ku+Lu)th+Lt, te[0,7T],
i=10

which is the desired conclusicn. =

2. Weak solutions to the Neumann problem. In this section we
recall, in a form appropriate for our purposes, some analytical facts concern-
ing existence and basic properties of a weak Neumann function for A on D
and we prove a limit theorem which will be needed in the next sections.

THEOREM 2.1. Let a € A(A, A). Then:

(i) There ezists o unique Markov semigroup {P* : t > 0} of positive
opemto'rs on ELg(D) such that for every T > 0,

(a) Pp(-)eW. DT) for v € Lo(D),

icm
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(b) for anyn e W;’I(DT) vanishing at t = T and any p € Lo (D),

| ()0, 9)de = — | Pola) Dn(t,a) dedo
D D

+ S %aij(z)DiPtgo(z)Djn(t,w)dtd:c.
D

(ii) There is a p(t,z,y), t >0, z,y € D, with the following properties:
(a) there are Cy,Cy > 0 depending only on A, A, d such that for
any fized t > 0 and © € D,
(2.1) | Ip(t, @, )% dy < Cy(win{t, Co(dist(z, 8D))*}) "3,
D
(b) for every§ € (0,T] and every K C D such that dist(K,8D) > 0
there is C3 > 0 depending only on X, A, d, 8§, T and dist(K, 8D)
such that

(2.2) sup
=T, myekl

(c) for any ¢ € 12(D),

(2.3) Pto(z) = | ww)pt,z,y)dy, z€D.
D
Proof. Let G(t,x,5,y) be the Green function for the problem (1.1)
constructed in [13, §4] and let p(¢,z,y) = G(t,z,0,y) for t > 0, z,y € D.
Then Theorem 2.1 is a reformulation of some results of (13, §4]. To see this it
suffices to observe that G{t,z,s,v) = G(t—s,z,y) forallt > sand ,y € D,
because the coefficients of A do not depend on time. m

p(t) m’ y) S 631

Tn what follows we will call the function p of Theorem 2.1 a weak Neu-
mann function for A on D.

Given an, € A(X, A) let p, denote a weak Neumann function for
(2.4) A™ = D;(3a(-)D)
on D and let

Pﬁ@(m) = S ‘P('y)pn(t:wsy)dy, QOE]LQ(D): z el
D
LEMMA 2.2. Let {a,0,} C A(MA) ond let o — a¥ ae fori, j=
,d. Then for any T >0,
(1) Plp(-) — P () uniformly on compact sets in Dy for every p €

L2 (D),
(i) for any fized z,y € D, pu(,®, ) = p(-,3; ) and pu(, ,y) —
p(-, -, y) uniformly on compact sets in (0,11 x D,



150 A. Rozkosz and L. Stominski

(i) {pa(-,®, )} is bounded in Wy~ (Dsr) for any fized z € D, 6 €
(0,7) and pr(-,z,-) = p(-,=, ) in WY (Ksp) for any K C D such that
dist(K,8D) > 0.

Proof. By Nash's continuity theorem (see, e.g., [2, 18]), {Pro( )} is
equibounded and equicontinuous on any compact subset of Dr. At the
same time, by [12, Proposition 1], Pyp{:) — P'¢(-) in La(Dr), which
proves (i).

Now fix z € D, 0 < é < T and define U Dsr — R as un(t,y) =
pa(t, z,0), u(t,y) = plt,2,y). Then u, € Wy (Dsr) is a weak solution to
the Neumann problem

(—6‘— - An)un =0 on Dsr,

ot
<’Yan’ Vuﬂ) =0 on (51 T) et 6D: .u"ﬁ(al ) = ¢n1

where b, = pn (0, 3, -), whereas uw € Wy (Dsr) is a weak solution to the

probler
(;% — A)'u.z 0 on Dsr,

(Yo, Vuy =0 on (§,T) x 8D, wu(f, -)=19¢

with ¢ = p(é, =z, -). An elementary computation shows that v, = u, — u
satisfies

25 {@n ~v)n(d.z)dx
D

9 1,
S {—vna—n(t, z) + zail Diun Din(t, sc)} dt dz
Dar t 2

1 ..
- S o DyuDyn(t, z) dt dz
2
Dsr

] 1 .
S {—”naﬂ(t: x)+ —a¥ DwnDjn(t,x)} dit dz
Dsr 2

B[

+
Dsr
for all n € Wy (Dsr) with n(T, -} = 0. By (2.1), {tb — 14} is bounded in
L2(D), so the energy inequality for solutions to the Neumann problem (see
remarks in §111.4 of [17]) implies that {v,} is bounded in W' (Dsr). This
proves the first statement of (iil). Moreover, by (i) and Nash’s continuity
theorem, ¥,, — % pointwise in D, so ¢, — 9 weakly in Ly{D). Therefore,

(¥ — &™) Dyun Dyn(t, z) dt de:
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if vy, — v weakly in W2 ’l(DgT), then letting n —+ oo in (2.5) gives

S {—fu%n(i, z) + %a”Diijn(t, m)}dt dz = 0,
Dsr
Which forces v = 0, by the energy inequality. Thus, v, — 0 weakly in
W2 (Dsr). On the other hand, from Nash’s continuity theorem and {2.2)
we conclude that 4, — 1 in L (K) and v, — 0in Ly {Ksr) for any §de (0,10
and K C D such that dist(K, D) > 0. Therefore v, — 0 in W (K&T) by
the inequality (2.18) in Chapter IIT of [18] and the fact that v, € V3" (D)
(see remarks at the end of §II1.4 in [17)).
Finally, (ii) is a consequence of Nash’s continuity theorem, (ii) and the
fact that pu(t, z,y) = pu(t,y, z) for (f,7,y) € (0,T] xR, neN. =

3. Construction of diffusion processes. Suppose we are given a €
AN, A), {an} C A®(X, A) such that a¥f — o' a.e. For n & N let (X, PY)
denote a reflecting diffusion on D associated with A™ defined by (2.4) start-
ing from z € D. We are going to show that {F7} converges weakly in
C([0,T};R%) to the measure P whose finite-dimensional distributions are
determined by a weak Neumann function for 4. To this end, we denote by
K™ the process of Theorem 1.1 corresponding to a, and given ¢ € C? (D}
we write

t
(3.1) KD = (a,, Vo) (Xu) dKT,
a
t )
(3.2) Vi? = §1palp;  Dypn Dip(u, Xu) du
0
and
t
(3.3) MM = p(Xy) — p(Xo) — | 1pA™p(Xo) du
4]
t
- S ('7(171 3 V(,D> (Xu) dK,Z:’,
0
e t —_— —
(3.4) NP = o(X4) — o(Xo) — | 1p App(Xo) du

0
i

- S ('Ya.n ' V(,O) (-f'u.) dﬁ:}

(=]

for t € [0, 7). Here
N == Ao+ (a¥pr Dipa)(t, ) Dy, AF = Apys
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and pn(u,y) = pn(¥,,y), where po(-, -, - ) is a Neumann function for A"
on D. Then we have

LEMMA 3.1. Let ¢ € C%(D). Then for each starting point x € D the
sequences { M™¥}, {N™#}, {Var V™¥} are tight in C([0, T; R).

Proof. Let {r.}, {Ta} be sequences of {F:}, {F:}-stopping times, re-
spectively, and let {5, be a sequence of positive numbers such that . ™, 0.
From ({1.3), (1.4) it follows immediately that {{(M™¥)q}, {{N™¥#)r} are uni-
formly bounded in n € N and that

Jim B2 =t ER (N = 0.
Hence, by a well known criterion proved in Aldous [1], we deduce that
{2y}, {IN™#)} are tight in C([0,T];R), and consequently, {M™¥},
{N™¥} are tight in C([0,T]; R) as well.

To prove tightness of {Var V™®#} first fix ¢ € (0,7") and given 8 > 0 and
u € [§,T] set

(3.5) Fglu)={y €D :pn(u,y) > 5}
and
SVt
(3.6) Ztn’ﬁ = S 1F£(u)P;1hn(u:Xu) du,  h, = afijaniSD
8

for t € [0, 7). Since D is bounded and, by Lemma 2.2, {h,} is bounded in
Lo (Dsr), we have

sup E® Var(Z2™#)y < sup S [ (u, )| dudy < oo
n>1 n>1l Dyt

and

JE-EO E;{(Var Znﬁ)'m—f—% —{Var Zn’ﬁ)’r‘n} =< ﬂl_i_{%o ’@—1/25;/2 ||hﬂ “L:z (D) & 0.

Therefore {Var Z™#}, e is tight in C([0, T]; R) by Aldous’ criterion. More-
over, since {h,} is uniformly integrable on Dy, for every € > 0 there are
K ¢ D and o > 0 such that dist(X,8D) > 0 and

IF = E® sup |(Var Z™P), — (Var Z™0),| = S 1o (s |n(u, ¥)| du dy
[0, Dow

<e+ S 1Gg(u)(0{/\|hn(u1y)|)dudy’
KsT

\(w(r)liu’sérﬁ (i%‘c(lu) =1y € D : pa(u,y) € (0,06]}. Set Ga(u) ={y € D : p(u,y) €

(3.7 ' Hp(u) ={y € D: p(u,y) = B}
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By Lemma 2.2, hm SUPG 00 L (u) (¥) < Lay(u)uea(w (¥) for every (u,y)
€ Dsr and hp — @V DipDip in Lo (Ksr). Hence
. P 3 . i4
él&l limsup Il <e+ gl\mo S Las(wuesw(¥)|a” DipDsp|(u, y) dudy

n-—oQ
Degr

for every £ > 0. The right-hand side above equals &, because mesh Gg{u) - 0
as 8 N\, 0 for every w € [0, 7] and Djp(u, -) = 0 a.e. on Hy(u) by [23,
Lemma A.2]. Thus, limglimsup,, ., I == 0, and so
(3.8) {Var fV™#},. oy is tight in C([0, T); R)
by [15, Lemma V1.3.32] and the fact that Z™0 = Ve,

Now set 7 = inf{t > 0: X; ¢ D} and observe that the law of (7, X.a+)

under PF is the same as under the diffusion measure Q7 of an unreflected
process associated with A". Therefore, for any € > 0,

IfL = PZ( sup |(Var ‘SV”"")t — (Var V™% > g)

t&[0,7)
< PI((Var V™M) > e, 7> 8)+ Po(r < 6)
5
< @z ([ 1plaf 07 DjanDio(u, Xo)| du > &) + Qi(r < 8),
0
where gn{u, ¥) = gn(u,z,y) and g, (-, -, -) is a transition density of (X, QF)

or, in the language of PDE's, is a weak fundamental solution of (8/0t
— A™u = 0 in (0,T] x R%. By [2, Theorem 5], {gu(-, -)} is bounded in
W2((0,T) x R?). Therefore the first term on the right-hand side of the
above inequality tends to 0 as § ™\, 0 uniformly in n € N. To deal with the
second term, we note that by [27, Lemma 2] there is 0 < r < dist(z, dD)
such that 7" defined by 77 = inf{t > 0: X; € D"}, where D" = {y € D:
dist(y, 8D) < r} is continuous {®-a.s. Hence

limsup Q% (7 < 8) < limsup QL (v" < 8) = Q° (7" £ 4),
1t OO —0eQ

since by [24, Theorem 7.1}, {Q%} converges weakly to the law Q* of an un-
reflected process associated with A. Of course, Q% (7" >0) = 1, s0 Q= (" < 4)
— 0 as & N, 0. Thus, limg\ o limsup,_,., I3 = 0, which gives tightness of
{Var V™%} when combined with (3.8) and [15, Lemma V1.3.32]. =

The above lemma, Lemma 2.2 and results of Lions and Sznitman [19]
concerning tightness of solutions to the Skorokhod problem with oblique
reflecting boundary conditions lead to the following.

TuroreM 3.2. Let a € A\ A), {an} € A®(M\A) and forn € N let
(X, PE) be a diffusion corresponding to A™ with reflection along v,, starling
fromz € D. If a¥ — a¥ a.e. fori,j=1,...,d then {P7} converges weakly
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in C([0,T];RY) to the measure P® such that for any 0 <1 < ... <1y
<T, ke N and any continuous f : (D)F — R,
(3.9) E°f(Xi,-..,Xs,)
= { otz ) du § o | ol yaes ) Fun - 06 du,
D D D
where p is a weak Neumann function for A on D,
Proof From Lemma 2.2 it follows that the finite-dimensional distribu-

tions of any weak limit point of {P®} are determined by (3.9), so what is
left is to show that {P®} is weakly relatively compact. To see this, set

i
= (kM. kM), k?,iﬂhgn(xu)dff:}, te0,1].
0

One can check that Var k' = St Ve |(Xw) dK7. Hence

2

t
kM = 5 W) dVark®, tel0,T],
Ol’Yﬂn|

fori=1,...,d. Also, by (1.2),

o

Vark} = {15p(X,) dVarky, t€[0,7].
0

Finally, taking o(z) = 2 in (1.5) gives

X;: = Ei + %(M:L’mi + -thn’mi - V;bn'mi) + k;‘n‘,iﬂ (A= [07 TL_ P{f'a'sw
for i =1,...,d. Consequently, for each n € N the pair (X, k™) is under P* a
solution to the Skorckhod problem for {:c + = ( M e .y, mt)}

with reflection along v, /|va,| on 8.D. That {P”} is relatively compact now
follows from. Lemma 3.1 and [19, Theorem 4.1]. w

Let {FP® : z € D} be a family of measures constructed in Theorem 3.2
associated with some a € A(A, 4). Combining (2.3) with (3. 9% we see that
for any ¢ € C(D), (t,2) — E®p(X,) is a unique (in W' (Dr)) weak
solution to the Neumann problem (1.1), which justifies the name of diffusion
corresponding to A with reflection along v, on 8D for (X, PT). In what
foltows we call it for short a reflecting diffusion corresponding to a or we say
that P? is associated with a.

In the next section we will need the following convergence result.

LEMmA 3.3. Let {a,an} € A(A A) and let (X, P2), (X, P*) be reflecting

diffusions corresponding to a and an, respectively, starting from @ € D. Let
{¥™} be a sequence of m-dimensional continuous processes on [0,T] and let

icm
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[y fn. 9; gn be real measurable functions on Dp. Assume that
LIY™, X)| PY] — L{(Y, X) | P

in G([0,T);R™%) and ecither that f, — Fy gn — g in Lp(Dr) or that
fa = Fs gn — g in Li(De) and there is K C D such that dist(K,8D) > 0
and supp frn,supp gr C K for n € N. Then for every § € (0,T),
vé “A(T—8)
(v X | falwX)du, | ga(u X.) du) | P2]
§ 0

vé -A(T—8)
—aﬁ[(Y,X, § fleXu)du, | g(u,)?u)d,u) ‘Pm]
) 8]

in C([0,T]; Rm+d+2),
Proof. First observe that by (2.1),

T T
(3.10)  E® | |h(u, Xu)| duV sup B2 | |h(u, X,)| du
5 n2l 3

< 1" (min{8, G (dist(z, D))" 1™ ¥ *|| R Iy (Do)
for h € Lo (Dsr), whereas by (2.2),
T

T
(3.11) E* S |, Xu) \duVsup EZ S |P{u, Xou)|du < Ca||h||L, (k5

5 g
for any h € Ly (Dsr) such that supph C K. Suppose now that frn — F,
gn — g in Lg(Dg). Choose {Fi}, {Gr} C C(Dr) so that Fr — f, Gi — g
in Lo (Dp). Then for each k e N,

v A (T~6)
c[(ymx, | RelwXau, | Gu(wX.) du) }P::]
’ '] ’ A(T—8)
c[(yx | Few Xuydu, | Gilw, Xu) du) |pw]
) -0

in C([0, T]; R™+9+2). Moreover, by (3.10),
T T—§ N
lirmn E"”{ [ 1B~ flw Xu) dut § 1Gr— gl(u, Xu) du
k—oo 3 3
= lim {{ {|F— fl(u,v) +|Gx — gl(T — v, v)}plu,y) dy = 0
k—roa D
and
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T T-§6
lim umsupE:;{ [ 17— flew X du+ | [Ge- gf(u,Xu)du} — 0.

k—o0 n—oo 5 0

By the above and [3, Theorem 4.2],

v -AT -6} B
(v x, | fwXa)de, | ow Tu)du) | 1]
’ -vso A(T—8) _
(v | f X, | gl Xu) du) ]Pﬂ
) ¢]
in C([0, T}; R™+4+%), Finally, again by (3.10),
T T4
tim 2§ 1o~ Flw X dur | lon = gl(u B duf =0,

) 0

and the lemma follows.

Tn the second case, one can find K’ ¢ D and {F}, {Gs} C C(Dr)
such that dist(K’,8D) > 0, supp F, C K, supp Gy C Ky for k € N and
F, — f, Gy — g in Ly {Ks7). Therefore we can proceed as before, the only
difference being in the use of (3.11) instead of (3.10). =

4. Stochastic representation. Let A% (), 4;RY) denote the class of all
mappings from R? into B¢ ® R? which have bounded continuous derivatives
of all orders and satisfy (0.2) for x € R?. Suppose we are given {a,} C
A® (X A;R?) and let ¢, (-, -, - ), n € N, be a transition density of a diffusion
in R? associated with A™ defined by (2.4). In the next lemma we gather some
properties of the resolvents

Rip(z)= | e ™dt | o()anlt,zv)dy, @ >0,
0 R

corresponding to the operators A™. These properties will be extremely useful
in the proof of our main result.

LeMMA 4.1. Assume o € A\, A), {a,} € AP\, A;RY) and ¢ € C?(D).
Then

(i) for fized n €N, a > 0, R € CZ(R?) is a solution to the equation
(a—AMBrp=p onTRY,
(i) if a¥ —@¥ g.e. on RY fori, j =1,...,d, where

d(z) = { a(z) ifzeD,
Al otherwise (I is the identity matriz),
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then for every o > M/4 +4A%/X + A, {R"¢} converges to some Roe in
W3} (R%) as n — oo and {aRap} converges to @ in Wi(R?) as a — 0.

Proof. See [28, Lemma 2.1]. u

In what follows, {II} = {0 = tg < 1 < ... < tgm) = T} denotes
an arbitrary but fixed sequence of partitions of [0,T] such that |II..| =
max) <p<k(m) |tk - tk:—l' — 0 as m — oo.

THEOREM 4.2. Let a € A(M A) and let (X, P*) be o diffusion corre-
sponding to A with reflection along v, on 8D stariing fromx € D at time 0.

Then for every Lipschitz-continuous @ : D — R there is a unique quadruple
(M*e,N?, V¥ K¥?) such that

(i) M¥ e M, N¥ ¢ ./W, V¢, K¥ are continuous {F; }-adapted process
of findte variation on [0,T] satisfying

i t
Ve = K¢ =0, Kf=\1pp(X,)dE?, V¥ ={1p(X.)dV?.
0 o

(ii) M?®, N¥¢ admit mutual quadratic variation along {II,,} and
(MP N#)y = (M*),, te[0,T].
(iif) @(X:) — p(Xo) = H(MF + N - Vi) + K, t € [0,T), P*-a.s.

In particular, p(X) is an ({F}, P®)-Dirichiet process on [0, T] with the
decomposttion

41) (X)) — o(Xo) = MF + AY,  A? = L(-Mf + Nf - V¥) + K.

Moreover,
tva
e 3 O 1 i3, =1, R : z
(4.2) A —-}1\1% Vf—gl\rﬁ § 1pap™*DipDip(u, Xy)du  in P®,
t ..
(4.3) (M®); = | 1pa" DypD;p(Xa) du,
0
t . A —
(4.4) (N*), = {1pa" DipD;p(X.) du

0

for t € [0,T], and for any bounded measurable f : D — R the processes
f+-M%, f*N¥ admit mutual quadratic variation, and

(4.5) (f-M’P,f*NW)t=(f-M‘P)t, te[0,T].
Finally, if (M* N*, Vi, K') is a quadruple corresponding to the funciion
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z— z; and p € CY(D) then

(4.6) Dip- Mj=Mf, Dip(X,)x N} = Nf
and

(4.7) Dyp-Vi =V¥, Dip-Ki=Kf
forte 0, T

Prool Unigueness. Suppose that (; %, ;N¥, V¥, [ K¥), i =1,2, sat-
isfy (i)-(iii) with respect to the same sequence of partitions of [0, 7]. Then
LMY+ AY = s M? 4+, A¥, where ; AY = (1/2)(—iM(P+1;N5°m¢V‘P)+,‘K‘P, i=
1,2, and hence 1 M¥ = 3 M*, 1 A® = 5 A¥ due to uniqueness of the decom-
position of Dirichlet processes. Consequently, 1N¥ — s N¥ = V¥ — V% +
Z(QKP — 1K<p)_ Thus 1N§a - QNEP fec 1V£P el ZV‘P -+ 2(2K‘P - 1K"a) is an
({F:}, P°)-martingale of 0-quadratic variation, which forces {N® = 3N¢,
V¥ — V¥ = 2(1 K¥ — 2 K%). The last equality yields

V" =2V =2} 1p(Xu) d(L KY — 2KY)

=2 ].DlaD(Xu) d(lK':f . ?«K'f) =0

O e D b o

Accordingly, 1V¥ = V¥ and 1 K% = s K.

Eristence. First assume ¢ € C%(D). Define @ as in Lemma 4.1 and
choose {an} C A®(A, A;R?) so that @™ — G¥ ae, in R?. In turn, forn € N
define P7, A", A} and then K™%, V™® M™¢ N™¢ by (3.1)~(3.4). Then
by (1.5),

(48) (P(Xf) - QD(XO) = Mgl,(,a + A?’lpi te [07 T}a P,fua.s.,
where

APP — %(,__Mmtp + N™e _ V) £ KM
We are going to show that

(4.9) {M™¥ 4+ A™¥), n satisfies UTD
for » € C*(D) (see Appendix). For this purpose we first prove that
(4.10) {f M™% — fx N™¥} cn satisfies UTD

for v € C*(D), f € C?(D). We will follow rather closely the proof of [28,
Theorem 2.2], but the lack of lower Aronson’s estimates for p, Pr, as well as
upper estimates near 8D causes some new technical difficulties.

As in the proof of (2.16) in [28], the submartingale inequality and (1.3),
(1.4) imply that {supgc,cp | f- M — f % N"%|} ey is tight in R. Therefore
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we only need to prove that

(4.11) Veso0 n}l_{noosgli PUQF(f - MM — fx N™?) > ¢) = 0.
n.—

Observe that (1.9) gives f+ M™® = 1pf . M™?, fx N™¥ = 1pf « N™¥.
Therefore, if we take {fi} € C?(D) such that dist(supp fx,dD) > 0 for
ke N and fy — 1pf boundedly and pointwise, then for fixed n,m € N,

QF (fr + M{M® — fi  N™) — QR(F - M7 — f % N™¥)

in Py as k — oo. Thus, in order to get (4.11) we may assume without loss of
generality that there is K C D such that dist{(X,8D) > 0 and supp f C K.
Since f(X), N are ({F.}, P®)-semimartingales and stochastic integrals
with respect to semimartingales can be defined as limits of Riemann sums,

for N™# = (f(){),ﬁn,fp) +f- ﬁn,w’

as is easy to check. On the other hand, from (1.8) we see that N™¢ is the
sum of M™% and a process of finite variation on [0, T']. Therefore {f - M™% —
f* N™#yp =0 and we have

QR(f - MM — £ N79)
= [QF( - MM = £ N™F) = (- MM — £ N7}
SIQP(f - M) = {f - M)z
IQF(F = N™) = (f « N9}
FIQR( - MM, £« N™2) = (- MM, £« N0
=0+ L+ 1Is
For any fixed 0 < § < T,
Is S |QF(f - M™®, fx N™) + |(f - M™%, f N™¥)s]
+ QT (f - M™®, £« N™°) — (f - M™?, f & N™¥)}|
= Iy + Is2 + I3s.
As in the proof of [28, Theorem 2.2] we show that

(4.12) lim sup Py(Iy+ I > e} =0,
N0 nz].
(4.13) lim lim sup EX(I31 + Isz) = 0,

SN0 m—o n>1

50 it remaing to evaluate Izs. To this end, for k. € N put ¢} = kRJe,
where {R%}a»po i5 the resolvent of Lemma 4.1 associated with an, and
define M™%k N™¥k as in (3.3), (3.4) with » replaced by ¢} . Clearly, for
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any 0 <8 < T,
Iss < |QEp(f - M™%, f + N™) — QF(f - M™¥E, |+ N™#E)]
QT (f - M™#E, f o NMOEY — (f - M™9R, f 5 N#E)T|
o+ f M NEOT — (f - M™?, f 5 N™)T|
= Jaz1 + T332 + Iazas.

To deal with [331, we note that by Lemma 4.1, {p— ¢} }nen is convergent,
in W3(D), whereas by (2.2), p,(-, -) is bounded on Ksz uniformly inn € N.
Therefore repeating the arguments used to prove (2.21) in {28] we deduce
that
(4.14) lim lim sup Fplss =0

k—r00 M0 5

for any fixed 0 < § < T. Define now V™%, K™% by (3.2), (3.1) with o}
instead of . Since (k — A™}RR¢ = g, it follows from Theorem 1.1 that

t
MPM* = ol (Xy) — @} (Xo) — | 1pk(ef — ) (Xu) du — K, ek
0
i
NP = G (X) — o (Ko) — [ Lok(ef — p)(X o) du
0
t DB t
Sl @i 2 pon (u, X)) du — S (Yan> VOFHX ) AET
0 Pn
for ¢ € [0,T], where (-, -} = po(T — -, -). An easy computation shows

that

NPPE = o (X)) — @ (Xo) + | 1ok}
0

— @) (X du + VO — K

— M:WP}: + Ztn,k
for t € [0, T}, where

t

Zf’k=251r;k:(gak O} (Xu) du+ ViP5 teo,T).
]

In particular, if we take h € C%(D) such that h = 1 on K and supp h C D,
then

{f(X)’f\'rm‘P:) = (M™F, M™RY = (M™F b Mn,y:rz),

the last equality being a consequence of (1.3) and the fact that supp f < K.
Since

£ N™#E = (f(X), N™#R) 4 f . N™#k,
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from what has already been proved it follows that

FrN™P = f MM LR whete  R™F = (M™F b MR+ £ 2
By the assumptions and Lemma 4.1, {a¥ D; fD; f}nem, {0¥ Dy} Do bnen
are convergent in IL; {K'), so combmmg Thecrem 3.2 with Lemma 3.3 and
(1.3) we see that {{SM™F)},en, {(h-M™#E)}, cn are tight in C([0, T]; R),
and hence that {Var(®a™f h.°M™#)}, oy is tight for fixed k € N and
§e(0,7).

Define now Fj(u) by (3.5) and Hp(u) by (3.7). By Lemmas 2.2 and
4.1, for each sufficently large k € N, fa¥ Dyp, D;p? — fa" D;pD;Rypp in
Ly (Dsr) as n — oo. Hence, for fixed 8 > 0,

T
lim BZ { Lyp(u] fofi 7  Dipn Diofl(u, Xo) du
&

T
= lim {du | |fa¥f DipnDi}|(u,y)dy =0,

& Hg(u)
hecause a slight change in the proof of [23, Lemma A.2] actually shows that
Dip = 0 a.e. on Ha(u) for u € [§,T},7 = 1,...,d. Applying once again
Lemmas 2.2 and 4.1 we see that
{f12k(pk — o) + 1Fg(-)\Hﬁ(-)aEpﬁlePanE]}nEN
is convergent in IL; (K57). By the above, Lemma 3.3 and [15, Lemma VI1.3.32],
V-

{Var ( { f102k(e} — ¢) + Lrp(yad o Dypa Digh] (u, Xu) dU) }neN
5
is tight in C{[0,7); R). Also, by the arguments used to prove (3.8),
T
lim lim sup E7 S(l =1y DIfalip7 DiprDio}| (u, X)) du = 0.
AND pesco 5

By the above estimates, {Var f - °Z™*},en Is tight in C([0,T};R) and so
is {Var ®R™*}, cn. Therefore, arguing as in the proof of (2.32) in [28] we
conclude that

lim lim sup PS{Issz + Jazz > ) =0

Fib 00 MO0 1y
for fixed 0 < § < T, hence that
lim sup P¥{(I3 > ¢€) =0,

m—=o0 n>1

by (4.13), (4.14). This and {4.12) give (4.11), and the proof of (4.10) is
complete.
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In particular, taking f = 1 we see that {M™¥ —~N™¥} gatisfies UTD. Now
vote that by Lemma 3.1 and Theorem 3.2, {K™%} is tight in C([0,T];R)
and so is {Var K™%}, because (v, , V@) > A/2, which implies that K™% ig
an increasing process for each n € N. Therefore

(4.15) {Var K™¥},en is tight in C([0,T]; R),
since
t
ans V)
4.16 g = | Do VO oy v agne e 0,7,
( ) t §) <'Ya.mp V@} ( ) [ 1

From the above and Lemma 3.1 it follows that {Var(—(1/2)V™% 4 K™%)}
is tight in C'([0, T];R), which proves (4.9) when combined with (4.10) and
[28, Lemma 1.4].
Consequently, by Lemma 2.2 and Theorems 3.2 and 6.1, there exist con-
tinuous processes M¥, A% on [0,T] such that
LIX, M™%, A™?) | P7] — L[(X, M¥#, A%} | P*]
in C([0, 7]; R*2) and (X)) is an ({F;}, P*)-Dirichlet process admitting the
decomposition
o(X:) —o(Xo) = Mf+ Af, te€[0,T], P%as.
Our next goal is to show that
(4.17) LIX, M™?, A V™2 | P — LI(X, M?¥, A%, V¥) | P?]
in C([0,T]; R¥*%). For this purpose, for given § € (0,7}, >0 and u €
[6, T set
Vs -
7 = | 1p,wa’p ' DipDip(u, Xu) du,  Fs(u)={y € D: plu,y) > 6}
§
and define Fg(u), Z™°, Hg by (3.5)~(3.7). Choose also a sequence of non-

negative continuous functions g : D — R such that dist(supp Ay, D) > 0

for ke Nand by / 1p as k /" 0o0. Due to Lemma 2.2, for fixed § > 0,
kEc N,

Lrp (- NHg( ) ke P Dipa Ditp — Ly hia¥p~ DypDyep
in Lo{Ds7) as n — oo, and

T
(418)  lim B § Lar, ()| Paa 0 Dy Do (u, X )| ds
[

T
={du | |maYDipDip(u,y)|dy =0,
§  Ha(u)
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because hya! D;pnDip — hxa D;pDipin Ly (Dsr)asn — co and Dyp = 0
a.e. on Hg(u). Therefore, by Lemma 3.3,

(4.19)  L[X, M™%, A™% Ry - Z™F)| PT] - L[(X, MY, A? by - ZP) | P7).
Furthermore, analysis similar to that in the proof of Lemma 3.1 shows that

(4.20) lim limsup BS sup |hg - Z;F — by - 200 = 0,
BND pesoo &[5, T}

whereas applying the Lebesgue dominated convergence theorem yields

4,21 lim E* sup |hp- 28 —he- 20 =0.
( ) N tE[&PT]! kot Ly k tl

Since g - Z™0 = hy -V, by Z9 = 1, 9V¥ putting (4.19)—(4.21) together
and applying {3, Theorem 4.2] we get

LUK, MM, A™% Ry V™Y | P21 — L[(X, M¥, A%, hy - Syey | PR
for k € N. Since {a¥ D;p,Dip} is bounded in Lo (Dsr), we also have

lim limsup E® sup |V/"% — hy - V™%
k=100 poo (0,7

< lim limsup “ (1p ~ hi)|e D;pn Dip(u, y)| dudy = 0.
k=00 n—co Do

Likewise,

lim E® sup [V — by - SV =0,
k—oo  teln,T]

so applying once again [3, Theorem 4.2] we conclude that
(4.22) L[(X, M™? A™P Sy™e)| PT] — L[(X, M?, A%, °V¥) | P?]

in C([0, T]; R4+3).

Qur next claim is that
(4.23) {8V¢} converges in P® as § \, 0.

To see this, define 7 = inf{t > 0: X; ¢ D}. Thenforany 0 < d <o < T
and € > 0,
(4.24)  P*( sup |V V| >e)

t€[0,T]

)
< P® (S lplaijp"lepDi‘P(u; X)|du>e 7> Q) + Pt < g).

(=21

Since K, = 0 on {7 > g}, the law of X.5, under P is the same as under
the measure Q% of an unreflected process associated with o. Furthermore,
by [2, Theorem 5], a transition density g(t,z,y) of (X, @), which coin-
cides with a weak fundamental solution of (8/8% — A)u = 0 in [0,T) x R?,
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belongs, as a function of (t,y) for fixed z, to WH((0,T) x R¥). There-
fore a¥ D;q(+, =, - )Ds¢p is integrable on Dy and the first summand on the
right-hand side of {4.24) is as small as desired when g is sufficiently small.
Also, since z € D, P*(r > 0) = 1, and hence P*(r < ¢) — O as ¢ — 0.
Accordingly, {*V¥} is a Cauchy sequence with respect to the convergence
in P®, so converges in P® as ¢ \, 0. In the same manner we can sec that
{(Var?V*#)¢} is bounded in P® uniformly in § € (0,T). Consequently, the
limit V¥ of {4/7%} is of finite variation on [0, T).
Observe now that

4.2 3 H jd Ty —
(4.25) lim lim sup Py ([V5%| > €) = 0

for £ > 0. Indeed, for § € (0,7), n € N we have
PE(VH¥| > e) < PRIV > 6, 7> &) + PR (T < 8).

The first term on the right-hand side of the ahove inequality tends to 0
as § N, 0 uniformly in n € N, because by [2, Theorem 5|, the functions
gn(-,2,-) defined as ¢(-,z, -) but with a, in place of a are bounded in
W (0, T) x R?) uniformly in n € N. As for the second term, note that
Lir | PE] — LT| P*], so

}Sl\inhmsuppn(f <48 < %%P (r<8)=0,

N—r00
which concludes the proof of (4.25). Combining (4.22) with (4.23), (4.25) and
using [3, Theorem 4.2] we get (4.17). By (4.8), {(4.17) and the continuous
mapping thecrem there is a continuous process V¥ such that
(4.26)  L[(X,M™e, Ame ye LNme B0 | Po]
— LUX, M¥#, A%, V¥, U?) | P*]
in G{[0, T]; Ré+4).

As in the proof of {28, Theorem 2.2], the Markov property and the fact
that o(X) is an ({F:}, P®)-Dirichlet process show that A¥ is an {F;}-
adapted process. On the other hand,

w(ft)_@(fﬂ)zﬁw-l_;{f: %(M;FW‘Z‘F)_!_Ut@’ te [OiTJa

and ¢(X.) — ¢(Xy), V¥ are {F,}-adapted. Therefore U? is {F:}-adapted
as well. Set

1
N ={1p(X.)dUg, telo,T).
0
Then N¥ is {F;}-adapted and

(4.27) {he(Xu)dUf — N®  in P®
]
as k — oo.
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Due to (4.15), (4.26) and [16, Lemma 3.1}, {(1/2)N™¥ -~ K™%} satisfies
the condition UT and hence, by [16, Corollary 2.7, for each k € N,

(4.28) E[(X, M A e (K, d(%N;}"ﬁ + f{;}ﬂ’) 113,3]
0
- z{(x, M*”,A‘P,V‘P,Shk(fu)dU;f) 1Pﬂ
0

in C([0,77; R4}, Also, by (1.9) and Doob's Ls-inequality,
¢

2
"= B2 sup [sNPP - e (;_cu)d(le + r’«?;#)
0<t<T |2 5 2
1 L _ 2
= -E% sup H(ID - hk)(Xu)clN;WI
2 Togigrly
T
< 2% {(1p — h)? (X o) (V™).
0
Hence
(4.29) lim Hmsup I™* = (.

k—oo poeo

From (4.15) and (4.26)—(4.29) we deduce that there is a continuous pro-
cess K% of finite variation on [0, 7] such that K§ = 0 and

(4.30) L[(X, M™%, NB¥ Ve K9P} | P — L[(X,M¥ N¥,V¥ K?)| P%]
in C{[0,T]; R¥t4), In particular, by the continuous mapping theorem,
(431) (X)) - @(Xo) = M + AY = M + §(-Mf + Nf — V) + Kf

for ¢ € [0,7]. From {4.30) and [15, Proposition IX.1.17] we conclude that
N¥#is an ({Fi}, P¥)-local martingale, whereas from (4.30) and (15, Corollary
VI.6.6] it follows that

L{(M™# (M) | PR — LI(M?, (M%) | P

and .
LI(N™®, (N™#)) | Pf] — LI(N?, (N¥))| P¥]
in C([0,T]; R?). On the other hand, by Lemma 3.3,

L[(M™®, (M™#))| P — L [(M‘P, § 1pai DipDjp(X.) dfu,) | P“‘]
. 0

and

LI(N™®, (N™#))| PE] = L [(N*’,g 150" DipDyp(Xa) du) ‘ p?]
) _
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in C([0, T]; R?). Accordingly, (M#}, (N¥) are given by (4.3}, (4.4). In partic-
ular, we have E?({M¥)p = E*{N¥)g < 0o, which implies that M¥, N¥ are
square-integrable martingales on [0, T]. Furthermore, from (4.30) it follows
that for ¢ € (0,7] and k € N,

(4.32) E[(J - § hio(Xa) dK™ i P,f] - c[i b (Xo) AEE
0 0

Pm] .

Letting & — oo we obtain SE 1p(X,)dK? = 0,1 € (0,7]. Thus, K% in-
creases only when X € 8D.
Finally, from what has already been proved we see that

(X))~ p(Xo) = Nf +Bf = Nf + 2(—-NP + MP VA + Ef, te[0,T],

is an ({F;}, P®)-Dirichlet process (along {II,»}} with martingale part N¥.
Therefore, by the arguments used to prove (1.11) in [28], for any 0 < ¢ <
t+6<T,

};tm

H

Z Em(@()_(tk) - ‘p(j(_tk—l) {ftk«:.) - B; - Bi'(e—t+5
T“f+5<tkST, S

in P* as m -— co. Since X is a Markov process under PZ,

"= Z B (p(X o) = 0(Xtums) | Xt
T—t48<t, <T, k€
and hence Y™ is F;-measurable for all sufficiently large m. Thus Bf —
BY .5 is Fy-measurable for any § & (0,T —t). As a consequence, B is
{F:}-adapted, and so is NV, because @(X,) —p(Xo) = N+ Bf for t € [0,T].
Since M¥ and V¥ are {F;}-adapted, it now follows from (4.31) that K¢ is
{Fi}-adapted.

Finally, if V™, M™!, N™i K™ are defined by (3.1)~(3.4) with ¢(z) =
x;, then by (4.30}),

Llp(X), (Digp(X), M™, N V™8 K™ | Pyl
— Lp(X), (Dip(X), M*,N*, V*, K*) | P¥]
in C([0,T];R®) for i = 1,...,d. Therefore
(4.33)  L{(p(X), M™, N™ V™, K™% | P3)
| = L[p(X), Dip - M*, Dip# N*, DigV*, 0 K*) | P*]
in C{[0,T]; R®), because V™% = D - Vi, K™% = Dyp K™ and M™¥ =
Dip-M™, N™¥ = Djp«N™", the last two equalities being a consequence of

It6’s formula and uniqueness of the decomposition of semimartingales into
a martingale and a finite variation parts.
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Since (M*, N*, V*, K*) satisfies (i)-(ii) and, by (4.8), (4.33) and the con-
tinuous mapping theorem,

o(X:) — p(Xo) = 3(Dig- M* + Dyo « N' — DV + DipK®,  t€[0,T),

it follows that (Dy- M, §) Dyp(Xu) dNE, Dy Vi, Dyp-K*) satisfies (i)—(iii).
In view of uniqueness of the decomposition, this gives (4.6), (4.7) and the
proof in case i, f € C?(D) is complete.

Now assume that ¢ is Lipschitz-continuous and f is bounded measurable.
Let us extend ¢ to a Lipschitz-continuous function ¢ on R? and f to a
measurable bounded f on R?. For z € R set

(4.34)  on(a) =koke), pu(a) = (0% B)e), ful®) = (an* N)(z)
(* denotes convolution), where ¢ € C§°(R¥) is a non-negative function such
that {5, o(z)de = 1. Then for each k € N,
(4.35)  pr(Xe) — or(Xo) = MP* + AL

= (MP* + N -V K, tel0T],
is an ({#}, P*)-Dirichlet process and (M¥*}, (N¥*), V¥* are given by (4.2)—
(4.4) with ¢ in place of . Since the functions Dy are bounded in D
uniformly ink € N, i = 1,...,d, and Dypr — Dijpaein Dfori=1,...,d,
applying the dominated convergence theorem we deduce that

Eﬂ?(Mﬁ%—‘m)T — Efﬂ(_N%-Pl)T
T
— B { 1pa" Diliox — 1) D3 (s — 91) (Xu) du— 0

0
as k,1 — oo.

On the other hand, by uniqueness of the decomposition of the form (i)
(ii), MPs — M¥#t = Mer—¢t NPk —N? = N#»~¢t for k, 1 € N. Accordingly,
{Mer}, {N¥e} are Cauchy sequences in M and M, respectively, and in
congequence, there are M¥, N¥ such that M®* — M%in M and N¥x — N¥
in M. Since

E | 1pa" Dy — ¢)Di(ox — ) (Xu) du — 0,
0
(M¥®), (N¥) are given by (4.3), (4.4). Moreover, since
B sap [V =V < {1 IDpDiler — @) (w9)dy — 0
0<tLT D

and i(X) — @(X) in P?, it follows from the above and the continuous
mapping theorem that there is an {F;}-adapted process K% such that
(4.36)  (pu(X), M#*, NPe, VO K9) = (o(X), M, N¥, V¥, K?).

in P®. This gives (iii).
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To prove that {X) is a Dirichlet process with the decomposition (4.1)
and K¥ has the desired properties, we first note that {Var Veen}, {Var K4}
are tight in C([0,T}; R), because V¥* = Dy - Vi K¢ = Dip-Ki fork € N
and Dj;ipy are bounded uniformly in k € N, 2 =1,... yd. In partlcular, K
has finite variation on [0,T] and, as in (4.32), for every t € (0,T] and m € N,

P*|
as k — oo, which forces Kf = || lap(X.) dK{ for t € [0, T).

Furthermore, as in the proof of [28, Theorem 2.2] we check that {M*» —
N#e} satisfies UTD, so taking into account (4.36) and applying [28, Lem-
ma 1.4] and [4, Theorem 2] we conclude that A¥ is a 0-quadratic variation
process on [0, 7). This completes the proof of (i)-(iii) and (4.1)—(4.4}. More-
over, since fr — f a.e. in D, (4.5) follows by the same method as at the end
of the proof of {28, Theorem 2.2]. Finally, if ¢ € C*(D), then ) —  and
Diwr — Dy for i =1,...,d uniformly in D. Therefore
(4.37)  (pe(X), Dipy - M D,% * N', Digs. - V', Dt - K°)

(‘P Dip- M'L 'L‘P*Ni:Di(P'Vi:Di(P'Ki)
in P?. Since we already know that ‘
(M¥e, Nox Voe K¢) = (Djpy, - M*, Dypg * N', Dyspye + V¥, Dygpre - K,

it follows from (437) and (4.35) that (D - M?, Dyp * N*, Do - V¥,
D, - K*) satisfies (i)-(iii). By uniqueness, this gives (4.6), (4. 7) and the
proof of Theorem 4.2 is complete. =

i

c [o = | hen(X0) dKEF
0

o] - z[ihm(Xu)dK?f

ReMark 4.3. If in Theorem 4.2 we assume additionally that o is contin-
uous then there is a continuous non-decreasing {.; }-adapted process K ou
[0, 77 such that Ky = 0, K; = |} 1ap(Xy) dK, and

(4.38) Ef =\ {va, th)(xuj dK,, tel0,T).
0

Indeed, define @ as in Lemma 4.1 and choose a, C A%(),A;R?) so that
ay — @Y uniformly in compact subsets of R*. Then by (4.30) and the
continucus mapping theorem,
(4.39)  LUE™?, (Ya,, VO)(X), (Ya,. VENX), K™%) | PZ]

— L[(K?, (ye, Vo) (X), (Yar V) (X), K*)| P7]
in C([0, T]; R*). For t € [0, T set
t

(X.) dED®, S
O

(X,) dKZ.

)-
i
; (%n, V) Yay ws
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Clearly, Ko = 0, K is { F;}-adapted, non-decreasing and increases only when
X € 0D. Furthermore, by (4.39) and [16, Theorem 2.6],

c[(xn-w,g O V)X aET) | BE] = £](5% (0, Vi) () a) | P
1]

in C([0,T]; R?), which gives (4.38) by (4.16) and the continuous mapping
theorem.
COROLLARY 4.4. Under the assumptions of Theorem 4.2, p(X) € D2.

Proof We only need to show (6.1) with p = 2 and A¥ in place of A.
We have

!
Z Mg _ |+ |NE ~ N2 _ P} < B5(M®)7 + E*(N¥)p
and
i
SOV - Ve < (Var V),
=1
i
ZW — K¢ _[*< (Var K§)?

=1
for any sg < 81 < ... < 8, 8; € I, 1 <1< k{m), m €N, so the desired
result follows from Theorem 4.2. =

5. Stochastic caleulus. In this section X, M*, N*, V%, K* denote the
processes of Theorem 4.2 corresponding to the function % > z°.

THEOREM 5.1. Let (X, P*) be a diffusion corresponding to a € A(X, A)
with reflection along v, sterting from x € D at time 0. Then fori=1, ..., 4,

t
n}]:«“l;nm Z T/}(ka)(X;k-o-l X;k) = S 'l/)(Xu) dX,
b €, ty <t 0
i
Tm oY X)X, - L) = () 4K
Ty € Mo, fp <t 0

exist ns limits in P® for any Lipschitz-continuous v : D—=Randte[0,T].
In particular,
t ¢

W), X = {(Xu) X - [9(Xa) dX,
0

0

te[0,T].
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Actually,

: .1 , . v ari ) ,
J9(0) dXs = S M +5x N = (), N9T_ = - Vi) =4 K,
0

' i _ L i i i i i

Vo) & X5 = S (- MP g NP4 ((X), MF) = ¢ V) 49 K

5 2
and both integrals define ({F;}, P*)-Dirichlet processes on [0,T] with mar-
tingale part v - M.

Proof The proof is similar to that of [25, Theorem 3.1], so we omit it. m

THEOREM 5.2. Let (X, P*) be o diffusion corresponding to a € A(X, A)
with reflection along .. Then (0.6) holds for any ¢ € C*(D) and z € D.

Proof. This follows immediately from Theorems 4.2 and 5.1, since

(Dup(X), NDYE_, = (Dip(X), X%y for t €0, 7). m

6. Appendix. Let {II,} = {0 = to < 1 < ... < tgm) = T} be
a sequence of partitions of [0,7] such that ||| — 0 as m — oo. Let
{X: :% € [0,T]} be a continuous process on some filtered probability space
(2, 7,F, P). We call X an (F, P)-Dirichlet process (along {II,,}) on [0,T]
if it admits a decomposition

Xe=Xo+M;+ A, te[0,T],

where M is an (F, P)-local martingale with My = 0 and A is an F-adapted
process of (-quadratic variation along {IT,,}, i.e. 49 =0 and

Qr(4) = Z l4;, — A4i | in Pasm — oo.

b €ITm
If additionally
i
6.1) lim sup sup s P(‘ Ag, — A, p>R)=0
R—00 m>1 1<1<k(m) "D<31<13-<9l.- ;i o= AP 2

g€,

for some p € [1, 2], then following [4] we say that X belongs to the class DP.

For n € Niet X" be an (F", P")-Dirichlet process on [0,7] along {IZ,,}

with the decomposition X" = X§ + M + AP, t €[0,7], and suppose that

{X"} is weakly convergent in C{[0, T]; R?). Then following [4] (see also [28])
we will say that {X™} satisfies the condition UTD if

{ sup |AP[}nen is tight in B
0T
and

(6.2) Veso lim sup PM(QTF(A™) > ¢) = 0.
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From now on, FX = {FX}, where FX =o(X, s < t) for t € [0, T

THEOREM 6.1. Suppose ¢ € C(D). Let X be an FX -Markov process
with transition density p and forn = 1,2,... let X" be an FX" -strong
Markou process with transition density p, such that @(X™) is an (FX", P™)-
Dirichlet process along {Il.} with the decomposition o(XP) = e(X) +
MY+ AP, € [0, T If {9(X™)} satisfies UTD,

(6.3) LIX™| P — LIX | ] in C([0, T]; RY)
and for each y € D,
(6.4) Pn(',',y)‘—’p(':‘,y)

uniformly on compact sets in {0,7] x D, then
(6.5) LI(X™, M™#, AC) [ P"] — LI(X, M¥, A%) | P} in C([0,T];RI72)
and o{X) iz an (FX, P)-Dirichlet process along {In} admitting the decom-
position p(X;) = w(Xo) + Mf + Af, t&[0,T).

Proof. Let (2,7, P) be a completion of the space (2, 7,P) and for
n & N let (2%, F", P™) be a completion of (27, F", P"), Set Tt = {F,"},
Frt = {F2+), where
Br=(\EY, BX=rivN, Frte()FX

t<y t<a

for t € [0,7] and N (resp. N™) denotes the collection of P- (resp. P"-) null
sets of JF (resp. F"). In view of Theorem 1.1 and Lemma 1.2 in [28] we only
need to show that

(6.6) L(X™, o(X™),F%7) | P"] = L{(X, p(X),F*) | P]
in the sense of extended convergence (see [28, 29]). To this end, given m € N,

T=(t1,...,tm) € [0,T]™ such that t; < ... <t,, and @ = {#1,...,0m) €
R™ denote by X7+©™ the regular version of the martingale

i '8 im th AtX'" : , )
{E(e p{};@;ﬂX }|J‘-" ) te o, 7]}

where B stands for the expectation sign with respect to B. Due to Propo-
sition 1 and Corollary 5 in [29], (6.6) will be proved once we prove that for
every m € N, T €[0,7]™ and ©,0 e R™ i =1,...,m,

(6.7) 'c[(X;r:l,T,@l"m, o ’XI:::IT,BT“,m) | Iﬁn]
1 m -~
- L(x DO, XDy | P

FE =FE" vNm

in C™ and
(6.8) {(xm, Xx™T€™)} is tight in D([0,T);R? x C),

where € is the set of complex nurnbers,
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For this purpose choose a sequence {he} of non-negative continuous func-
tions ke : D — R such that dist{supp ke, D) > 0for ¢ > 0 and he /" 1p as
e~ 0. By (6.3),

(6.9)  LI(X™he(X™)|P™] - LIX, he(X))| P} in C([0,T); R*)

for every ¢ > 0. Since P(X; € 8D) = 0 for ¢ > 0, it follows from (6.9) that
for every 4 > 0,

(6.10)  lim limsup P*(|X? — he(X[)X]| > 6)
eN0 p—oa

N0

for all £ > 0.

For arbitrary but fixed € > 0 dencte by X 7,875 the regular version of
the martingale

(B (oo {i S buhe(X) %, }| ) 2 € 0.7])
k=1

in case t; > 0 or the martingale

{E(exp {ithg +i§:9kh5(th)th} |ﬁj) te [O,T]}
k=2

if ¢; = 0. ' Then by (6.10) and Doob’s maximal inequality,

(6.11)  &m Esup|X7 @™ — xT:O™|2
g0 4T
S 4E\|X§,9,m,£ _ X%’,@,m‘z
-~ 2
< 4E‘exp{ 37 01~ ha( X)) Xy |~ 1|
kit >0
<4 > Blexp{fr(l — he( X)) X, } - 12 =0
kit >0
Similarly,
(6.12) lim lim sup E" sup | X>T@me _ X?*T’Q’mﬁ = (.
N0 oo t<T

On the other hand, by the arguments from the proof of [28, Theorem 1.3],
1 m -~ m -
,C[(X;’;’T’e ,m,51 o ,X;?."LT,Q ,m,s) | Pn} _}ﬁ[(X;{',@I}m,E’ L ,XE;:Q ,m,s) I P]

in C™ and {(X™, X™T:€me)} ig tight in D([0, T]; R? x C). Therefore (6.7),
(6.8) follow from (6.11), (6.12) and [3, Theorem 4.2]. w
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On absolutely representing systems in
gpaces of infinitely differentiable functions

by
Yu, F. KOROBREINIK (Rostov-na-Donu)

Abstract. The main part of the paper is devoted to the problem of the existence of
absolutely representing systers of exponentials with imaginary exponents in the spaces
C°°{@) and ©™(K) of infinitely differentiable functions where G is an arbitrary domain

in B¥, p > 1, while K ig & compact set in RP with non-void interior K such that K = K.
Moreaver, absolutely representing systems of exponents in the space H{G) of functions
analytic in an arbitrary domain G € CF are also investigated.

1. Introduction, Let H be a linear topological space over the field C.
A sequence X = (2x)32., C H is called a representing system (RS) in H if
each element = of H can be represented in the form of a series

[+ 4]
(1.1) w3 okmy, o €C k=12,
k=1L

converging in H. Let now H be a complete locally convex space (CLCS).
A sequence X is said to be an absolute representing system (ARS) in H
if each = € H can be represented in the form of a series (1.1) absolutely
converging in H. It is evident that every ARS in H is a fortiori an RS. The
problem of existence of such systems was investigated in [9].

Suppose that H = ind Hy, where for any n > 1, H, is a CLCS, Hy —
Hypqand oy € Hy, k> 1. 1f X is an RS (or an ARS) in each H, then X is
an RS (respectively, an ARS) in H. This trivial fact is mentioned in. [13, §3,
point 1]; a far more difficult question is also posed there: whether X is an RS
(or sn ARS) in H = proj H,, if X is an RS (respectively, an ARS) in each Hp.

A mamber of results in this direction for certain function spaces (mainly
for the Fréchet space H = H(G) of functions analytic in the domain G with
the standard compact-open topology) and for some sequences Zj (mainly of
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