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On absolutely representing systems in
gpaces of infinitely differentiable functions

by
Yu, F. KOROBREINIK (Rostov-na-Donu)

Abstract. The main part of the paper is devoted to the problem of the existence of
absolutely representing systers of exponentials with imaginary exponents in the spaces
C°°{@) and ©™(K) of infinitely differentiable functions where G is an arbitrary domain

in B¥, p > 1, while K ig & compact set in RP with non-void interior K such that K = K.
Moreaver, absolutely representing systems of exponents in the space H{G) of functions
analytic in an arbitrary domain G € CF are also investigated.

1. Introduction, Let H be a linear topological space over the field C.
A sequence X = (2x)32., C H is called a representing system (RS) in H if
each element = of H can be represented in the form of a series

[+ 4]
(1.1) w3 okmy, o €C k=12,
k=1L

converging in H. Let now H be a complete locally convex space (CLCS).
A sequence X is said to be an absolute representing system (ARS) in H
if each = € H can be represented in the form of a series (1.1) absolutely
converging in H. It is evident that every ARS in H is a fortiori an RS. The
problem of existence of such systems was investigated in [9].

Suppose that H = ind Hy, where for any n > 1, H, is a CLCS, Hy —
Hypqand oy € Hy, k> 1. 1f X is an RS (or an ARS) in each H, then X is
an RS (respectively, an ARS) in H. This trivial fact is mentioned in. [13, §3,
point 1]; a far more difficult question is also posed there: whether X is an RS
(or sn ARS) in H = proj H,, if X is an RS (respectively, an ARS) in each Hp.

A mamber of results in this direction for certain function spaces (mainly
for the Fréchet space H = H(G) of functions analytic in the domain G with
the standard compact-open topology) and for some sequences Zj (mainly of
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exponentials and Mittag-Leffler functions) have been obtained by the author
[13] and A. V. Abanin {[1]-[3]). Some of these results are quoted below.
Rather general results on stability of ARS under the passage to projec-
tive limits of FN- and DFN-spaces were stated in [4]. Here is the main result
of [4] for the case when H,, are FN-spaces, that is, nuclear Fréchet spaces.

(Theorem 2.1 of [4]) (1) Let Hy, be an FN-space with the topology defined
by seminorms {p}}52,, n=1,2,... Let up € Hy for k,n 2 1. Suppose that

e
(1.2) Vi o lim R2CON
k—rco pj+1(uk)
(2) Let U = (up)2; be an ARS in each Hy, n=1,2,...
(3) Then U is an ARS in H = EEan.

A. V. Abanin [3] noted that the proof of this statement in [4] is erro-
neous. Namely, the relation y, € R} for p > 1 ([4], p. 202) was obtained
incorrectly since y, € H’ but not necessarlly yp € Hy. Abanin remarked
that the validity of this result remained open. Therefore it will be cited
from now on as conjecture 4.

Let us formulate two similar hypotheses.

=0

CoNJECTURE B. Let the assumption (1) of conjecture A be sotisfied and
let U be an RS in Hy,n=1,2,... Then U is an RS in H = proj H,.
FR——

CONIECTURE C. Let the assumption (1) of conjecture A be satisfied and
let U be an ARS in Hy,,n=1,2,... Then U 45 an RS in H =proj H,.
. p—

It is clear that any of conjectures A, B implies conjecture C. It is shown
below that the latter conjecture is false. Consequently, both conjectures A,
B are also untrue.

2. A class of ARS of exponentials in C°(K). Let K be a compact
set in R?, p > 1, with non-empty interior K. We assume everywhere below
that K = K. Let C*°(K) be the space of all complex-valued functions
f € C*°(K) uniformly continuous in K _together with all partial derivatives.
It is clear that C°(K) = {f € C*(K) : f and all its partial derivatives
admit a continuous extension to K'}. The Fréchet space topology in C°°(K)
is defined by the norms

lylln == sup{ly*(z)| : z € K, lalp <n}, n=0,1,...,
where o = (0u1,...,0), lalp = |oa| + ... + o), @, € Ny = {0,1,...},
e=0,1,...,p
We say that K is a Whitney compactum (W.c.) if K = K and if 0°°(K)
coincides with its subspace C3(K) of Whitney functions on K, that is, of
traces on K of functions from C°°(R?). The topology in C%(K) is defined

icm

Absolutely representing systems 177

by the norms || - [ (n=10,1,2,...):

|(Rz,) ()]

ol = bl = sup{ - Y e Ko ol <)

where R} v is the nth Taylor remamder of the function y at zg. It is known
that O3 (K) is an FN-space. Since C°°(K)) coincides with C3¢(K) for any
We. K and [[yjn 2 |ylln for all y € C(K) it follows that C®(K) is
topologically isomorphic to CFF(K) and therefore C*°(K) is an FN-space.

According to [27], K is a W.c. if K is connected and has the property (P)
[8, Ch. II, §2.3]. In particular each convex compact set is a W.c. However,
an exact geomctrical characterization of a W.c. is unknown.

We show in this section that C°(K) has an ARS of exponentials with
purely lmaginary exponents if and only if K is a W.c.

Let us first state a convergence criterion for series of such exponentials:

oQ P
(2.1) Z ey, exp (iz,uj,kmj), pip €ER, 1< <p, k= (k1,..., kp).
|k pw=0 j=1
A series obtained by termwise differentiation (any number of times) of the
series (2.1) with respect to arbitrary variables «1,...,z, will be called as-
sociated with the series (2.1). Let us formulate a number of assertions for a

fixed compact set K with K = K:

(1) the series (2.1) converges absolutely in C*°(K);

(2) the series (2.1) converges in C°°(K);

(3) the series (2.1) and all series associated with it converge absolutely
at cach point of K:

(4) the series (2.1) and all its associated series converge absolutely at
some point of K;

(5) the series (2.1) and all its associated series converge pointwise in K;

(6) the series (2.1) and all its associated series converge at some point
of K

(7) for all m 2 0, Zm o lenl + |pelp® < oo, pi = (b1ks - > Hpik);

(8) for all m 2 0, suppk;,»o ekl - luklz' < o3

(9) the series (2.1) converges abgolutely in C'*° (D) for each compactum
D cRe,

Taking into account the equality |exp(i 15—, #5,k%;)| = 1 for k > 1 and
2 & R?, one can easily obtain the following result.

Lemma 2.1. If K = K and K is o compact set in RP, then (4)=(7)=(1)
=(2)=>(8)=>(6)=>(8) and (7)=(2)=(1)=+(8)=(4)=>(6)=+(8).
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If, additionally,

In k],
2.2 lim sup
(2.2) [kl oo 1|6k

then (8)=(7) and in this case all assertions (1)-(9) are equivalent.

Tt follows from Lemma 2.1 that assertions (1), (3), (4), (7}, (9) are always
equivalent.

THEOREM 2.2. Let K be a Whitney compactum in R, p > 1, and let T' =
{z:ar <zp <bg, k=1,... ,p} be an arbitrary bounded open rectangular
parallelepiped containing K. Then
P
Sg' = {exp(.‘lmza—j) vk, =0,41,£2,...; 5= 1,...,p}
j=1
is an ARS in C>=(K).

Proof Let f € C°(K). Then there exists g € C°(R?) with g|x = f
For any 1 > 0 we put K, := {z € BP : o(z, K) < n} where o(z, K') =
min{|z —yl,: v € K}.

Fix € > 0 so small that Ks. C 7. It is shown in the proof of Theorem
1.4.1 of [8] (Ch. I, §1.4) that there exists h € C* () such that h|x, = 1 and
supph C Ks.. We put H(z) = h(m)g(m) It is evident that H € C°(R¥),
Hlg=f, Hlg. =g Iffor k= (k1,...,kp) and x € R? we set

a; +b;
vg () *exp(27rv,zb ——a;,( ; ""2 3)),
then
[e.e]
(2.3) H(ﬁ) ~ Z hk’Uk
|klp=0
is the Fourier series of H (z). Employing the standard integration by parts to
the well known integral representation of the coefficients A, and taking into
account that H(z) and all its partial derivatives vanish on the boundary of
T, we obtain
(2.4) Ym 20

sup |hel - (k[ < oco.
e
The series (2.3) can be written in the form

Z hrvg = Z hkexp (2%126"16_'1 )
[klp=0 |k],=0 =177 J

where |hy| = [hz| for all k. Since the series (2.3) satisfies the conditions (8)
and (2.2) of Lemnma 2.1, it converges absolutely in O (T). It is clear that
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H{z) is the sum of the series (2.3) in T', whence for all z € K,

(2.5) () = Z o exp (Zmz - ag)

[k|,=0 j=1 b;
and this series converges absolutely in C°(K).

CoroLuary 2.3. Let K be o conver compact set in BP with non-void
interior. Then C°°(K) has an ARS of exponentials {exp 2milak, z) {5 _o,
o=

where @ = (1, 0p) € RP, ak = {oyk;¥j_; and (m,z) = TF_, myz;.

By Lewma 2.1 the absolute convergence of an arbitrary series (2.1) in
C(K) for some fixed K with K = K implies its absolute convergence in
C°° (D) for cach compact set D in RP. Therefore the sum of such a series
belongs to C(R?). Combining this simple argument with Theorem 2.1 we
obtain the following result.

_ THEOREM 2.4. Let K be o non-empty compact set in RP such that K =
K. Then the following assertions are equivalent:

(1) K is a W.e

(2) in C™(K) there exists an ARS of emponentials with purely imaginary
CEPONENTS;

(3) for cach open bounded rectangulor parallelepiped T containing K the
corresponding system EF is an ARS in C®(K).

REMARK 2.5. It follows from Theorem 2.4 that if K is a W.c., then
each f € C°(K) can be extended to a periodic function F € C°°(]RP)
such that F (31 + o, ...,3p + 0p) B F(m1,...,p), where oy = b; — a; and
{z:ap < g <by, 1 < jfr < p} is any fixed open rectangular paral]elemped
containing K.

Now we indicate some conditions under which the system E:g" is not an
ARS in C*°(K).

THEOREM 2.6. Let K be non-empty compact set in RP such that K = K.
Let T = {w o) <ap <by h=1,..., p} be an open bounded rectangular
parallelepiped in BP. Suppose that there ewists at lea,sf one pair of different
points X and X® in K such that X( ) = X 4 my(b; — ay), where

j
my €%, §=1,...,p. Then the system Ef is not complete in C°°(K).

Proof. Each function v € span&] satisfles p(XM)) = »(X®). The
same equallty holds for all functions from the closure of span ET Since
X % X2 we have X # X2 for some j < p. The function f,(x) = T
belongs to O“(K) but f:,( ) £ £ (X3,
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COROLLARY 2.7. Let —00 < ay <0 <bj <ooandlet §; >0,1 <j <p.
Then the system

ng,a = {exp (Zm'

i=1
is an ARS in C°(T), where T = {z : ax < ap < by, 1 < k < p, if
9; € (0,1) for all j < p. On the other hand £, is not a complete system in
C>=(T) if 8, = 1 for some jp < p.

L kjg:,:m
bj - U.j

):kSEZ, s=0,1,...,p}

To end this section we show that no system of exponentials can be a basis
in € (K). Suppose that the system £f,, = {exp (35 s kme)} ) —o With
cjr€C, j=1,...,p, k € 7, is an ARS in C*(K) for some cornpactum
K = K. Fix an arbitrary m < p. Then f,(z) := 2, belongs to C°°(K') and
there exists a series converging to ., in O™ (K):

o0
Epp = Z drexplox,z), O = {o1,5y - Opk }-
ik =0

We can differentiate this series with respect to Tyt

oo
1= Z dpom,kexplog, ), %€ K.
tk|p=0
It is evident that dyyoimk, # O at least for one ky € ZP. After the second

differentiation we obtain
oo

0= Z dk(am,k)2 eXp<akam>3 T e K:
|k|p=0

and this series converges in C*°(K). So there exists a non-trivial expansion
of zero in C°°(K), which means that Sf’a) is not a basis in O (K).

3. Negative results. We are now going to obtain a result opposite in
a sense to Theorem 2.2. For an arbitrary domain G in R? let us introduce
the vector space b(() of all functions defined and bounded in &, and the
Fréchet space C°°{G) of functions infinitely differentiable in G with the
topology defined by the seminorms

ylxn = max{|y® (@) ;2 € K, |al, <n}, n=0,1,...,
where K is an arbitrary compact set in G.

TaeoREM 3.1. Let pin € R, j=1,...,% |klp=0,1,...; t = (us,8)5=1;
Eu = {exp(i 35, i)} If G is an arbitrary domain in RP, then &, is
not an ARS in C°(G). If, additionally, the condition (2.2) holds, then £,
is not an RS in C(G).
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Proof. 1. Suppose that £, is an ARS in C°°(G) for some real exponents
ti - Then each ¢y € O (@) can be represented as a series

(3.1) y(z)= Y yrexp (iZMj,kfﬂj)
|

k]p=0 J=1

converging absolutely in C°°(G) and a fortiori in €%°(Kj), where Ky is
an arbitrary closed p-dimensional ball contained in G. Due to Lemma 2.1,
Yo ial,=0 k] < 00, whence sup,eq ly(®) £ 2ok, =0 Ykl and ¥ € B(G). So,
if £, 1s an ARS in C'°°(G), then C*®(G) C b(G). But it is easy to show that
the latter inclugion ig impossible. Indeed, if the domain G is unbounded and
F(@) = 2l + a3 + ... + a2, then f € C®(G), but f € b(@). In case G is a
bounded domain, one can fix an arbitrary finite boundary point 8 = (8;)5_;
of G and consider the function g(z) = (Y h_;(zx ~ Be)?) ™1 It is clear that
g € C(G), but g & b(Q).

2. Suppose now that (2.2) is satisfied, and £, is an RS in C*°(G) for
some 1 € RP, Then each y € C*(G) is represented in the form of a series
(3.1) converging in C*°(@). By Lemma 2.1 this series converges absolutely
in C®(G). Therefore £, is an ARS in C°°(G'), which contradicts the first
part of the proof.

Theorems 2.2 and 3.1 lead to the following result.
THEOREM 3.2. Conjecture C is false.

Proof Fix some non-void bounded convex domain G in RFP. It is well
known that there always exists a sequence (K,)32., of convex compact sub-
sets of & such that

(3.2) Vn>l KnCKapnCG=|J Kn

m=1

Take an arbitrary parallelepiped T = {z: ar <& <by, 1 < k < p} con-
taining G. By Theorem 2.2, £, is an ARS in C®(Kp), m=1,2,... We put
ik = 2wk /by ~a), =1, k= 0,£1,£2,... It is clear that there
arc a > 0 and 8 > 0 such that alk|, € |usls < B/k|p for all k with |k, > 0.
Therefore the condition (2.2) holds, and by Theorem 3.1, £, is not an RS
in C°{QG) = proj C°° (K,).

Let us now show that in the present situation the assumption (1) of The-
orem 2.1 from [4] is valid. For any n, j > 1 we have p7y) = max{|y{* (z)| :
z € K, |alp £ j}. Let us arrange the systems k = (k1,...,kp) into a
sequence {1}$° in such a manner that |k|, does not decrease. Then each k
obtains its number ! = I(k) where | ~ 00 & |klp — co. Forn 21,720
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and [ = (k) > 1 we have w; = exp(i Y o_ Hs,kZs) and
| (ur)| = max{|pa,p|* - g * = ol < 5}
= max{(ka{m|)®, ..., (kplw]}*® : lalp < 71,

where v, = 27/ (bs — as), § = 1,...,p. Thus |p} (w)| does not depend on n.
Moreover,

GR35 2121 ()l = ke ()
So the condition (1.2) is satisfied, and the theorem is proved.
COROLLARY 3.3. Theorem 2.1 of [4] is unirue.

The latter result implies in particular that the validity of the following
corollary of Theorem 2.1 from {4] remains open.

(Corollary 2.1 of [4]) Let G be an arbitrary convex domain in CF and let
{GL 1., be a sequence of conves domains in CP such that for alin > 1, G, C
Gu1GG = U:::_,l G, Suppose that £ 4y = {exp Z?:l Aj’kzj}mp:m Ajk E
C, is an ARS in each space H(Gr), m > 1. Then £ 4) is an ARS in H(G).

The author of [4] remarks that the special case of the latter statement
with p =1 and G, = ¢uG, gn T 1, was obtained in [13] (Ch. II, §3, Theorem
6). However he did not apparently notice a more general result of the same
paper, namely, Theorem 9 [13, p. 109]. This theorem implies, in the case
¢ = 1, the validity of Corollary 2.1 of [4] for p = 1 and for an arbitrary
bounded convex domain (. Yet it is unknown whether such a result is valid
for an arbitrary unbounded convex domain G even in the case p = 1 (this
problem was raised before in [13]). The most general {(but not final) results
in this direction are due to A. V. Abanin ([1]-[3]) who employed the notion
of weakly sufficient sets and the connection between those sets and ARS de-
scribed in [11, §3], [13, Ch. 1, §2], [14, §8]. The sequence {Gy}52; with the
properties described in Corollary 2.1 of [4] will be called an approzimating
sequence for G.

The approximating sequence {Gp}%..; of domains G, with support
functions h,, is said to be suitable for G if hmi1(2)/hm(2z) — 1 uniformly
on the sphere |z|, = 1 as m — oo.

It is showmn in [3] that each approximating sequence for a bounded convex
domain G in CP is suitable for G. Moreover, there always exists a suitable
sequence for an arbitrary convex domain in CP. Taking into account the
well known connection between ARS and weakly sufficient sets [14] one can
obtain the following result.

THEOREM (A. V. Abanin [2]). If {Gn}5%, i3 a suitable sequence for a
convez domain G C O, p > 1, and if &) is an ARS of exponentials in
H(Gy,) for all m > 1, then £,y is an ARS in H{G).
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The author of [4] also investigated the case of projective limits of DFN-
spaces, and claimed to prove the following result.

{Theorem 2.2 of [4]) Let U = (ux)f; be an ARS of each DFN-space
H, = indy B} where B} is a B-space with norm |\ - ||}. Suppose thot:

(a) the inclusion of B} into B}, is nuclear for all j,n = 1;
(h) Limgmeo ||ukH';/Huk]il =0 foralll>j.
Then U7 45 an ARS in H = proj H,.
(—_——

However the proof has just the same error (see [4, p. 205]) as in the case
of the above cited Theorem 2.1 of [4]. Moreover an example disproving The-
orem 2.2 of [4] can be constructed with the help of ARS of exponentials with
imaginary exponents in some subspaces of C*°(K) and C*°((). Since the
description of this example is much longer than that of the example given
in the proof of Theorem 3.2 we shall publish it elsewhere. In any case the
validity of Corollary 2.2 of Theorem 2.2 of [4] remains open. Some special
cases of the latter corollary have been obtained by Yu. F. Korobeinik and
A. V. Abanin, but the case of an unbounded convex domain G in CP is not
cormpletely investigated yet.

4. ARS of exponentials in H(G). The author of [4] applied his The-
orems 2.1, 2.2 to the proof of existence of ARS of exponentials in the space
H(G) of functions analytic in G and in the space H(K) of analytic germs
on a compact set K. In this section we obtain some results in this direction
for the space H(G) and compare them with those of [4]. Let us begin from
the simpler one-dimensional case.

THEOREM 4.1. The following assertions are equivalent for an arbitrary
domain G ¢ C:

(1} G is conves;

(2) H(G) has at least one ARS of ezponentials;

(3) there exists an ARS 4 of exponentials in H(G) with img_co [ Akl
= oo which is an ARS in H(aG) for all 0 < a <oco.

Proof. (2)=-(1). Let £4 be an ARS in H(@®). Then any y € H(G) is
represented by the series

[}
(4.1) y(z) =Y _ v exp(Ar2)
k=1
converging absolutely in H(G). All the more the series (4.1) converges abso-
Jutely at each. point of G. Since the set of all points of absolute convergence
of an arbitrary series of the form (4.1) is convex (6], (21, Ch. I1I, §1}), th.e
series (4.1) converges absolutely in the convex hull convG. By [6], [21] it
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converges uniformly on each compact subset of conv G. So every f € H(G)
admits a single-valued analytic extension onto conv G, which is possible only
if G = conv .

(1)=>(3). This implication was established long ago. According to The-
orem 10 of [11] for an arbitrary convex domain G in C there exists an ARS
£4 in H(G) such that limg_co|Ms| = oo and €4 is an ARS in H(aG),
0 < a < co. The proof of this theorem has a small gap rectified in [12,
pp. 104-108]. Just the same addition to the proof of Theorem 10 of [11]
was made in [19, p. 251]. The existence of an ARS of exponentials in H(G)
with the required properties arises also from Theorem 2 of [19]. According
to that theorem, if da(z) := inf{lz — Axf : k> 1}, A = {} : k = 1} and
lim,_, o da(z) = 0, then £4 is an ARS in each convex domain in C. Finally,
the implication (3)=-(2) is trivial.

Let us now consider a multi-dimensional situation.

THEOREM 4.2. The following assertions are equivalent for an arbitrary
domain G in CP,p> 1

(1) the envelope of holomorphy of G is convez;

(2) H(G) has at least one ARS of exponentials;

(3) there exists an ARS E£4 of exponentials in H(G) with limg—co | Akl
= co which is an ARS in H(aG) for all 0 < a < 00}

(4) the envelope of holomorphy of G coincides with conv G.

Proof. (2)=>(4). Let £4 be an ARS in H(G). Then every y € H(G) is
represented in the form of a series

(42) w2 = S v expihe, 2)
k=1

absolutely converging in H(G) and a fortiori at each point of G. Just as in the
one-dimensional case the set @ of all points of absolute convergence of (4.2) is
convex, and the series converges uniformly on each compact subset of int Q.
As mentioned above the proof of these assertions for the one-dimensional
case can be found in [6], [21]. The proof for p > 2 is quite analogous. It can
be found in [18]; however, it is most probable that this proof was published
garlier by other authors. So the sum in (4.2) is analytic in conv G and there-
fore each function from H{G) admits a single-valued analytic continuation
to conv . Thus conv & is a holomorphic extension of G. Since each convex
domain in C* is a domain of holomorphy, the domain conv G is the envelope
of holomorphy of G.

(1)=(3). Applying the method of [11]-[13] to the multi-dimensional sit-
uation, V. V. Morzhakov [24, 25] constructed, for an arbitrary convex do-
main G in CP, p > 2, an ARS £, of exponentials such that £, is an ARS
in H(a@) for all 0 < a < oo, and limg_,e |Ak| = oc. Moreover, in the
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same papers and by the same method he obtained a multi-dimensional gen-
eralization of the above cited Theorem 2 of [19]: if A = {A\¢ : & 2 1},
da(z) = inf{|z — Aelp + & 2 1} and lim 0 da(2) = 0, then £4 is an ARS
in every convex domain in TP,

Finally, the implications (4)=-(1) and (3)=-(2) are trivial.

TLet us compare Theorems 4.1 and 4.2 with Theorem 4.1 of [4]. It is easy
to show that they are in fact equivalent. However, the proof of the latter is
not quite correct, since it employs the false Theorem 2.1 of [4].

It is worth remarking that the equivalence (1)<(2) in Theorem 4.2 was
obtained earlier in [15] (Theorem 4) in the case when G is an envelope of
holomorphy, that is, when & is holomorphically convex.

5. ARS of exponentials in spaces of germs. Let K be a compact set
in €7, p > L. Denote by H(K) the space of analytic germs on K, equipped
with the inductive topology of Grothendieck-Martineau [22], [10, Ch. XI}.
The space H(K) is an LN*-space in the sense of Sebastifio e Silva [10,
Ch. XI], [26]. Let us write H{K) = H(conv K) if each germ from H (K)
admits a one-to-one analytic continuation to a germ from H (conv K).

TuEoREM 5.1, If K is an arbitrary compact set in CF, p > 1, then the
following assertions are equivelent:

(1) H(K) = H(conv K);

(2) H(K) has ot least one ARS of ezponentials;

(3) there ewists an ARS of exponentials £4 = {exp{As, 2)}2, such that
limig o0 |Aklp = 00 and €4 15 an ARS in H(aK) for all 0 < a < oo.

The proof of this theorem employs a nearly evident result described in
[13, Ch. I, the beginning of points 3 and 4], as well as in [11, §1, point 2]:
if {wz}32, is an RS or an ARS in a CLCS Hy and if I is an epimorphism
of H, onto a CLCS Ha, then {Lxy)}32, is an RS (respectively, an ARS) in
Hp. In particular, if L is an epimorphism of a CLCS H and X = (zp)heq is
some sequence of elgenelements of L which is an RS or an ARS in H, then
the sequence X ¥ = X \ L=1(0) is also a RS (or an ARS) in H. These simple
arguments enable us to obtain the following useful auxiliary result which
was strengthened for the case p = 1 in [12, Theorem 2] and is described in
[16] for the general case p = 1.

LEMMA 5.2. Let G be an arbitrary convex domain inCP, p = 1. Suppose
that €4 is an ARS of ezponentials in H(G), and denote by £, the sequence
obtained by removing from €4 any finite number of terms. Then £} is also
on ARS in H(G).

Proof Let A, = (Mg, oy Anaip)y § = 1,...,N, be t_he exp.onents.of
the exponentials removed from £4. Denote by P(D) the linear differential
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operator of finite order with constant coefficients and with characteristic
polynomial

N p
P(z) = [T [ 1z = Anad)-
s=17=1
According to Theorem A of [5, Ch. V, 5.17.1}, P(d) is an epimorphism of
H{G). Moreover, for all A € C? and 2 € €7,

P(D)(exp(}, 2)) = P(A) - exp(A, 2).
So explAn,.;,2) € P{D)7*(0} and it remains to employ the general result
cited above.

Proof of Theorem 5.1. (2)=(1). Let £4 be an ARS in H{K) and let F be
an arbitrary germ from H(K). If f is any representative of this germ then
f can be represented in the form of a series

(5.1) F(2) = foexp(di, 2)

converging absolutely in H{(G) where G is some domain containing K. The
series on the right-hand side of (5.1) converges absolutely in G. Hence it
converges absolutely in conv &, uniformly on each compactum in conv (+, and
realizes a single-valued analytic extension of f onto conv G. It is clear that
F' admits a one-to-one analytic continuation to some germ from H (conv K).

{(1)=>(3). Without loss of generality one may now assume that K is
a convex compactum in CP. It is always possible to construct a sequence
{G, )22, of bounded convex domains such that for all n > 1, Gnyy C Ga,
K =2, Gn. Theorem 4.2 provides for each n > 1 the existence of a se-
quence & = {exp(Akn, 2) 1721 such that img-.co [Aknl|p = ccand £4,,, is
an ARS in H{aG,) for all 0 < a < oo. Denote by &) y the sequence obtained
by removing from EA(n) all its exponentials with exponents Agn such that
[Me,nlp < . Due to Lemma 5.2, £ is an ARS in H{aG,) for 0 < a < oo.
Let us enumerate all functions from .., £ jq(n) in the form of one sequence

£, in such a manner that |Ax |, does not decrease. It is easy to see that £, =
{exp{pi, 2)}521 is an ARS in H(aK) for 0 < a < 00, and lim;_,o |fu]p = 00,

Theorem 5.1 is similar to Theorem 4.2 of [4]. However, the proof of the

latter is not quite correct by the same reason as the proof of Theorem 4.1
of [4].

6. Concluding remarks. 1. Theorem 2.2 enables us to establish the
falseness of Theorem 2.1 of [4]. At the same time it has an independent
significance, since it asserts the existence of an ARS £, of exponentials with
imaginary exponents in the space C™(K) for an arbitrary W.c. K in [§F,
p = 1, and, in particular, for every convex compact set in R?. Analyzing the

icm
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proof of Theorem 2.2 it is not difficult to notice that each f € C°°(K) can be
represented in the form of a series (2.5) absolutely converging in C*°(K') with
effectively determined coefficients hn. In other words, the representation
(2.5) can be made explicit. The existence of such an ARS of exponentials
in C°(K) enables, in particular, an explicit construction of a particular
solution of the equation P(D)y = g(z) for each g € C=(K) with the help
of the method described in [11, §9], as well as of a partial solution of the
Cauchy problem for the same equation using the method of exponential
representation of a solution [16, 17, 20]. The corresponding results will be
described elsewhere.

2. An analogue of Theorem 2.2 can be obtained for other function spaces,
in particular, for the Beurling space £(,)(K) [23]. In this way new examples
disproving Theorem 2.1 of [4] can also be constructed.
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Weighted Hardy inequalities
and Hardy transforms of weights

by
JOAN CERDA and JOAQUIM MARTEN (Barcelona)

Abstract. Many problems in analysis are described as weighted norm inequalities
that have given rise to different classes of weights, such as Ap-weights of Muckenhoupt
and Bp-weights of Arifio and Muckenhoupt. Our purpose is to show that different classes of
weights are related by means of composition with classical transforms. A typical example is
the family My of weights w for which the Hardy transform is Ly (w)-bounded. A Bp-weight
is precisely one for which its Hardy transform is in Mp, and also a weight whose indefinite
integral is in Apyq.

1. Introduction. If w is a weight on RT = [0, 00), we define W () =
Sg w(z) dz, and T : X — Y indicates that T is a bounded operator between
X and Y, two function spaces on Rt. X¢ will denote the subset of all non-
increasing and nonnegative functions (briefly, decreasing functions) of X.
We recall that Ay, for p > 1, is defined by the condition

1 1 . N
A sup | — \w(z dm) (— wlx) 7? dm) < 00,
where the suppremum is taken over all intervals I and, if p = 1, by Mw <
Cw. Here M is the Hardy-Littlewood maximal function and it is well known
(see [Mul]) that w € A, if and only if M : Lp(w) — Lp{w) (1 < p < 00).
t

In [Mu2], the weights w such that Sy f(t) = (1/t) {; f{z) dz (thel Hardy
operator) is bounded on Ly(w) {1 < p < co) are described as the weights of
class My, defined for 1 < p < oo by the estimate

® Up 1 /7
w(z) —p'/
M dm) w(z) P /Pdy < oo.
(M) gggQ p (§ ( )
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