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Weighted Hardy inequalities
and Hardy transforms of weights

by
JOAN CERDA and JOAQUIM MARTEN (Barcelona)

Abstract. Many problems in analysis are described as weighted norm inequalities
that have given rise to different classes of weights, such as Ap-weights of Muckenhoupt
and Bp-weights of Arifio and Muckenhoupt. Our purpose is to show that different classes of
weights are related by means of composition with classical transforms. A typical example is
the family My of weights w for which the Hardy transform is Ly (w)-bounded. A Bp-weight
is precisely one for which its Hardy transform is in Mp, and also a weight whose indefinite
integral is in Apyq.

1. Introduction. If w is a weight on RT = [0, 00), we define W () =
Sg w(z) dz, and T : X — Y indicates that T is a bounded operator between
X and Y, two function spaces on Rt. X¢ will denote the subset of all non-
increasing and nonnegative functions (briefly, decreasing functions) of X.
We recall that Ay, for p > 1, is defined by the condition

1 1 . N
A sup | — \w(z dm) (— wlx) 7? dm) < 00,
where the suppremum is taken over all intervals I and, if p = 1, by Mw <
Cw. Here M is the Hardy-Littlewood maximal function and it is well known
(see [Mul]) that w € A, if and only if M : Lp(w) — Lp{w) (1 < p < 00).
t

In [Mu2], the weights w such that Sy f(t) = (1/t) {; f{z) dz (thel Hardy
operator) is bounded on Ly(w) {1 < p < co) are described as the weights of
class My, defined for 1 < p < oo by the estimate

® Up 1 /7
w(z) —p'/
M dm) w(z) P /Pdy < oo.
(M) gggQ p (§ ( )
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The class M; is defined by Syw < Cw, where Sof(t) = S:o flz)z~tdz.
1t is also known that Sz : Ly(w) -+ Ly(w) if and only if

o

¢ 1/p w(a:)‘P'/P 1/9'
AP su wlz) dx —dz < 00
(%) £50 (é @) ) ( § zP )
when 1 < p < co. The class M is defined by S1w < Cw.

Also (see [ArM]), Sy : Ly(w)? — Ly(w) for 1 < p < oo if and only if w
satisfies

z? P

(Bp) OSO wiz) dz < ggw(m) dz,
t 0

which defines the class B, (for any p € (0,00)). As shown in [So|, it is easily
seen that (1) is equivalent to

ie., O W(z)s~ D dg < CW(t)t™?, because W is increasing. As usual,
F ~ @ indicates the existence of a universal constant ¢ > 0 so that ¢~ 1F <
G <eF,

For weak type estimates, it was proved in [AnM] that S : Li{w) —

L1,0o(w) if and only if w € My o, the class of weights w such that, for some
a >0, '

(3) (M) ) (3) ) o < o)

&x
i

28,00

Ounly this case p = 1 is interesting, since S : Ly(w) — Ly oo{w) implies
81 : Lp(w) — Ly(w) when p > 1 (see [AnM, Theorem 3)).
The restriction of $; to decreasing functions was studied in [Nel]. Again,
for 1 < p< o0, 81 : Ly(w)? — Ly oo{w) implies Sy 1 Ly(w)? — L (w).
If p=1, it is proved in [CGS] that 57 : L1(w)? — L1 e0(w) if and only
if w belongs to the class By o, defined by the condition
t

l L3
{B1,00) ;Xm(m) dr < O’%Sw(m) dr ifs <t
0 0

REMARK 1.1. Neugebauer also proved that the property S : Lp(w)® —
Ly(w) does not depend on p € [1,00) {cf. [Ne2]), and it holds if and only if

(BY) § (S1w) () dz < €| w(z) da,
0 g

ie., 8181w < CSyw. This condition defines the class B* of weights.

Weighted Hardy inequalities 191

2. Monotone weights. The following facts will be applied to powers
Weof W.

PROPOSITION 2.1. If w is decreasing, the following properties are equiv-
alent:

(a) w is doubling, i.e., §:+h w(z) dz ~ S:iihw(m) dz (r,h = 0).
(b) w =~ Slw.
(¢} w~ Muw, i.e., we A
(d) w € A, for one (or all) p> 1.
(e) w € MP for one (or all) p > 1.
(f) w € BP for one (or all) p > 1.
(g) infrsow(re)/w(z) > 1/r for somer > 1.
Proof. If w is doubling, then
T 27
w(r) < (1/r) | wiz)dz < (C/r) | w(z)de < Cu(r),
a r
ie., w ~ Syw. Since we are assuming that w is decreasing, Siw ~ Mw
and then w ~ Maw. Obviously, (d) follows from (¢}, and it is known that

- Ap-weights are doubling. It was proved in [CM] that w € MP if and only

it w e MY, that is, Syw ~ w, together with the equivalence of {(e), (f)
and (g) L]

CoROLLARY 2.1. fw € A, on R* (1 £ p < o0), then w* € Ay. Here
w*(t) = inf{\ > 0 : |{w > A} < t}, the nonincreasing rearrangement of w.

Proof. Since w satisfies [(1/|Q]) {5 w]t/e < (C/\Q]) §ow (Q any cube)
for some s > 1 and (Mw?®)Y/* € A; {see [GR]), we have Mw € Ay, since
M(Mw) < M((Mw*)Y*) < o(Mw?)/* < cCMuw.

But (Mw)* = Syw*, thus 515 1w™ =~ (MMw)* < C(Mw)* = Syw*, and
w* € BL. It follows from Proposition 2.1 that w* € A;. =

With the same proof, if w € Ap on a cube @ C R", then w” € A[0,12Q]]
(cf. [Wi]).
Obviously, any decreasing weight w belongs to My, and hence to By, for
all p > 1. This is not true if p =1, as the simple example w = l shows. If
p =1, a decreasing doubling weight w belongs to By if and only if w e My,
since, if w € Bj, then
T ds _CF ,
[ wis)= < = fw(s)ds < Culz)
o § z 0

by Proposition 2.1{b}, and then w € M.

PROPOSITION 2.2. If w is decreasing, then w € My if and only if
SUPgso wire)/w(z) < 1 for somer > 1, and then w* € My for any a > 0.
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Proof If {7 (w(s)/s)ds < Cw(z) and r > €€, then

(nr)w(rz) < }m %S)ds < S wiS) ds < Cw(z)

and w(rz)/w(z) < C/lnr < 1. Conversely, if § = sup,., w(rz)/w(z) < 1,
then w € My, since

P20 = 5| 2 ds < i) 35 = o).

PROPOSITION 2.3. For an increasing weight w and 1 < p < oo, the
following properties are equivalent:

(a‘) w e AP:

(b) w e M,,

(c) we By and [° w(z)z P dv o w(t)t' P, and

(d) infysow(re)/wiz) > rP~! for some r < 1.

Proef. By [CU; Corollary 6.3, (c) implies (a) and, since $;7 < M f for

any f > 0, (a) implies (b). Also (b) implies (c), since if w € M, then w € B,
and

—

5{:1"1 T, P

If (d) holds and 0 < a < 1 is such that w('r:c)/w(u:) > aP~! > ¢P-L, then

U

ey m/'r“'H

S)ds=z S %(-;—)ds

n=0 g/rm

1 glP 1
< —
,,,ng (7“""'1)"”(1_?) 1-p (1 T'l_p)‘

Since w(z) > a?~lw(z/r), also w(z/r"t1) < w(z)a®+NA-P) and it follows
that

HL.———;S
g

S 'l.U(S) 1 1— Pl

) 1
—1 —-p afl rP-iw(m)$ "

€T
and w has property (c). Converseiy, if w e Ap, then w'=# & A,. By

Proposition 2.1, §)(w?! “p) ~ ™% and there exists s > 1 such tha,t

H}fm>0( (sm)/w(m))l ? > 1/s, and infynow(re)/w(z) > rP~! with r =
1l/s. m

3. Bp-weights as derivatives of A,,;-weights. The main result of

this section states that w € By, if and only if W e Appa-

icm
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THEOREM 3.1. Let w be a weight on RY and 0 < p < co. Then w € By
if and only if W € Apaqy for one (or for all) o > 0.

Proof. Since w € B, is equivalent to (2), it follows from Proposition 2.3
applied to W that (2) holds if and only if W & A,.;. Now W € A, if and
only if infys o W(ra)™ /W (z)™ > r?* for some 7 < 1,ie. W* € Apay1. ®

REMARK 3.1. The above results can be used to see that w € B, if and
only if W lw € Bpy (cf. [Nel; Theorem 6.5}, since We(t} = o SB We—ly

Neugebauer ([Nell) presented some properties of B, suggested by the
analogous properties of A,, and gave short proofs of facts such as B, implies

By, (see also [Ma]). Here we give a very easy proof from the corresponding
result for Ap.

CoroLLARY 3.1. (a) Ifw € B, (0 < p < o0), then w € By for some
€ (0,p).

(b) w € Boo =Upso By if and only if W € A, t.e., W(2t) < CW(t).

(c) w € By (p € (0,00)) if and only if SE W(z) " Yrde ~ tW(t)~1/P
(ct. [So)).

Proof. (a) From Theorem 3.1, W € Ap.1—. and w € By

(b) If we B, then W € Apq1 and W e Az If We Ay, then W(t/2)/W (%)
> 1/C > (1/2)% (g > 1), so W € Agq1 (of. Proposition 2.3) and w € By
{Theorem 3.1). ’

(¢) Since, for 1 < g < co, w € Ay if and only if w9 € Ay (see
[GR]), we have W € Agy; if and only if W =+ € 4., which means
that W12 ¢ A; /p and W7 iz a doubling and decreasing weight, and
Proposition 2.1 applies. »

4, Hardy transforms of B,-weights. Let us see that w € B, if and
only if S1w € M.

THEOREM 4.1. If 1 < p < oo, then
81t Ly(w)® = Ly(w) i and only if Si:

Proof. First assume Siw € My, ie Sy :
p < 00, then wy () = (S1w)(t) = W(t)/t satlsﬁes

(122 a0)" (funtar )™ <c

»
@ 0

Lp(S1w) — Lp(S1w).
(Slw) — Lp(Slw) Ifl <

and, W being increasing,

i

1 tF

Jui® /" (@) de = | o/ W (@) /P da 2 -

0 0
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o /e ! 1y ,
( 5 W(:cl) dm) ( il ) <M
. TPt W (t)p /P
and w € B, follows from (2).

In the case p = 1, Siw € M means that S51w < CSw and then
515w < CS1w. Since Saw is decreasing, Sow < S155w < CSiw and hence
w e By

Let now w € B,. If p =1, then S351w = Sw + Siw £ (C + 1) 51w and
Siw € My, In the case 1 < p < oo, to prove that wy = Siw satisfles

(4) ( Df wlgm) dm) 1/p(§wl($)_P,/p d:c)llp’ <C

€ 0

Thus

ohserve that (2) implies

_(TWE) N
I :(§ o) a’,w) <C P

On the other hand @ := W% lw € B, for o = p'/p (cf. Remark 3.1),
which means that

P tP
S < O =
2 Wiz) W(t)
(see [So; Theorem 2.5(ii}]). Then
. t p'—l i p"——l i pl__l O’.tp.r C’,tpl
o=l drn\ae—de=| e dr < 2 = .
? §, W(z)« §,§§w(s) ds §, Wiz) ~ W) We@)

Thus, [1-Io < CC gives (4). m
A similar result holds for the weak type Hardy inequalities:

THEOREM 4.2. 51 : Ly(w)? — Ly oo(w) if and only if 81 : Ly {Siw) —
Ll,m(Slw).

Proof If w € Bj o, from {Sw){x) < C(S1w)(t) (¢t < z) we see that
S1w satisfies (3) with @ = 1, since

(e %)

i %(slw)(x)ffmf < O(Siw)(8) °§° ;E% dz = O(S1w)(t).

Assume now S1w € M oo. Then, as in [AnM; proof of Theorem 2],
y

1—11 § (Syw){z)dz < Coérstfg(slw)(s) 0<t<y),

icm
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and, for y = 2¢,
2t 21 t
1 1 1 In2
— > — = — .
o §(Slw)(m) do 2 2 § (m [S)'w(s) ds) de = —~(S1w)(t)

Hence (Sw){t) € Cinfpcs<:(S1w)(s) and w € By oo- =

THEOREM 4.3. (a) Sz : L1(w)? — Li(w) if and only éf Sz : L1 (S1w) —
Ll(Sﬂt)).

(b) If Sy : Lpy(w)? — Ly (w) with po € [1,00), then Sz : Lp(Siw) —
Lp(S1w) for all p € [1,00).

(¢) If W € Ay and Sy : Lp(S1w) — Ly(Siw) for some p € [1,00), then
Sy 1 Ly(w)? — Lg(w) for any g € [1,00).

Proof. (a) If w € B*, then SE(Slw)(m) do < C’SB w(z) dz, Le. Sw €
MY, If Syw € M*, then

| f@)(S181w)(z) dz = [ (S2f)(@)(S1w) () dz < O | f(a)(S1w)(z) de
0 0 0

when f > 0, and then S15w < CS1w, ie., w € B

(b) Since Sg : Ly (w)? — Ly{w) (see Remark 1.1), Siw € M and also
Sy 1 Lp(Syw) — Ly(S1w), since MP < MY for g > p (cf. [BMR]).

(¢) Let 1 < p < oo and Sp : Ly{S1w) — Lp(S1w) (if p = 1, see Theo-
rem 3.3). Then

t oo ' 1/p
(SSlw(cc) dm)lfp( S de) i <C
0

&
1

and in our case

2t —p 2 —p
{ Srw(@) 1 | W@F? s (In 2) W (2t)~*' /2.
v -
t t
Thus
t 1/ 2t W ““p’/P *l/pl '
(X (S1w)(z) dcc) ’ < C’( S _Q“P%w_— dm) < C(ln2)"Y*'W(2t)~ /7.
0 1

Since W € Aq, SZ(Sﬂu)(m) dx < C'W(t) and now we apply Remark 1.1. m
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