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Fractional Sobolev norms and structure
of Carnot—Carathéodory balls
for Hormander vector fields

by
DANIELE MORBIDELLI (Bologna)

Abstract. We study the notion of fractional LP-differentiability of order s £ (0, 1)
along vector fields satisfying the Hérmander condition on R™. We prove a modified version
of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to
Nagel, Stein and Wainger. This result enables us to demonstrate that different W*:¥-norms
are equivalent., We also prove a local embedding WP ¢ WY where ¢ is a suitable
exponent greater than p.

1. Introduction. It is well known that the classical theory of Sobolev
spaces plays an important role in many problems concerning partial differ-
ential equations. It has also been realized in the last years that an essential
tool in the study of second order differential operators arising from degen-
erate vecior fields on B™ is the construction of generalized Sobolev spaces
suitably related to the fields.

To motivate our discussion we recall some simple features of first order
Yobolev spaces. Given a family X1,. .., X,, of (at least Lipschitz continuous)
vector fields on B®, X; = 3 7_; a;x(2)0/0zk, a natural generalization of
the usual WBP space can be defined by means of the norm

el ppre ey = lullzeeny + | Xl zega),
*P ()

where 2 C R™ is an open set and Xvu = (Xju,..., Xyu) denotes the “degen-
erate gradient”, Xyu = 3 a;,k0ku. If we assume that the fields are smooth
and satisfy the Hormander condition (see (5)), then a Sobolev-type em-
bedding holds for the space W}gp . Namely, representing a function u as a
“convolution” by means of the fundamental solution I' of > X J?, using the
estimates of I" and XTI (see Nagel, Stein and Wainger [47] and Sénchez-
Calle {52]), together with the continuity of some “fractional integration op-
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erators” (see Capogna, Danielli and Garofalo [7]), one can show that, if pis
greater than 1 and 2 is a bounded set, then

Jullpeqe) € cllXullzs@y, w€ G (82,

for suitable ¢ = g(2, X,p) > p.

Several Tecent papers are devoted to the study of geometric and em-
bedding properties of first order Sobolev spaces in various degenerate situa-
tions. We refer to Rothschild and Stein [49], Franchi and Lanconelli [22, 23]
Jerison. [35), Saloff-Coste [51], Varopoulos, Saloff-Coste and Coulhon [54],
Capogna, Danielli and Garofalo [7, 8], Biroli and Mosco [4], Franchi, Lu
and Wheeden [24, 25], Hajlasz and Koskela [29, 30], Maheux and Saloff-
Coste [46], Garofalo and Nhieu [27, 28], Franchi, Serapioni and Serra Cas-
sano [26], Berhanu and Pesenson [3] and to the references of those papers.

The aim of this paper is to give some properties of a family of spaces
which are “intermediate” between LF and W;{"" . It seems natural to define
the fractional (semi)norm of order s, 0 < s < 1, as a sum of fractional
derivatives along the fields, setting

m™m

(1) ulwerm = (ZS dz

=180 (i (2)e0)

1/p
| e @) — )

where 2 is a bounded set, 1 < p < 0o, and t =+ et¥J () denotes the integral
curve of the field X, starting from z at t = 0.

One of the results of this paper (Section 4) is that if Hérmander’s con-
dition is satisfied, then the norm (1) is locally equivalent to

. _ u(z) ~ ufy)|?
(2) i) = (Qi o Az, y)Pe|Blz, d{z,y))] o dy)

In (2), d denotes the Carnot-Carathéodory distance associated with the
fields (see Section 2) and | B] is the Lebesgue measure of the d-ball B (we let
B{z,r) = {y: d(z,y) < r}). This equivalence result shows that the norm
(1) is determined only by the distance d. A similar phenomenon occurs for
first order Sobolev spaces (see Hajlasz and Koskela [30, Theorem 11.11]).
The main tool in the proof of the equivalence between (1) and (2) (Sec-
tion 3) consists of a new structure theorem for d-balls. Our result is a mod-
ified version of a “classical” theorem by Nagel, Stein and Wainger {47, The-
orem 7}. Roughly speaking, we prove that for any d-ball B = B(z,r), there

exists a O diffeomorphism E defined on a neighborhood of the origin in R®
such that

E(c1Q) C B C E(e2Q),
where Q) is a suitable box in B™, ¢; and cg are positive constants and ¢; @ =
{cjz: z € @}, j = 1,2, is the homothetic box. The precise statement of our
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result is given in Theorem 3.1. We only remark that the difference between
this theorem and Nagel-Stein-Wainger’s original result is an alternative
choice of the “exponential” maps I, The new feature of our maps is that they
can be ecasily factorized as a composition of a finite number of elementary
translations along integral curves of the vector fields Xy,..., X;n. These
maps are already known in the literature (they appeared in Nagel, Stein and
Wainger [47], Lanconelli [41], Varopoulos, Saloff-Coste and Coulhon [54] and
Danielli [16]). However their properties have not been completely exploited.
The results of Section 3 give a contribution in this direction. We also remark
that our Theorem 3.1 has been used in the new proof of Jerison’s Poincaré
inequality by E. Lanconelli and the author in [42].
We actually consider more general “anisotropic” norms, of the form

dt /e

| e W) - w2

T

(3} [wlwer = (ZE da

=14 (%5 (z)e0}
where the integer d; = d(X;) is the formal degree (in the sense of {47])
of the field X; and 0 < s < 1. In this weighted situation we prove the
equivalence between (3) and (2) provided the distance d is suitably defined
taking account of the degrees of the fields. The interest of this generalization
stems from the fact that (3) is related to the “parabolic” operator Xg -+

Yorey X7 if we let d(Xp) = 2 and d(X3) = ... = d(Xm) = L.
In Section 5 we prove an embedding result of the form
(4) [ulwseny < clXullery, w€CF(2),

where p > 1 and g > p is suitable. We also give a “parabolic version” of (4).
The proofs of these results rely on some properties of the fundamental solu-
tions of Hérmander operators, essentially established by Sinchez-Calle [52]
and Nagel, Stein and Wainger [47].

Before closing this introduction we quote some papers partially related
to ours. Bakry, Coulhon, Ledoux and Saloff-Coste [1, Section 9] prove, as
an application of their results, that, in a general situation, the space Wep
defined by (2) embeds in L¢ for a suitable ¢ > p. A similar embedding, for
p = 2 and for Hérmander fields of type 2, is proved by Chemin and Xu [11].
Their spaces W2, s > 0, are constructed by means of pseudodifferential
techniques. '

We finally remark that several results concerning fractional Sobolev
spaces, in the particular situation of Carnot groups (all the fields have de-
gree one and are left invariant on a nilpotent stratified Lie group) are given
in Folland [19] and Saka [50]. The cited papers develop a quite rich theory.
Here we obtain only partial results, but we work in a more general setting.

The paper is organized as follows. In Section 2 we recall some known
results about Hormander vector fields. In Section 3 we prove the structure
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theorem for balls. In Section 4 we study the equivalence between different
W norms. Section 5 is devoted to some embedding results.

Acknowledgments. This paper is a part of the “Tesi di Dottorato” of
the author at the University of Bologna. The author is deeply grateful to
* his advisor, Professor Ermanno Lanconelli for his continuous guidance and
encouragement. He would also like to thank Giovanna Citti for some helpful
conversations.

2. Natations and known results. In this section we recall some known
properties of Hérmander’s vector fields and we introduce the notations used
in what follows.

The Hormander condition. Consider a family of m vector fields Xy,...

s Xm onR™ where X; = 3_7_; a;0/0z), and the functions a;x = ax(x)
are smooth on R™. Denote by [X Y] the commutator of the fields X and
Y. Setting ad{X){Y) = [X,Y], we can write the commutators of higher
order by means of the following standard notation: if I = (41,...,4p) is a
multi-index (p € N and 1 £ ¢; < m), we set

XU} = ad(X%':L )ad(Xiz) s a'd(X'ip_1)(Xip) = [X'h: [ .- [X'Ep,,l, X',-;pl A ]]

We say that the commutator X|r) has length p and we write |1 | = p. The
original fields X; are commutators of length 1.

In what follows we assume that the fields satisfy the following Hérmander
condition ({33]): for any x € R™ there exists an integer » such that

(5) span{Xpy)(z) : [I] <7} =R".

The properties of vector fields satisfying (5) have been widely stud-
ied in the last years. Many papers cited in the introduction deal with

Hérmander’s vector fields. Some more references related to this topic are

Bony [5], Hbérmander and Melin [34], Jerison and SénchezCalle [36],
Kusuoka and Strook [39, 40], Lu [43, 44, 45], Xu [56], Citti, Garofalo and
Lanconelli [15], Franchi, Gallot and Wheeden [20], Citti and Di Fazio [14],
Buckley, Koskela and Lu [6], Vodop'yanov and Markina [55], Capogna,
Danielli and Garofalo [9, 10], Chernikov and Vodop’yanov [12], Krylov [38],
Ben Arous and Gradinaru [2], Hajasz and Strzelecki [31] and the references
of those papers. (We have not mentioned here papers dealing with analysis
on Carnot groups).

Cornot-Carethéodory distances. We introduce some noneuclidean dis-
tances associated with a family of vector fields (cf. [17], [21] and [47]; see
also [37]). Let X71,..., X, be Hormander vector ﬁelds Attach to any field
X; adegree d(X;) € N (see [47]). Assign to the commutator X|;; the degree
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d( X)) = 22 d(Xy,). Denote by Y1, ..., Y, an enumeration of all the commu-
tators of length at most 7, where r is an integer large enough to ensure that
Yi,..., Y, span R™ at each point of a fixed bounded set {7y C R”. Denote
alsa by I';y the space of absolutely continuous paths v : [0,1] — R™ such
that ¥(0) = z and v(1) = y. Define

d(z,y) = inf {'r > 0: 3y € Iy, such that ¥(t) = 3 a;(8) X;(+(8))
j=1

and |a;(£)] < r4%3) ae. in [0, 11}_
Set also

q
olz,y) = inf {*r > 0: 3y € Iy such that 4(2) = S a; (¥ (+(£)
i=1

and |a;(t)] < 33 ae. in [0, 1]},
q
pz{x,y) = inf {r > 0: 3y € I, such that ¥(t) = Zanj(fy(t))

and |a;| < v ae. in [0, 1]}

It is not elementary to prove that d < oo, that is, given two points z and
y there exists of least a path which connects # and y and whose tangent
vector lies in span{X;}. The existence of such a path (under Hérmander’s
condition) is a classical reachability result due to Chow [13]. Various “quan-
titative versions” of this result are contained in [41], [47] and [54]. Also our
results of Section 3 give a proof of Chow’s Theorem.

The functions d, ¢ and py just introduced are trivially symmetric. More-
over d and g clearly satisfy the triangle inequality. The distance oz satisfies
locally po(z,y) < c{o2(z, 2) + 02(y, 2)), where ¢ can be greater than 1. This
inequality is a consequence of the local equivalence between ¢ and g2 [47,
Theorem 7].

A remarkable property of the distance arising from a family of Hérman-
der vector felds is a local estimate of the form

(6) iz~ y] € end(z,y) < calz —yl°

Here £ < 1 depends on the geometric properties of the vector fields. The
proof of (6) is easy for the distance g (see [47, Proposition 1.1]). The fact
that (6) holds for d (in particular the second inequality) is a consequence
of Theorem 3.1 (or of the results of the papers [47], [41] and [54], if all the
fields have degree one).

We now introduce some notations in order to recall the results of [47].
Given a multi-index I = (i, ...,%), i; < g, we set
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By o(h) = exp (zn:hjy;-j)(x), h € R®, small,
j=1

D ) = der o) V@) b= e [hy AT,

ATy = d(¥s,) + ... +d(¥,,).
Nagel, Stein and Wainger proved the following theorem.

THEOREM 2.1. Let X1, ..., Xy, be Hérmander fields of degrees dy, . .., dyy,
and let K C £0q be a compact set. Then there exist o > 0 and 1y < 11 < 1
such that, if © € K and r < ro, it is possible to find a multi-indez I so that:

(1) [Ar(@)[r¥ = Lmaxy |3y (2)[reV), where the mazimum is taken over
the set {J = (j1,..,dn) e Sq, k=1,...,n}
(H) if [|hllr < mur, then A r(z)] < |det 8P1 4 (h)/OR] < 4|A;(z)];
(iii) if B, denotes the ball with respect to the distance o, then we have
the inclusion By(z,m0r) C S1o({[|Allr < mr}) € B,(m,mr);
(iv) the function &1, is one-to-one on {|h||; < mr}.

An easy consequence of Theorem 2.1 is the polynomial behavior of the
measure of the ball, ie. [B(x,7)| ~ 3 [Ar(z)[ri?), This equivalence is
uniform in z in each compact set K and r < ro(K). Moreover there exists
¢ > 0 such that the following doubling property holds:

(8) IB(.’G,Z'I‘)l < ClB(a"':T)l: ze€ K, r <.

Pundamental solutions. It has been proved by Sénchez-Calle [52] (see
also [47]) that, given a family X1,...,X,, of Hérmander vector fields on
R™, n > 3, and a bounded set 2, there exists a kernel I'(x,y) smooth off
the diagonal of £2 x {2 which is a fundamental solution of the differential
operator A == 371 X*X; (1), ie. the equation Af = ¢, ¢ € C§°(02), is
solved by f(z) = [ I'(z,4)¢(y) dy. The kernel also satishes the estimates

1__dmy)? . d(z,y)?
(Bl dle )] =79 =[50 a1
O D@ <o tEU0 Gy gt
|Bla, d(my))|” = B A, )]

z,Y € £, d(z,y) < ro = r9(2). In (9) each derivative can act both on the
first and on the second argument.

Muli_:iplying the equation Af = ¢ by a function u € C5°(f2) and inte-
grating by parts we obtain the representation formula

(10) u(w) = Xy My, 2) - Xu(y)dy.

4 X7 = —X; - divX; denotes the forma] adjoint (in L?) of X,
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In the “parabolic” case (see {47] and [18]), given a family Xop, X1,..., Xm
of Hérmander vector fields, the representation formula (10) becomes u(z) =
{H(y, z)Lu(y) dy, where L = X, + Z?Ll X;X;, while H is a kernel satis-
fying the growth estimates

d(z,y)? d(a, )2 4%5)

Hz, )| e ——, | X;H(zy)| et
@9l < ergrs gagnr POH @IS g ga sy
where j = 0,1,...,m, d(Xo) = 2, while d(X1) = ... = d(Xm) = L.

Riesz potentials. We give the generalization to our context of the classi-
cal continuity result concerning “fractional integration operators”. For any
point z denote by D(x) the “pointwise homogeneous dimension” defined by

(11) D(w) = min{d(¥;,) + ... + d(¥;,) : Ar(s) £ 0}.
Recall that |B(z,r)| ~ 3, |Ar{z)|r¥D). Thus |B(z,r)| behaves as P as
7 — 0. We will need the following result (see [7] for a proof).

THEOREM 2.2. Let K be 6 compact sef. Then there exists ro > 0 so that,
for every ball B = B{z,r), z € K, r < rq, if we set D = max_ 5 D(z),
and, for a fized ¢ €10, D],

d{z,y)"

Lf(z):= ;f(y)m

then for any p € |1, D/a[ there exists ¢ > 0 such that

dy,

Dp
(e llze) < elf ey, fE OB, a= 5

The Campbell-Hausdorff formula. Given a smooth vector field X, we
denote by £ — e*X (z) the integral curve of X starting from z at ¢ = 0. The
map x — % () is a diffeomorphism between suitable subsets of R™. We
denote this function by €% = exp(tX). We will get useful information on
the composition of e** and e*¥ by means of this version of the Campbell-
Hausdorff formula.

PROPOSITION 2.3. Let X and Y be smooth vector fields on the open set
2 ¢ R, Then the following formal equality holds:

st .
(12)  exp(sX) exp(Y") = exp (SX +tY — E[X’ Y+ Z Sktjck’j).
kti>1
Here Cy, ; denotes a finite linear combination of commulators. Any commay-
tator contains k times the field X and j ttmes the field Y.‘ The meaning of
(12) is the following: for any fived compact set K C 2, given two integers
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Eq and jo, there ezists rg > 0 such that, if |s,|t| <ro, then

e X et (1) = exp (sX +tY — %EIX, Y]+ Z Sktjck,j) (z)

k<ko, i<io
+ Ofato*) + (),

where |OE™)| < o™, uniformly in z € K.

Classical references on the Campbell-Hausdorff formula are Hochschild
[32] and Serre [53]. The applications of this tool to our context are discussed
in Hérmander [33], Rothschild and Stein [49], Nagel, Stein and Wainger [47]
and Varopoulos, Saloff-Coste and Coulhon [54].

8. Structure of balls. In this section we construct some modified ver-
sions of the exponential maps used by Nagel, Stein and Wainger in the proof
of their representation result [47, Theorem 7]. We consider a class of “almost
exponential” maps, defined in (16), which can be factorized as a composi-
tion of a finite number of elementary translations along integral curves of
the fields X1,..., Xy,. We prove in Theorem. 3.1 that our maps give a good
representation of the Carnot—Carathéodory balls. Our result also gives (not
surprisingly) a proof of the equivalence between the distances d, ¢ and gg,
for any choice of the degrees of the fields.

Let now 51,...,5: be fields belonging to the family Xi,..., Xp,. Set
di =d(S;), 7 =1,...,1. Keeping the notations of [47], we define for a € R,

Cila, 81) = exp(a®8y),
Chla; 8, 83) = exp(—a?8) exp(—a® S1) exp(a®S) exp(ad1 S1),

Ci(a; 81, ., S1) = Cioi(a; Sa, . -, S1) ™ exp(—a® 81)
' C,g._l(a; Sg, ey S;) exp(adlsl).

By the Campbell-Hausdorff formula and the Jacobi identity (a commutator

of commutators is a sum of commutators), we get the following equality of
formal series:

Ca(a, 81, 82) = exp (ad‘+d2 [S1,82] + Z cmdms[r]),

d(f)>di+da
where ¢; is a suitable number, I = {i1,...,4p) is a multi-index, i; € {1,2},
p €N, Sy is the commutator [8;,, [..., [Si,_,, St,] . - -]} and d{I) = d{i1)+. ..

...+ d{ip) is the degree of §j7). Iterating and using again the Campbell-
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Hausdorff formula and the Jacobi identity we have

(13)  Cila; 81, ..,S1)=exp (ad‘+"'+d‘ St + Z CIad(I)S[I])7
A(Iy>dy+..+d;
where ¢; € {1,...,1} and p € N. If d; = 1 for each j, then (13) is contained
in [47, Lemma 2.21].
Set now d = d(51) + ... +d(S;}. We can define, for ¢ € R small,

. Cila¥%: 5y, ..., 8) og>0
14 5 - e R ’
(14) exp*(oSa,...n1) {Cz(ldll/dQ S1,...,8)7", a<0.

Then, by means of (13), we discover that

(15)  exp*(oS|,..,15) = exp (O‘S[(l,“_’;)] + sgn(o) Z cf|g|d(1)/d5[13).
d{f>d
Roughly speaking, the map exp*(S) can be thought of as an “approximate
exponential” of a commutator S. It is also factorizable in paths which are
piecewise integral curves of the original fields. A computation of the deriva-
tive of the function o = exp*(c[Sy, [Sa, [ . . [Si-1, 51 . - J]){#) is contained
in Lemma 3.2 and is the fundamental step in the proof of Theorem 3.1.
From now on we fix an open bounded set {25 and we denote by Y1,...,Y,
a fixed enumeration of the commutators of length at most r, where r is s0
large that span{Yi(x),...,Yy(z)} = R® at every & € {%. Consider also a
multi-index I = (ig,...,n), 3; < ¢, and denote by Uy = Yiy,..., Un =15
the associated commutators. Set, for h € R™ small enough,

(18) Ey(z,h) = Br (k) = exp™(hal1) . . . exp* (halUn) ().
We are now ready to state the main result of this section.

THEOREM 3.1. Let K C 2y be a compact set. Then there exists 6o > 0
and positive numbers a and b, b < a < 1, so that, given any n-tuple I of
commutators such that

(17) |Az{z)j6?D > %m?qu(:c)[(id('”

forz € K and & < dp, we have

(i) if [|Bllz < ad and JnE;(z, ) is the jacobian determinant of Ex (z,-),
then +|Ar(2)| < |JnBr(z, B)| < 4|Ai(z)l;

(ii) if B, and By are the balls with respect to the metrics ¢ and d, then
B,(z,b8) C Ero{{||hll: <ad}) C Balz,6);

(iti) the function Er . = Ei(z,) is one-to-one on {||hlr < ad}.

The proof of the theorem is organized as follows: (i) is an easy conse-
quence of Lemmas 3.2-3.4. The proof of (ii) is contained in L.emma 3.5,
while assertion (iii) is proved in Lemma 3.6.

Lemmas 3.2 and 3.3 below give the analogues of [47, Lemma 2.121.
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LeMMA 3.2. Let Sy,...,8; be vector fields of degrees d1,...,d;. Set U =
191, [S2, [ - [S1=1, 5] .. J])- If K CC {2 is a compact set and M is o fized
integer, then there exists 8o > 0 such that, if 0 < A < g and z € K, then

U(exp*(AU)())

+ 30 AL Z (exp* (WD) (2)) + Bar (M, 2),
d<k<M

o e (D) () =

where d = d(U) is the degree of U, Zy is o linear combination of commuta-
tors of degree k of the fields 81, ..., Sy, while |Ra (M, )| < ¢ A|(MF2)/dUI-1)
z € K, 0 < A< dg. An analogous result holds for —6p < A < 0. In that case
both Zi, and Ry have to be replaced by different expressions Z), and R}y,
with the same properties.

Proof. Set u® = X and exp*(A\U)(z) = £. Then
exp*((u +0) U ) (z) — exp* (uT) (z) = exp™ ((u + o) V) exp* (U ){(€) ~

From now on, R denotes any formal series of the form 3, .., 0” WF Vg,
where Vi i a vector field, and by Zj any finite linear combination of
.commutators of degree k. The R and Z; may not be the same at each
occurrence. We can also assume that 0 < o < u/2. By means of (15) and
the Campbell-Hausdorfl formula, we get

exp*((u+ o)) exp” (~uD)
= exp ((u + o) + Z(u + cr)ka) exp (-udU - Z ukZ;c)

k>d k>d
= exp (udU e Z u* Z 4+ odu® W 4+ o Z kuk_IZk + ozR)
k>d k>d
- BXp (—udU — Zuka)
k>d

exp {a (dudulU -+ Z ku"“_le)
k>d

+oo1ad (wU + 3w 2,) (w10 + 3 ket ) +
k>d k>d

+ oanr-a (ad(udU + Zu’“Zk))M—
k>d

+a*R+ auMdR},

' (dud‘lU +3 kuk"le.)
k>d

where the o;’s are constants coming from the Campbell-Hausdorff formula.
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Each term of the finite sum can be written as
a0y (ad (ud‘U + Z uka))J (dud”lU + Z kuk“]'Zk)
k>d k>d

= g Pl M
= g0y E ¢ put T Zp +our R,
d<<ps M

where Zp, is a linear combination of commutators of degree p, while ¢;,, is a
constant. Then

(18)  exp*((u+ 0)%U) exp*(—u?l)
= exp (ad'u,d_lU + o Z w1 Z, + o’R + auMR) .

d<k<M
In other words

~{exp* (1 + 0)40)(#) - exp (w0)(e))
= %{exp (ad’ud*lU +0o Z uk‘le)(@ -

dek<M
+O0(c®) + aO(uM)}

du?1U(¢) + Z w1t Ze () + O(u™)
d<k<M

as o — 0. Finally keeping in mind that we set 1 = X,

e (\)(a) =z - exp* (u0)a)
=Ulep™ (W) @)+ Y A7 (exp* (AU (x)

d<k<M
+ O(E)\|((M+1)/d_l))
which ends the proof if A > 0. In the case A < 0 the proof is analogous. »
The following lemma is an adapted version of [47, Lemma 2.12].

LeMMA 3.3. Let Er(z,h) be the map defined in (16). Let also K be a
compact set. Then there ezists 8o > 0 such that, if x € K and |h] < 8,
then

(19) aihjm(m,h) = Uy(Br(z,h)

+ 2 [ |F/80 Ry [Pt/ 43 |y R /4= 7 (B (5, )

ki+...+k;>dg
klsMs )k_'l' <M

+O(Rll ),
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where Zy, = Z,Eh) denotes a finite linear combination (with constant coeffi-
cients) of commutators of degree ky + ... + k;, which may possibly change
if the coordinates of h change their sign.

Proof The case j = 1 is a consequence of Lemma 3.2. If 7 = 2 we
need a computation of the derivative ‘% exp*(h1U1) exp™ (holl2) (). We can

assume hi > 0 and hy > 0. Set k; = u , where dy and do are the degrees of
Uy and Up. Write exp*(u®0}) exp* (uz"’Uz)(:c) & Then

0
(20) 5o exp* (uy’ U) exp™ (w5 U ) (w)

1
= 1in’b ;(exp*(uffl Up) exp*((us + 0)%2U3)
T —
x exp” (~u2Uy) exp (-u11U1) £) —
Let us now introduce the following notation:
H=uf'Uy + > ufZy,

(21) k>dy
W = d2u521’.2—1U2 + Z u'g”_lzkz.
de<kaSM

In view of (15), we can assert that exp*(u®*l/;) = ef. Then, by means of
(18) (choosing U = Up) and (21),

(22)  exp*(ud Uy ) exp™((uq + o) 2 Us) exp* (—uF Us) exp*(—uf ;)
= e exp(cW + o*R + ou} R)eH

= exp {H +oW + Z arad(H)* (W) + o2 R + auéuR}e_H
k21

i

exp {H +oW +o Zakad(H)k(W) -H
k>1

+ Gpad(H) (oW + 0y akad(H)’“(W))
k>1

+ Gzad(H)? (ch +o Z akad(H)k(W))

k=1

+...+02R+UU¥R}

= exp {O'W +o kZH vead(HY (W) + o?R + ouﬁwR},
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where oy, Sy and v, are suitable numbers. But

ad(H} (W) = [uf‘Ul + Z uk Zy,, dpud U, + Z u§2"1Zk,]
k1>dy dy<ke <M
= Z u’fIUZ Zkl.-*“kz + Uy +1Rﬂ

de<ko<M
dy <k <M

where Zk, 11, is a linear combination of commutators of degree kq - k2. An
analogous argument shows that all the other terms of (22) (those containing
ad(H)*{W)) can be written in the same form. The explicit form (21) of W
enables us to rewrite (22) as follows:

exp*(v.q'Il Uy) exp® ((us + U)d'*’Ug) exp* (—ug2U2) e:»cp"‘(——u‘i'l1 )
= exp {aW +c Z itk =tz + 2R+ oul R+ JuiMHR}

dp <k <M
dy <k <M

= exp {odzug”“1U2 +o Z Pl 2
ki +ka>ds
ki SM, k<M
+c?R+oul R+ UU{VIHR}.
It is now easy to compute the derivative (20). Keeping in mind that we
have written £ = exp*(u® U} ) exp* (u22Uy)(x) and u?j = h;, we get

a
exp” (ha 1) exp™(haUn)(z

dha
Bug s}
= S s 2 (T (V) ()
1/az2 1
{dzudz 1Ua (& R N (3
k1 ke >dy
k1<M, kg <M
+O(u) + 0(u )}
=U(O+ 5 AMERRETIZL 000
Rika>ds
k1 <M, k<M

+ O(hgf/dz-%l/dz—l) + O(h;/dz—lhi\ff/dﬁl/da)‘

That proves the lemma, if j = 2 (as h}/% < ||Al]).
Finally, in order to compute the derivative 3; E(x,-) in the case j > 2
it is enough to remark that, by means of the Campbell-Hausdorff formula,
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we have
exp*(ud'U;) exp* (uS2Us) . . . exp” (u;-lj_'ll Uj-1)
= exXp Z ui“lugz .. .u;?i’llzkl+,__+kj_l) = exp(I?[),
FiZdy,. ki 1 Zdi—1
where Zy, ...4x,_, 18 a lnear combination of commutators of degree &y 4. ..

..+ kj_1. The proof follows by the same argument, on setting H instead
of H. m

LEMMA 3.4. Let x >0, let K be a compact set and t > 0. Then there
exists £ = e(t) > 0, depending also on x and K, such that, if

(23) |Ar(@)|640 > im}XP\J(m)Mdm

for some z € K, § > 0 and an n-tuple I, then, as soon as ||h||; < ()8, we
have

(24) ahjEI(m, h) = Uj(E](m, h)) + zn: bjs(E_[(.'L‘, h))Us (E[(!E, h)),

8=1
where |bss(Br(z, h))| < x§%Va) -2,

Proof Let I be an n-tuple of commutators ¥;, = Uy,...,Y;, = U, of
degrees di, ... ,d, and such that (23) holds for suitable £ > 0, x € K and
& > 0. By the triangle inequality, if £(t) is small and ||h||; = max |k, |}/4(Us)
< e(t)d, it is easy to see that the point Er(z,h) belongs to the ball
By(z, c|[kljr), where c is an absolute constant. Then, by [47, Lemma 2.10]
we get

(25) 3 A1(@)] < [Ar(Br(e, h))] < 2|h(z)].
Moreover,

Ar(@)I6%D > tmax 2s(2) 899 > tlmae Ay (@)) 7 48D > gogmes D),

by Hérmander’s condition. Thus |Ay(z)] = ct6™N° provided Ny is large enough
(say, Ng = maxy  |d(J) —~d(K)|). We remark that the vectors U;(Er(z, h)),
Jj=1,...,n, are independent, by (25). Therefore the remainder in {19) can
be written as follows:

OUIRIT™ %) = 3" wss(Br(@, W) Us(Br (=, b)),

s=1

where u; , are suitable functions. Taking (25) into account and solving for
the pjs’s, we have
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5,0 (Er (3, B))] € e O(|| B2 %)

|Ar(Er(z, B)|
M+1—d;
€ M+1—dy c|lkllz ’
< ——=0(|r )£ e
= 'AI(E)l (” ”I ) — £5No
M4+1—d;
< e
provided M + 1 = 2N 4+ max; d(J) and € = (¢) is small enough.

Again by the independence of the U,’s we can write each term of the finite
sum in (19) as Zy = 3, _, ailU,. But Z is a finite sum of commutators of
degree ky +... +k;. Therefore by [47, Theorem 6], we have |al(Er(z, h})| <
(e/t)gds=tkrt-thi) provided ||h||; < £(t)6. Then the finite sum in (19) is
estimated as follows:

> [ [Fr/d g [Pa=r /=1 g s /=102 ( By (2, )

ki <Mynyh; <M
<e X

ky-tki>d;
kEr<M,. .. ki<M
k1.t >dy

5= « KéNn
- 2

||h”?1+-n+kjvl+kj*dj %5ds—(k1+...+k5}

< co(t) 2% < Xgtets

as soon as £(t) is small depending on the compact set K, ¢ and . That
proves the lemma. m

It is now easy to prove part (i) of Theorem 3.1 in the following way. By
the properties of the determinant, if 4, denotes the Kronecker delta, then

det (855 + bjs(Br(z, h))) = det(8;s + bja(Br(z, h))6% %) € [1/2,2],
provided we apply Lemma 3.4 for a suitably small x (depending on the

dimension n). Computing the determinant in {24) and using (25) we get (i).
We can now prove assertion (ii) of Theorem 3.1.

Lemma 3.5. Let K be a compact set and £ > 0. Then there exist positive
numbers m, € = e(t}, n = n(t) and & {also depending on K) such that, if
Ar(@)|6%D > t maxy |As(2)647)), then

B,(xz,n{t)e(t)d) C Br(z,{||hllr < e(t)8}) C Ba(z,me(£)s).

Proof The second inclusion is a trivial consequence of the definition
of the distance d. The other one has been proved in [47, Lemma 2.16]. For
the convenience of the reader we give a proof. The argument is very similar
(but not identical) to the one of the cited authors.

Let y € B,(=z,n{t)e(t)d) (n and ¢ will be made precise later). Then there
exists an absolutely continuous path ¢ (we can assume that ¢ is one-to-one)
such that ¢'(s) = 375_, b;(s)¥5(p) if 0 < s < 1, p(0) = =, p(1} = y and
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|b;(s)] < (n(t)e()8)¥¥3). In order to prove the lemma it is sufficient to
construct a (unique) “lifted path” @ such that #(0) = z and

Ep(z,8(8)) = p(s), 0<s<1,
26) (D 02es

The existence of the lifted path § will also be used in Lemma 3.6 below to
prove that the map F is one-to-one. Some arguments here and in the lemma
are taken from [48].

We begin by proving that, if 8 : [0,5] — R" is absolutely continucus,
8(0) = z and E;(z,0) = ¢ on [0,3], 5 < 1, then for any s € 0, 3,

(27) l6¢s)llz < 3e(®)d.
Assume by contradiction that for some § < § (we choose the “smallest” ) we
have ||6(3){r = 1£(¢)S. For any s < § there is a local inverse ¥* of Er(z,-)

such that 7*(¢ 3)) = 0(s) and ¥*(Er(z,h)) = hif h is near 6(s). For a
suitable integer ;1 < n we have (we denote by ¥ the uth component of the
map ¥*)

d(ly) N Fd ,
) (Ge05)  =0u5) = | Gt

V&) ((s)) - (#'(s)) ds

=1(

={ (V&) (¢(s) Zb(s)Y (s))ds
o]

=}

(V) (0(s) Zb(s Za (12(3)) Uk (s0(s)),

where the Ug’s are, as usual, the ﬁelds assoc1ated with the n-tuple I. We
now use the fact that ¢ and g2 are locally equivalent (see {47, Theorem 7).
1f i1 is small, depending on the compact set K, then ¢(s) belongs to the ball
By, (2,e(£)8). Then |a¥(p(s))| < (c/t)s¥Wn)~4(¥5) ag proved in [47, Theo-
rem 6]. Finally, in view of [47, Lemma 2.15, [{(Up%2)(¢(5))| & 6% Un)=dlle),
Then the last line of {28) can be estimated by

H 5 d(Ui)—d(Y;)

Z S ne(£)8) d(YJ

0

FEITIR) cam)—an) gy < o ()5d( U

< (-;—s(t)c?) o

if 7 = n(e(t)) is small enough. That is a contradiction. Thus (27) is proved.
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In order to prove the existence of a path 6 satisfying (26), we can set
Y = {sg € [0,1] : there exists 8 a.c. such that §(0) =z
and Er(z,8) = ¢ on [0, 8] }-

We remark that, if sp € X, then the function € is unique (if we had 6, and
83 the set {s € [0, s0] : 61(s) = 62(s)} would be open, closed and nonempty).
We now prove that £ = [0,1]. T is open: if 59 € X, then since Er(z,:) is a
diffeomorphism near #(sg), we can extend the map 8 on an interval [0, s+ o]
for a small ¢ > 0. To prove that X is closed, we take a sequence s; € X,
8; — So. By uniqueness we have a map 6 : [0, so[ — {||h]|r < &(t)§/2}. But
#([0, so[) is contained in a set where Fy is “strictly” nonsingular. Then 8(s;)
is a Cauchy sequence. More precisely, for any § < sg, we denote again by ¥*°
a local inverse of Ey , defined near ¢(s) (which sends ¢(s) to 8(s)). We have
5

16(s5) — 0{sk)| = { E‘%w (p(s+0))| ds

o=0

€5
[ o) ds| =
Sk

f(dEI,z(e('s)))—l(fP’(s)) dsl

8k

< cup ||~ |85 = S

—_ phall’\f(x)ll J k[

Here we used the fact that the path @ lies in the set [th|; < £(t)d/2;
on that set (25) holds, and gives easily the estimate {|(dEs(8(s))) 7| <
¢/|Ar(z)]. Then 8(s;) — ho and ||ho|lr < £(¢)6/2. Thus X = [0,1] and
finally Er(z,0(1)) =y, [0(1)|: < e(t)d/2. =

We now prove the injectivity of the map F (part (iii) of Theorem 3.1).

LEMMA 3.6. For any compact set K, there exist & and o > 0 depending
en K such that, if z € K, § <4d and I are such that

(29) Ar(@)|540 > 3 max Ay (@)]6%7,
then the function Er(x,-) is one-to-one on the set {|hl|r < ad}.

Proocf. The argument here is the same as that of [47, pp. 132-133]. We
give some details for the reader who is not familiar with problems concerning
global inversion of functions.

For any ¥ € K, among the n-tuples such that |A7{Z)| > 0 we first select
all the n-tuples of minimal degree. Then we choose from this family an
n-tuple I such that |A;(Z)| is maximal. Under this choice, for suitable § > 0
we have |A;(F)|64D > maxy |As ()64 for any § < § .

Then by a compactness argument, we cover K by a finite family of open
sets Ux D {zk}, k = 1,...,p, such that there exist dy > 0 and an n-tuple
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Igr (of minimal degree) satisfying
EAIOJ:( )L ATi= dfo;.:)k J(mk)lv
(30) Pro (21)[8°00) > mase My (2)|6%), 0 < 8 < doy,

Pro (@050 > dmax Ao, (2)|855% @ € Us.

We can also require, by the Inverse Function Theorem, that Bp, ,(z,-} is
one-to-one on the set {||A]l; < do,kx} for any z € Uy.

Set 6 = miny 8o, and let z € K and I be respectively a point and an
n-tuple such that (29) is satisfied for a suitable § < §. We now fix a set
{7, which contains z and denote it by Up. Let also Iy be the corresponding
n-tuple such that (30) holds. We finally write &y instead of dg,x.

Given any fixed n-tuple J, the set Ay, = {6 > 0 : |As(z)[0%) >
 maxx | Ak ()64} is a closed interval. It is easy to see that the interval
[, 8o) is covered by the union of the Aj,’s. Coming back to the n-tuple I and
to the number § of the lemma, we can write § € Ay 5 1= [r1,z, Rig) and &y €
Ay 2z, by (30). We can now connect § and 8 by a sequence of intervals as
follows: if A7 ;N Az, = = 8, we choose an index Iy such that Ay, sNAy, . # 0
and v, » < 77,2 and we set § = rpy . Then, if A7, N Az =0, we choose
I> such that Ap, N4y, is nonempty and we set Jy = ry, .. Iterating we find a
sequence 0 < dy4+1 < 6 <8y < dy—1 < ... < Jp and a sequence of n-tuples
I=1TIpn,In_1,...,11,Ip such that

Mg @) > Fmax (@)D, € Br11,d,

In order to prove that £:(z,-) = Er,{z,') is one-to-one we begin by
proving that By, (z,-) is one-to-one on {||A||r < a1d1}, where o is suitable
and depends on the compact set K. It is already known that the map Fy,
is one-to-one on {]|A||z, < ép}. Now, the sequence has been constructed in
such a way that, if k = 0,1, then

(31) I, (z)|62%) > 40,

7 max A (z)|

A double application of Lemma 3.5 gives

(32) Ep (2, {|hlln <ondi}) C Bylz, {||h]n < 8611
- EI1 (mr{”h’“h < 761})3

where ¢ < § < «y are constants depending on the compact set.

We now deduce from (32) that Ey, (x,-) is one-to-one on ||hlj;, < ayds.
The following argument is standard (see e.g. [48]). Suppose by contradic-
tion that there exist A and A’ such that Ey, (h) = Er,(h") = y. Then the
segment 7(s) = (1 — s}k + sh’ would have as image a closed path con-
tained in Ep,(||h]|z, < Bd1), by (32). Keeping in mind that Ey, is one-to-
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one, we can deform the closed path Ey, (r(s)) := +(s) to a point, letting
a(A,8) = E,(AEL () + (1— NEL (v(s))), (A, 5) €[0,1] x [0,1]. Again by
(32) we have g(),5) € {||h]|r, < ¥61}. We can now use the same argument
used in the proof of Lemma 3.5—essentially the nonsingularity of the map
Er,—to construct, for any fixed s € [0, 1], a (unique) lifted path A — p(A, s),
globally defined on [0, 1], such that p(0, s) = r{s) and Er, (p(}, s}) = q(A, s).
A standard argument (see for example [48]) shows that the function p is
actually continuous on [0,1] x [0,1]. Moreover, g(A,0) ==y, A € [0,1]. Thus
Er (p(A,0)) = g, A € [0,1]. But Ep, is a local diffeomorphism. There-
fore p(A,0) = constant = p(0,0) = k. Analogously, p(A,1) = constant
=p(0,1) = h'. Finally, By, (p(1,3)) = ¢(1,s) = y if s € [0,1]. Thus p(1, s) is
constant in ¢ and takes the values h and k', respectively, for s = 0 and 1.
Consequently, h = k.

Now we know that Ej, is one-to-one on ||h|l;, < @18;. Moreover (31)
holds with é¢ instead of &1, and I; instead of ;. Thus the first inclusion in
(32) becomes Ep, (||hllz, < 162} C Br(||hlir, < B82). Choose t such that
g(t) < @1. By Lemma 3.5 we have

Er, (|hlir, < eada) O Er (||hll1, < ()d2) D Bylz, n{t)e(t)d2)
D By(z,n(t)e(t)d2) 2 Er, (||hlir, < n(t)e(t)d2/m)
= EBr,{|h)|1, < c2b2).

ag is defined by the last equality and depends only on the compact set K.
Thus, by the same argument as before it is easy to prove that Ej, is one-
to-one on {||h||z, < @28z}

Iterating (at most) N times, where N is the number of n-tuples available,
and setting ay = a we complete the proof. m

4. A characterization of the spaces. In this section (Propositions 4.1
and 4.2) we prove the local equivalence between the fractional norms (3)
and (2).

PrOPOSITION 4.1. Let Xi,..., Xy be a family of Hormander vector fields
on R® and denote by dy, .. dm their degrees. Let aiso 2 CR™ be an open
bounded set and firx an open s set 2 CC {2. Then there ezist o >0 and ¢ > 0
such that, for any u € CH{f2),

|u(z) — u(y)|?
S - dx dy
0% d(m!y)p |B(:U,d(9§,y))i
d(z,y)<ro
i dt £X;
se S dz S [e[-FPards u(z) — u(e 9 ()P
=1 e Xiz)ef
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Proof The proof relies on the results of Section 3. Roughly speaking,
by means of the maps constructed there we can connect two points z and y
by suitable integral curves of the fields.

We begin by fixing ro = by, where §g and b are the constants appearing

in Theorem 3.1, applied to the compact set K = (2. Let 2z € 2. For any
n-tuple I we define

(33) M= {y € R" : d(z,y) <7y and

ue ()™ Loy (122) ™71,

It is easy to see that the set My, is an annulus (possibly empty), ie. for
some 0 < rr, < Ry, wehave My, ={y € R" :rr, < d(z,y) < Rrg Arol,
where a A f = min{e, 8}. For any z € 2 we also have |J; My, = B(z, ro).
Thus

ju(e) - uw)lf
(34 Q)S( o 4@ y)PB(z,d(z,y))| dz dy
d(z,y)<rg
- [u(z) — w(y)?
= S dx S dy d(w,y)pslB(m,d(m,y)N

2 Blz,ro)Ne2

lu(z) —~ u(y)|?
< 212152 da S ay d(z,v)P | Bz, d(z, y))|

M;,mr']n

In order to estimate each term of the sum we remark that a significant
property of Ry, is the following:

RI}Q; ATo d{1) 1 RI,;L-/\TO d{J)
I/\I(m)|(—b_) > *z-m?XP\J(mN('*T—) -

Furthermore, (R o A 7g)/b < 8y. Then, invoking Theorem. 3.1, we have

Arfa) ~ [ TuBrlz )it Bl < 3 (Bre ATo),

B(:c, .Rf,a: A TD) C EI’w ({lh“]’ < %(Rj,m A 'I"o)}) .

Moreover the map Fi,; is one-to-one on {||h||r < (a/b}{ Ry, Aro)}. We also
need a lower estimate for d(z,y). If y € Mj,,, then condition (17) is satisfied
if we choose § = d(z,y)/b. Then B(z,d(z,y)) C Eru(|hlir < (a/b)d(z, 1)).
So, we can write y = Ey(z, h) and we have

(36) |4z < 3d(e, Bra(),  Era(h) € My,

(35)
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Thus, performing the change of variable y = Ej,(h) and using (35)
and (36), we can write the last line of (34) in the form

[u(e) ~ u(Er (2, R))|” | TnEr{z, h)|
37 d
oL o T B B0, Bl

ScZSd:r
In

() — (B (o, )P
b oo

Bf L(M1,zn82)

Here we have also used the equivalence Hh”}imp\;(m)f ~ |B(z, ||h|l1)|, which
holds on the set on which we are integrating.

Recall that if Uy,...,U, are the commutators corresponding to the
n-tuple I, then
N(I)
Er(z,h) = H exp(|hkj|d(xfj)/d(U'=j)ng,j)(w),
j=1

where o; = £1. This last expression is actually incorrect: the definition of
the map Er depends on the sign of the h,’s (cf. (14)). This difficulty can
be easily overcome by splitting the last integral of (37) in 2" integrals such
that in each integral the sign of the h;’s does not change.

Thus the right hand side of (37) can be estimated by means of a finite
sum of terms of the form

dh
N T
IRilr <aro /b A7

* S dz !u(exp(]hkj|d(X":')/d(U’°j)an,"j)(z)) — u(2)|P.
e’

Since d(x, exp([h; |“7 /450, X, ) (@) < R, |5 < |1 < (a/b)ro,
by (38), if 7y is small enough, then the point
N
(39) 2 H exp(lhkp|d(X“P)/d(U’°v)o'pX,~p)(!B)
p=j-+1

belongs to a fixed open set 2% such that 2 CC 2* CC 2. For any fixed
h, @~ z is a change of variable whose jacobian is bounded by geometric
constants (depending on the fields and on the sets £2 and {2).

Our next step is to split the variables in the integral (38) and to apply
Fubini's Theorem. For fixed = 1,...,n, let h = (hj,ﬁj), d; = d(U;) and
d(I) = Yy, di- Then || by = max [/ ~ S5y [/ ~ [y M+ Ry ) s
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and for any measurable function 1 > 0 of a real variable, we have

(40) S P (hy)

— PN dhidhs
d(n+ 7
[k

7]l r <80
~ v(7y) h; dh;
inlcd (BalM + [l )d+es
b (d(I +pa)/d ] > PORYERVT e
[hs<8y? 1! [|hj;|<5°( + |lAgllz /s %)

Set now Ay = |h;|9*/% uy, k 5 j. Then dh; = |h;|*"}/%~1dt; and moreover
(40} takes the form

?ﬁ(hj) d(I)/di—1 dﬁj
(41) | ) dh; Thy[@@+37d; |k ;S.,l L= |6, adss
Ihl<sy? "
_ P(hy)
=¢ S |h |1-|-p.9,/d

Ih;1<85?

We have also used the fact that {p,_, (1 + @] 1)~ +P) dii; < co.
In order to estimate (38) we perform the change of variable z +— 2

(see (39)) and integrate in dﬁkj. Then (38) is less than

dh
Vs | delulexp(he, [ 05X, ) (@) - ulz) P
Il hllr<ero ”h’” 2
: dhy, d(X-,) di, B
Selde  § o el (0 0 X)) o) ()
> [Pese; |<1";’,d'n
dx dit
<ec { ) ; lu(exp(tX.,)(@)) — (@)

(w,exp(tXy, (z)Neftxf2

In the last inequality we have again changed variable, letting hZE_X” M dk; = 1.
We have also assumed that o is small enough such that eX(z) € (2, for
any field X of the family and for each |t| < o™, u

The counterpart of Proposition 4.1 is:

ProrosiTION 4.2. Let Xq,...,Xm be o family of Hérmaonder vector
fields on R, Fiz xy € R™. Then there exists a neighborhood U of zo so that
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for any O CC O CC U there exist positive constents o, §g and ¢ such that

m

> | de

j:l (0] eatxj(t)éo
[t}<do

S dt

ML) (e () - u(=)I?

fu(z) — u(y) ]
e Jé az,9)7* B, o, g)] =%

The proof of Proposition 4.2 relies on the so-called lifting method, intro-
duced by Rothschild and Stein. In [49, Theorem 4] the following is proved.
Assume that X,..., X,, are smooth vector fields whose commutators of
length at most » span R® at a point £g € R™. Then there exists an open set LV
containing zg so that it is posmble to introduce new coordinates 7 € V C R?
and new fields X; = X; + S0, a;,(z,7)8/8m, on U x V ¢ R+ = Re,
which are free up to step r. That means that the only linear relations (at
any point of {J x V') between the commutators of length at most r of the
fields JZ'J- are given by antisymmetry and the Jacobi identity.

Following [49, p. 272], we can select ¢ commutators

—_~ i~ ~ —

(42) Vi=X1, V=% Vi1, Y,

linearly independent at any point of U/ x V. The remaining commutators
can be expressed as linear combinations (mth constant coefficients, given
by antisymmetry and the Jacobi identity} of Yi,... ,Yq.

The proof of Proposition 4.2 relies on the following lemmas.

LeMMA 4.3. Let ECC U and H CC V. Then there exist 80 > 0,6 < 1
and ¢ > 0 such that, if =,y € E and d(xz,y) < do, we have
drde 1

= = C .
e (@), (,0))tpe ~ d(z,y)P°1B(z, d(z, )|
E(miy)<60

Here d denotes the distance defined by the f’} 's.

Proof. It is proved in [47, Lemma 3.2] (see also {35, Lemuina 4.1]) that,
for @ =d(¥1)+... +d(Yy), if z € E and § < g, then

\B (z,7), 5)| 5@
Bz, " [B(x,8)’
with constants depending on the choice of the sets E, H, U, V.

Now d((z,7),(y,0)) > d{z,y) = d. Take 2,y € E with d(z,y) < .
From {43) we get

(43) {o: (y,0) € B((w,7),6)} < e
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S drdo

~ HxH g{(gg,q-),(y’g))Q-l-Pﬂ
d((m1s):('ylg))$50

2 1
< CS de (2kd)@tes . S do
H k=0 2kd<d((e,m),(y,0)) Smin{26+1d,50}
1 (2k+1g)e
<el dr .
gf g (@kd)@+#+ * [B(z, 2+1d)]
2k+Td<dy

1
Z szs Bz, 1))

“H O k=
c 1 1 c
g —_ . = - B
Xk: 2%2 |B(z,d)|  d(z.y)*|B(z, d(z,v))|
LemMA 4.4. Let Vi, .. .,17',1 be the commautators introduced in (42). Fiz
open sets G CC G CC U xV C B9 If dj = d(Y}) is the degree of the
commutator Y; and if d denotes the distance in U x V, then there exist
positive numbers o, 8g and ¢ such thet, for any funection u on é, we hove

d _
2 it e 11T (€) —u(P
expl{at¥;)(£)ed
i It]<dg?
dé dn
- céia e, n)@+es [u(€) — uln) P

Proof. We first fix an open set G* such that ¢ CC G* CC G. For any
fixed j € {1,...,q} we write k= (2, h;) € R x R¢* and

IRl s=  masx {7 [/% o R/ 4 7 [l o [ M iRy
t k#j

Set now Q =3 3_ 1 9k and B(¢, h) = exp(ha¥i + ...+ hy¥,)(€). Then there
exists §o such that (£,h) € G* and exp(ch; Y)(&) € G* provided ¢ € G,
Ih]] < 6o = 8o(G,G*) and @ < 1.
Now, keeping in mind (40) and (41) we get
dh dh;
S [iAf|@+es Whs) 2 S |h; ;1+;3/da w(hy).

k|| <d
ell<bo s 1<85
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Here ¢ > 0 is any measurable function. Then

@ fae | e TE) -

G explah;¥j)(8)e€
hy<dy!

<ofdt § g e o) —uloP

G |B]] <80
dh
<effae | —2 o) - udiem)F
{é ,M”Sda Thla+ “
Hlde | e e) - u @ P
G |hfi<éa

The first term can be handled by performing the change of variable
k1 = (¢, h), whose jacobian is strictly nonsingular as soon as ||k < do
and dg is small enough. Moreover by the properties of the distance, we have
d(¢,n) < const - ||h||. Thus the integral is under control by means of

u(g) — u(n)?
c df dn —=22————.
G"‘§<G' an d(&,n)@+ee

Concerning the second integral we write exp(h; aY)(&) = 7 and we
consider the function &q(n,h) = exp(ba¥i + ...+ B Y)exp(—ah Vi) (m).
The function just introduced has continuous ﬁrst derivatives in all the vari-
ables, h, n and a. By means of the Inverse Function Theorem, there exist
>0 and 5o > 0 such that, as soon as 0 < a < &, n € G*, the function
h— 45 (17, k) restricted to ||h|| < 8o has an inverse. On the other hand,
d(n,®4(n, h)) < const - |{k]j provided « is small enough. Then the last line
of (44) becomes

Tl (e (6)) — w(@(e, WP

| i o - ualn )P

Gx{lIhll<éo}
<
G {||hll<do}

Q) — ulm)|

se | K g mar

GxG
Proof of Proposition 4.2. Let zp € R*. Choose an open set U containing
o and small enough such that the results of Rothschild and Stein hold. We
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can denote by (z,7) € U x V the new coordinates. Let now O CC OccU.
We fix an open set Hy cC H ¢ H cC V. If § is small enough (depending
on the choice of the sets), as soon as (z,7) € O x Hy, [t} < 6 and e (z) €
0, then etXi(z,7) € O x H. Thus

dt s
ws) Jdo § o (e (@) —ul@)F
(@ exp(atX;)(x)cO
Et]((su
t
<e | dwar | e (e &) — u(e))P.
OxHy exp(atX ;) (o, )EOXH E ] ’

[t|<8o
This last expression can be handled by using first Lemma 4.4 (with G =
O x H and G == O x H) and secondly Lemma 4.3 (with E = O}. The last
term of (45) can be finally estimated by
(=)~ uly)l?
d((z, s). (y,0))91P

= S de dy |u(z) — u(y){P S
Ox0 foﬁ' v 70, (U,

S drdr S dy do
OxH OxH
drdo
0))Q+pa

dedy. =

S ~u(y) P
55 ,y pSIB (2, d{z, y))

5. Some embedding results. In this section we give some embedding
results (Theorems 5.1 and 5.2) concerning the spaces introduced before.
We use the representation of smooth functions by means of fundamental
solutions. The embedding results hold either in the case d(X;) = 1 (we then
use the fundamental solution of 3 X 2) or in the case where only one among
the flelds (say Xp) has degree two, Whlle X1,...,Xmm have degree one (in
that case we use the fundamental solution of X -|- X jz)

THEOREM 5.1. Let Xy,..., Xy, be a family of Hérmander vector fields
on R*. Dencte by d the dzstcmce associated with EX . Fiz a compact set
K C R*. There emists rg = ro(K) such that for every ball B = Blxg,r),
zg € K, v < ryp, the following holds:

e

e | Xpulzoesy, e CE(B).

=1

Here0 <s<1,p>1,q=Dp/(D—(1—9)p) and D = max{D(c) : « € B}
(see (11)} denotes the homogeneous dimension of B.

[ulwsacs) <
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THEOREM 5.2. Let Xo,Xy,...,Xm be a family of Hormander vector
fields and let d(Xy) =2, d(X;) =1, j > 1. Let also K CR™ be a compact
set. Denote by L the operator 3 X7 X; + Xo. Let B be a ball centered al
€K and of radius r <rg=ro(K). Fiz s and p, 0 <8 <1, 1 <p<
D /(2 — 5), where D is the homogeneous dimension of B. Then

[ulwen(s) < cllLullzrs), w€CF°(B), g=Dp/(D—(2~s5)p).

The proofs of the two results are actually very similar. We give only a
proof of the first.

We need a lemma.

Lemwva 5.3. Let Xi1,..., X, be Hormander fields on BR*. Let 12 be an
open set and let ' : 12 x 2 — R be a fundemental solution of the operntor
2. X; X (see Section 2). Fix o compact set K C (2. Let {,z,y € K and as-
sumne that d(£,z) < %d(m,y) < 6o, where 8q is a suitable constant depending
on K. Then

d(ma £)d($, y)

(46) (6 0) - Tew)] < e
, d(z, E)

Here the derivatives can act both on the first and on the second argument.

Proof. The proof is an easy consequence of the deep results by Sédnchez-
Calle and Nagel, Stein and Wainger, on the estimate of the fundamental so-
lution of a Hérmander sum-of-squares. Let £, = and y by such that d(z, &) <
i d( ,%/). By definition of distance there exists an absolutely continucus path

:[0,3] — R™ such that ¥(t) = 3°; a; () X;(v(1)) and |a;(t)] < 2d(z, £) for
a.e. t € [0,1]. Then

1m

P& 3) - De,w)l = | |3 e Xs T, v) dr)

gji=1

Smmal d(v(r),3) ’

} Ba, dta o

in view of (9). By the triangle inequality we have d(v(7),y) ~ d(z,y) with
uniform constants. Moreover, if d{z,y) < §p we can also use the doubling
property to get |B{y(r),d{v(7),1))| ~ |B{z,d(z,y))!. That gives trivially
the proof of (46). The proof of (47) is quite similar.

Proof of Theorem 5.1. Let B = B(zo,r) be a ball. Then equation (10)
gives _
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S da dy
BxB d(:L‘, y)qH]B(mv d(m7 y)

dx d
| T b dma | XG0~ XTE )X e,

(48) )I |u($) - u(y)lq

where the derivatives act on the variable £. In view of the equivalence
[B(z,d{z,y))| ~ |B(y,d{z,y))|, we can also assume that we are integrat-
ing on the set

(49) {iXI(¢, o) = XTIy}
" Taking (34) and (37) into account we can write, for any (z,y) > 0,

Y(z:y) Wz, Bro(h))
dz dy < dx R s 1 %
S Tt ey TS 2 ) e

Then (48) is estimated by

S| L

d{I)+
I B ”1(M1 =MB) Hh“ D+as

XTI (&, Bra(h) — XT(& 2)}Xu(6) de| .
B

Letting now {XI'(, Br,(h) — XI'(E, 2)} =: A(s,€,h), we get, by (47),
|A(z, &, h)| < d(z, Ero(h))/|B(z,d(z,£))| provided d(z, Er,0(h)) < %d(%f)’
while the estimate

d(x,&)
(50) A, & 1) < 2XTE2)| < T T

always holds, in view of (49).
By the Minkowski inequality, we have

1) S{dz | an

d(I)+
I B E;_,;(Mr,an) ”h“I( yhas

cope(jel_ | @2 ref

+gs
I B E:-Il(Ml.mnB) “h’“l'

| Ala, ¢ R)xu(e) g
B

In order to estimate (51) we remark that Erm(MIm NB) c {|hll: £ er},
where r is the radius of the ball B and ¢ is a suitable constant. Moreover,
thllr ~ d(z, Br=(R)) on Ep (Mg N B). Thus, if X is a positive number,
small enough, but only depending on the compact set, we can assert that
Ikl < Ad{z, €) = d(z, Br,.(h)) < 3d(z,£). Then the square bracket in (51)
can be estimated as follows:

icm
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Alz, £, h)|? Az, &, h)|T
[-1= S dhi h(md(é;Hzi + j h| (md(§)+2'.[a
IRy <Ad(=,£) llAllz Ad{z, &)<kl r<cro llAlly
¢ IR I3
< | an : L
IRl <Ad(z,8) Inf§D*e 1Bz, d(z, €))7
n c . d(z, )9

h
d(I)
o<l NRIEDTE Bz, d(z,))

Ad{x,§ -
(2:8) A1

_ o?
B AT Bl d(z, )]
oo a(I)—1
2 d(z, §)*
+ . do
i ET TB A8
d(z, g)q(l 8}

" Bla,d(@ )P

(we have also used “polar coordinates”}. Thus we have proved that

ey
< ;i dz{é d¢ E_l(MSI . dh %ﬁ]wmu(m}q
f ée é, e xu@)l} < Kl
in view of Theorem 2.2.
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Composition operators: N, to the Bloch space to &g
by

JIE XIAO (Beijing and Braunschweig)

Abstract. Let Nu, B and Qg be the weighted Nevanlinna space, the Bloch space
and the Q space, respectively. Note that B and Qg are Mdbius invariant, but My is not.
We characterize, in function-theoretic terms, when the composition operator Cyf == f o ¢
induced by an analytic self-map ¢ of the unit disk defines an operator Gy : Na — B,
B — 24, No — @p which is bounded resp. compact.

1. Introduction. Let A be the unit disk {z & C : [z| < 1} in the
complex plane, and let H{A) be the space of all analytic functions on A.
Any analytic map ¢ : A — A gives rise to an operator Cy : H(A) — H(A)
defined by Oy f = f o ¢, the composition operator induced by ¢.

One of the central problems on composition cperators is to know when
Cy4 maps between two subclasses of H({A) and in fact o relate function-
theoretic properties of ¢ to operator-theoretic properties of Cy. This problem
is addressed here for the weighted Nevanlinna, the Bloch and the & spaces
with respect to boundedness and compactness of the operator. The related
research has recently been done by various authors (see for example [JX],
[MM], [RU], [$Z], {T] and [X2]). The present paper continues their work,
but also solves two problems which remained open in [SZ].

For each a € (—1,00), let M, be the space of all functions f € H(A)
satisfying

1+a
Talf)=—— {log™ | ()1 = |21%)* dm(z) < co.
A
Here and afterwards, dm means the nsual element of the area measure on
A, and Iog""cc islogzifz>land 0if 0 <z <1,
From log™ z < log(1+2) < 1+log™ z for z > 0 we see that a fanction f €
H(A) belongs to A, if and only if
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