260 J. Xiao

[X2] J.Xiao, Compact composition operators on the area-Nevanlinna cluss, Exposi-
tion. Math. 17 (1999), 255-264.
[Z] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.

Schaoct of Mathematical Sciences
Peking University
Beijing 100871, China

Institute of Analysis

TU-Braunschweig

PK 14(Forum)

1-38106 Braunschweig, Germany
E-mail: xiao@badbit.math2.nat.tu-bs.de

Received January 1, 1999 (4239)
Revised version September 23, 1999

icm

STUDIA MATHEMATICA 139 (3) (2000)

A geometrical solution of a problem on wavelets

by
ANTOINE AYACHE (Toulouse}

Abstract. We prove the existence of nonseparable, orthonormal, compactly supported
wavelet hases for L2(R?) of arbitrarily high regularity by using some basic techniques of
algebraic and differential geometry. We even obtain a much stronger result: “most” of
the orthonormal compactly supported wavelet bases for LB(RE), of any regularity, are
nonseparable.

1. Introduction. A wavelet basis for L*(R?) is an orthonormal basis of
the type {2424 (2g —~ k) |i=1,...,2¢ — 1, j € Zand k € Z%}. It can
generally be obtained from a sequence {V;};ez of closed subsets of L2 (R?)
called a multiresolution analysis because it has the following properties:

(a) ﬂjezw = {0} and U_-,'ezV;i = L*(R?),

(b) V? - V.'H'l for all jy

(c) there exists a function ¢(z), called the scaling function, that belongs
to V and such that {@(z — k) | & € Z%} is an orthonormal basis for Vp
[Le, D, M].

The wavelets that this paper deals with are both compactly supported
and generated by multiresolution analyses.

We will say that a wavelet basis is separable if the functions ay; may be
written as products of monodimensional scaling functions and monodimen-
sional wavelets.

There exists a one-to-one correspondence between the wavelet bases for
L2(R?) and the filter banks that satisfy Cohen-Lawton’s condition. More
precisely, the Fourier transforms of the functions ¢ and ¥1,...,p4_1 are
given by

(1.1) #(6) = [] Mo(27*¢),
k=1
(1.2) Bi(8) = M{(272)@(2716),
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262 A, Ayache

where the trigonometric polynomials Mp(§),..., Mga_1({) form a d-dimen-
sional filter bank, i.e.

(1.3) My(0) =1,

and for all k,1 € {0,...,2¢ — 1},

(1.4) > Mi(€+ ) M€+ 7v) = Gy
vef{0,1}4

Thus, our problem and many other problems on wavelets can be set in
the filter banks framework.

We will say that a filter bank has L > 1 vanishing moments if all the
partial derivatives of order < L—1 of Mp(¢) vanish at the points of the type
wv where v € {0, 1}¢ and v # (0,...,0).

From now on and unless otherwise mentioned, we will cnly be con-
cerned with bidimensional filter banks. Vi r, will be the set of filter banks
{M;(&)}o<j<s with L vanishing moments such that

M) = Y ke
ke{0,...,2N—1}2
where ¢; (k) € R. We will always identify {M; (&) }ogj<s with the sequence of
coefficienis (c;(k)), 7 € {0,...,3} and k € {0,...,2N —1}2. Thus it results
from (1.3) and (1.4) that Vi z, is an algebraic set in R'6N", i, the set of
common zeros of a family of polynomials in 16NZ variables.

This paper is organized as follows.

In Section 2, we introduce the algebraic geometry results that we need
in this paper.

In Section 3, we show the following results. The separable filter banks in
Vi1, form an algebraic subset Tv,z. The filter banks in Vy 1 that do not
satisfy Cohen-Lawton’s condition form an algebraic subset Wy 1, and the
filter banks in Vi, that generate wavelet bases with exactly L vanishing
moments and with critical Sobolev exponent > a form a Euclide open subset
S§.z of V. Thus, to establish the existence of nonseparable, compactly
supported wavelet bases for L2 (R?) of arbitrarily high regularity, it is suffi-
cient to show that for any o > 0, there exist N and L such that % ; is not
contained in TN,L-

In Section 4, P,z is the set of couples (A\(z), u(z)) of monovariate n-
periodic trigonometric polynomials Az) = Zﬂiu a(k)e™%*® and p(z) =
Pyl o b(k)e™*?* * with real coefficients that satisfy

(1.5) A0)=1,  |A@)P + |ul@)? =1,
and
(1.6) w0 =... = u 1) =0.
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We will always identify the couple (A(z), u(z)) with the sequence (a,b)
of coefficients of A(z) and of p(z). Thus it results from (1.5) and {1.6) that
P,z is an algebraic set in R2M+1)

First, we show that there exists a polynomial isomorphism f between
Pag, and the algebraic subset of Vaarsn,z consisting of the filter banks of
the type

Mo(€x, &2) = e M5 [\(€1)Sou (b1, £2) + u(€0)S11 (€, £));

My(£1, &) = e” MO () S11{61, &) — p(€1)Soo(é1, &2)],
My(ér, €2) = e~ BMEN(£1) S10(61, &) -+ p(€r) Soa (€1, 62)],
]

(1.7)
Ms(61,62) = e *ME (&) So1 (61, &2) — ul€s) S0(én, 2]l

where {Spi(£1,62) o<k,i<1 18 an £2 = (wy;)-separable (2 € SL(2,Z)) filter

bank in S§ ; this means that it satisfies

(1.8) Swi{f1,&2) = ar{wirés + wiaba)bi{wan i + waada),

{ar{z)}ocke1 and {bx(x)}o<rsc1 being 2 monodimensional filter banks. We
set

(1.9) op = {e ML G (6, &2))-
It is an f2-separable filter bank of Vaarin, L. Then we show that the couple
(Mo(z), wo(z)), where Ao = 1 and pg = 0, is a nonsingular point of Pll\,;,L
of dimension M + 1 — L. Since f(Xg, o) = oo, there exists an irreducible
algebraic subset 172 Mm+N.L < Vaary o of dimension M 41— L such that all
the filter banks in Vaaren,z are of the type (1.7) and op is a nonsingular
pDil‘lt of %M-&-N,L- _
Finally, we show that there exists a real-analytic manifold Venryn,L
C S4s4n,p, of dimension M 41— L such that go is the only separable filter
bank in ﬁ2M+ ~,r- This, roughly, means that “most” of the orthonormal,
compactly supported wavelet bases of arbitrary regularity are nonseparable.

2. Some preliminary results of algebraic geometry. All the results
that we state in this section and their proofs can be found in [AK].

DEFINITION 2.1. An algebraic set in R" is any subset of R™ of the form
V{J) = {(z1,..,2n) ER™ | f(1,-. . 2n) =0, Vf E I},

where J is a subset of R[X1,...,Xy], the ring of polynomials in n variables
with real coefficients.

We obvicusly have:
@y IcJ=V({I)D>V(J)
(0) V(Uy o) = Na V(Za),
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() VIJ)=V(I)UV(J) (where IJ ={fg| feTand g€ J}).

DEFINITION 2.2. We say that an algebraic set is irreducible if it cannot
be written as the union of two proper algebraic subsets.

ProrosITION 2.3. Fvery algebraic set V' can be uniquely written as
V = UL, Vi, where each V; is an irreducible algebraic subset and no V;
is contained in another V;. We say that the algebraic subseis V; are the
trreducible components of V.

DerFmMITION 2.4. Let V' C RB™ be an algebraic set. We say € V is
nonsingular of dimension d in V' if there exists a neighborhood U of 2 in R™
and n — d polynomials fi,..., fn—q in n variables such that:

MUV =Un0Z 57H0),
(2} the gradients V f;{z) for i = 1,...,n — d are linearly independent.

Derinrrion 2.5. Let V € R™. We say that V is a real-analytic manifold
(resp. a differentiable manifold) of dimension d if for all & € V, there exists
a neighborhood U of z in R* and n — d real-analytic functions (resp. n — d
differentiable functions) such that:

(1) TNV =UnNZE 740),
(2) the gradients V f;(z) for i = 1,...,n — d are linearly independent.

It is clear that any real-analytic manifold is a differentiable manifold.

The implicit function theorem allows us to locally identify every d-
dimensional differentiable manifold with an open subset of Re,

‘When a point z of an algebraic set V' of R™ is nonsingular of dimension
d, there exists an open neighborhood O of z in R* such that VN O is a
d-dimensional real-analytic manifold of R™.

DErINITION 2.6. The dimension of an algebraic set V' is the largest d

so that V has a point which is nonsingular of dimension d. We always have
dimV < n. '

ProprosiTiON 2.7. (i) The dimension of an algebraic set vanishes if and
only if this algebraic set is finite.

(il) Let W be a proper algebraic subset of an srreducible algebraic set V.
Then dim W < dimV.

By a proper subset of a set D we mean any part of ) which is not equal
to D.

DEFINITION 2.8. A point of an algebraic set is said to be nonsingular if
it is nonsingular of dimension dim V.

PROPOSITION 2.9. Let V be an algebraic set and let © be a point of V.
Then x is nonsingular of dimension d if and only if x is contained in ezactly
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one irreducible component S of V, dim § = d and x is o nonsingular point

of S.

DerpmviTION 2.10. Let V € R® and W C R™ bhe two algebraic sets.
A function f: V — W is a polynomial morphism if there is a polynomial
function g : B™ — R™ such that g(V) C W and g|v = f. When the function
f~3: W — V exists and is also a polynomial morphism, we say that f is a
polynomial isomorphism.

PROPOSITION 2.11. Let V C R™ and W C R™ be two algebraic sets and
let f:V — W be a polynomial isomorphism. Then:

(i) R C V is an irreducible algebraic subset if and only if f(R) C W is
an irreducible algebraic subset,

(ii} x € V is a nonsingular point of dimension d if and only if f (x) eW
is o nonsingular point of dimension d.

3. A geometrical formulation of our problem

DEFINITION 3.1. V1 is the algebraic set of 4-uples {M;(£)}o<;<3 of
bivariate trigonometric polynomials of the form

M; (&) = S g(Ryem*e
k& {0,...,2N—1}7

with ¢;(k) € R that satisfy (1.3), (1.4) and such that all partial derivatives
of Mp(&) of order less than or equal to L — 1 vanish at all points of the type
71 where v € {0,1}2 and v # (0,0). We say that {M;(£)}ogsgs is a filter
bank with L vanishing moments.

3.1. Separable filter banks

DEFINITION 3.2. Let A = (a;;) be a fixed matrix in SL.(2, Z). We say thaft
a flter bank {My(£1, &) o<kic 18 A-separable if there exist two monodi-
mensional filter banks {rg(x)}o<r<1 and {t:1(x)}ogigr such that
(3.1) M (€1, &2) = ri(011€1 + anaéa)ti(aaiéy + ae2éa)-
We will say more generally that a filter bank is separable if it is A-separable
for some matrix A in SL(2, Z).

It is clear that a wavelet basis is separable modulo the action of SL(2, Z)
if and only if it is generated by a separable filter bank.

PROPOSITION 3.3. Let Tf, C Vi, be the subset of A-separable filter
banks. Then Tj&,L is an algebraic subset of Vi 1.
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Proof. Let {M;;(£1,£2)} be an A-separable filter bank. It follows from

(3.1) that
My (A_l (2;)) = re(m)ti(me)-

Since 74 (k) = #£1 and #;(Ir) = +1, taking in this last equality m = k7 and
7 arbitrary and then n; = lr and #; arbitrary we obtain

s (4 (7)) = oo (47 (1)) e (4 (7).

where & = £1. This last equality shows that a filter bank {M;;(£1,62)} is
A-separable if and only if the coefficients of the trigonometric polynomials
M;; (&1, &) are the common zeros of a family of polynomials with 16V 2
variables.

PROPOSITION 3.4, Let A and B be two matrices in SL(2,Z). If Tj‘f}iL N
TH | # 0, then necessarily Tif , = TF 1.

Proof. Suppose there exists a filber bank which is both A = (ay)-
separable and B = (b;;)-separable. Then there exist four monodimensional
filter banks {rx(x)}, {te(z)}, {u(z)}, {ve(x)} such that

ro(a11és + araba)toleails + anefa) = uo(br1é1 + biaka)va(baiés + ba2a).
Tt follows that

(%) ro(€1)to(f2) = uo(crzéa + c12é2)vo(enéy + €226s),
where the matrix C = (¢;;) is in SL(2,Z) and C = BA™!. Since |det C| = 1,
at least one of the coefficients €17 and cyz is odd. If ¢; is odd, taking in
the equality (%) (£1,£2) = (¢12@ + 7, —cy1x) where  is an arbitrary real, we
obtain
ro(c12m + wito(—cr12) = 0.

Therefore ro(cizz + ) = 0 for all z and consequently e15 = 0. If c13 is even
then ¢y9 is odd and by a similar method we obtain ¢i; = 0.

Thus c17 or c13 must vanish and we can show similarly that co1 or cpg
must vanish. Since C € SL(2,Z), we have C = (§.)} or 0 = (22"'8) where
£; = +1 and this implies that T , =T% ;. w

THEOREM 3.5. Let Tiv 1 C Viv,r be the subset of separable filter banks.
We have Tn,1, = Useeriez) Tf} 1, where only a finite number of Tff},L are
nonempty. Consequently, T 1, is an algebraic subset of Vi 1.

Proof, If we show that T 1 is a finite union of Tj\‘}, 1., then it follows im-
mediately from (c) (see the beginning of Section 2) that Tl 1, is an algebraic

set. To show that T,z is a finite union of Tﬁ 7, we will use the following
lemma. = '
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LEMMA 3.6. If a filter bank in Vy 1 is A-separable, then the coefficients
of the matriz A satisfy |a1x), a1z, lag1],lags] < 2N —1.

Proof. First, notice that the coefficients of a row (resp. of a column) of
the matrix A have no common divisor. This is a consequence of the Bezout
theoremn, since det A = a11822 ~ aia021 = £1.

Let
{Mi.i(gl:§2) = Z

U<k, kpS2N -1
be an .A-separable filter bank. We have

Muo(£1,&2) = rolex1&y + a12&2)t0{a21é1 + azaba),

where {rp(x)} et {tx{z)} are two monodimensional filter banks.
If ayia12 # 0 and ayy is odd then since ro(w) = 0 it follows from the last
equality that for all real z,

Moo(tllz.i? +m, ~a11m) =0

ci; (1, kg)e“i(k1£1+k2€z) }

and thus
Z (—1)k1600(k1, kz)e—i(klalz"—kzﬂn)m =0
0Lk ka S2N—1

Therefore, there exist (ky,ks) and (K}, kj) in {0,1,...,2N — 1}* such that
klalg - kzan = kialz - k’zall or equivalently (kl - ki)alg — (k:g —- k’z)all.

We then use the Gauss lemma: if @, b and ¢ are three integers such that
and b have no cornmon divisor and if a is a divisor of bc thena is a divisor of c.

011 and aiz being with no common divisor, there exist two integers w1
and uy such that apuy = kf — k1 and appue = kb — ky. Thus, we have
|G,11_| S “{;i - k}ﬂ S 2N — 1 and |a12k 5 iké — kg‘ S 2N — 1.

If aqy1a1s # 0 and aqy is even, then aq2 I8 necessarily odd, sc by a similar
method we obtain the same conclusion.

We can show similarly that |ag:| < 2N —1 and laga] < 2N — 1 when
aa1ag2 7 0.

Finally, when one of the coefficients of the matrix A vanishes then the
other coefficient is equal to 1 and the conclusion of Lemma 3.6 remains
true. =

3.2, Filter banks that do not satisfy Cohen—Lawton's condition. It is
well known that every filter bank generates a “tight frame” for L2 (R?)
[L, LR]. This means that every function f € L2(R?} may be written f(z) =
2oig ke @l Js k)29t (272 — k) but the coeflicients (i, j, k) are not necessar-
ily unique. It is worthwhile noting that there exist filter banks that do not
generate wavelet bases for L*(R?).

A. Cohen has first found a necessary and sufficient condition for a filter
bank to generate a wavelet basis; it involves the structure of the set of zeros
of My(€) [C]. W. M. Lawton, starting from. a completely different view point,
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has then found ancther necessary and sufficient condition, which invelves the
dimension of the eigenspace of the eigenvalue 1 for the transfer operator L,
LR, RW!, This last condition may be stated as follows.

LEMMA 3.7 ([LR]). Let {My(€)}o<k<s be a filler bank, let Qn be the
vector space

ov={c|a) = 3 a(k)e™*<, a(k) € C}
ke{—2(N—=1},...,2(N-1)}2

and let T : Qn — Qn be the transfer operator defined by

(3.2) TG = Z |Mo(272¢ 4 m) PG (272 + mw).
ve{0,1}2

Then the filter bank {My(€)}o<r<s generates a wovelet basis if and only if
dimker(T — I) = 1.

THEOREM 3.8. The filter banks in Vi, that do not generate wavelet
bases form an algebraic subset Wy i,

Proof Let T be the matrix of the transfer operator that corresponds
to a filter bank that does not satisfy Cohen-Lawton’s condition. It follows
from Lemma, 3.7 that dimker(T — I) > 2. Therefore, the rank of the matrix
T — I is less than (4N — 3)® — 1 and consequently, all the (4N — 3)2 — 1
minors of this matrix vanish. This shows that a filter bank {M;(¢1, £2)} does
not satisfy Cohen—Lawton’s condition if and only if the coefficients of the
trigonometric polynomials M;(£1,a) are the common zeros of a family of
polynomials with 16 N2 variables. w

3.3. Filter banks that generate wavelet bases with critical Sobolev expo-
nent > . Let @ > 0. A function f € L?(R?) belongs to the Sobolev space
W(R2) if

§ FOP+1g*) dg < oo,
R2
For all integers &, functions in W (R?) are C*~2 functions. One can mea-

sure the regularity of a function f € L2(R?} by its eritical Sobolev exponent
a(f), defined by

(3.3) af) = sup{a | f € W7 (R?)}.

LemmMa 3.9 ([CGV, J)). Let T be the transfer operator of a filter bank
that generates o wavelet basis with eractly L vanishing moments. Suppose
that T' is defined on the space of oll bivariate trigonometric polynomials.
Then the critical Sobolev exponent of these wavelets is given by

(3.4) —logy(e(Tlr,. ),
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where Tar, 15 the space of bivarioie trigonometric polynomials that have a zero
of order 2L at the origin and o(T'|+,, } is the spectral radius of the restriction
of T to Tor.

THEOREM 3.10. Let S5 ; C Vi, be the subset of filter banks that gen-
erote wavelet bases both with ezectly L vanishing moments and with critical
Sobolev exponents > . Then 5% 1 is a Euclide open subset of Vi .-

Proof. This theorem is a consequence of the continuity of the spectral
radius. w

It follows from this section that the problem of establishing the existence
of nonseparable compactly supported wavelet bases for L?(R?) of arbitrary
regularity is equivalent to the geometrical problem of showing that for all
a > 0 one can find N and L such that Sj"{,1 1 is not included in Ty z.

4. A geometrical solution of our problem

DEFINITION 4.1. Let Paprr be the set of couples (A(z),pu(z)) of m
periodic, monovariate, trigonometric polynomials with real coefficients that
satisfy (1.5) and (1.6) and such that

M M
Me) =Y alk)e™™* and p(z) =) blk)e .
k=0 k=0

Py y, may be identified with an algebraic subset of R2(M+1)
The following result gives sorme insight on Py r-

ProrosITION 4.2. Let f be the function from Py p to Vayran,r (ie;ee
Definition 3.1) such that the image of a couple of irigonometric polynomials
(A(@), p()) is the filter bank {My(£1,&2)} defined in (1.7). _Then f(PM,%-,)
is an algebraic subset of Vansyn,r ond f: Pagr — f(Pu,L) is a polynomial
isomorphism.

Proof. It is clear that the function f is injective: indeed, we have for
all &1, &2,

Mo (1, 62)
My(€y + 7. &)

Mo(€1,62 +7)
Moy + 7, &2+ 7)

Soo(€1,€2)
Soo(£1 + , £a)
Soo(é1,&2 + )
Soo (€ + 7,2 + )
S11(é1,&2)
Sy1 (& + o, €a)
S11(61, &2 + )
Su(é+m b2+ m)

- 6—2?:MEIA(61)

+ e 2ME(8)
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and it follows that
(Aa)e

P>

(Vl ,;,2)5{0,1}2
p(gr)e 2 Ma

- ¥

\ (HISUQ)E{Ovl}l
since the vectors

Soo (€1, 62)
Soo(€y + 7, &2)
Soo(é1, & + ) S11(é1, 62 +m)

Soo(é1+ 7,62+ ) S (& +m, €24 7)

in C* are orthonormal. It results from the definition of f and from (4.1) that
the coefficients of My(£&1, £s) are polynomial functions of the coefficients of
A(z) and of p(z) and conversely. As a consequence, f(Pa,z) is an alge-

braic subset of Vaasi vz and f is a polynomial isomorphism from Pasr, to
F(Pu,p). w

Lemma 4.3. The couple (Ao(z), po(z)) where Ao = 1 and pg = 0 is a
nonsingular point of dimension M 41 — L of Pay, (see Definition 2.4).

Proof For all m € {0,...,M} and all I € {0,...,L — 1} consider

the following polynomials that depend on the variables (a(k))o<s<as and
(b(k))o<hent:

Mo (&5 + i, €a + me)Sop (€1 + mo, € + Tra),

Mo(&1 + win, &g + i) S11 {61 + T, & + Twa),

S11(€1, €2)

and S11(&y + m,£2)

M-—m

Prula,b) = Y (a(k)alk +m) + b(k)b(k +m)) — do(m)
k=0

where 6,(¢) = 1 when p = ¢ and 0 otherwise, and
M
Hi(a,b) =Y  k'b(k).
k=0

Let U be the open subset of R2M+1) defined by ST a(k) # —1. We
have

UN Py =Pyr= ( ﬁ P;:‘(O)) N (Iﬁlﬂfl(o))'
m=0 1=0

Let (a0, bo) be the sequences of the coefficients of Ag(z) and po(z). It is
clear that the gradients VP, (ag, by) and VH,(ag, bo), m € {0,..., M} and
1 €{0,..., L — 1}, are linearly independent vectors of R*M+1) Indeed, we
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have P -
0 _ 0 -
3alk) (a0, bo) = 28p(k) and 0] (ag, bo) =0,
for all m € {1,..., M} we have
OFm _ 8Pp _
W(“O’ bﬂ) - ‘5m(k) a'nd ab(k) ((I(), bD) - 07
and for all { € {0,...,L -1},
OH, 0H, !
Mok, = — =k.
Ba.(k) ((J.Q., bg) 0 and Bb(k,) (au, bg) |

LeMMA 4.4. There exists an irreducible algebraic subset f/wrz}v‘l_'j.N,L -

Vapan, of dimension M 41— L such that all the filter banks in Vanran,L
are of the type (1.7) and the 2-separable filter bank oo (see (1.9)) is a non-
singular point of Vopriw,r-

Proof. Let f: P,z — f(Pu,r) be the polynomial isomorphism defined
in Proposition 4.2 and let (Ag, o) € Pas,z be as in Lemma 4.3. ‘We have
F( Ao, o} = oo and it follows from Proposition 2.11 that oy is a nonsingulax
point of dimension M -+ 1— L of f(Par,z). Thus by using Proposition 2.9 we
obtain the assertion. m

The following lemma means that there exist “very few” {2-separable filter
banks in T7(M+N),L-

LEMMA 4.5. Let Tlf‘zsz FNL = Varran,n NTdds +n,1, be the proper algebraic
subset of 2-separable filter banks in Varean,z (see Proposition 3.3). Then
T{JMni-N,L is a finite set.

Proof. Let {My(€1,&2)} be an f2-separable filter bank of the type (1.7).
We have

e~ M Orubatnale) ) (yyy £ + yi2€2)a0(€1)bo(€2)

+ plyia€r + mefe)ar(€a)bi(€2)] = ro(ér)te(€e),

: i jonal filter
where {ax(z)}, {bx(2)}, {re(z)} and {ti(2)} are four monodimensiona
banks and where I' = (y;;) = (271, Since I' € SI,(2,Z), at least one of the
two integers vy, and iz is nonzero; so we can suppose that v11 % 0. As
bo(0) = tp(0) = L and by (0} = 0, we obtain

e~ M8 N (y11£)ao(€1) = ro(é1)-
Since A(yn&1) is w-periodic and
Iro(€)? + ro(&s + )7 = lao(€)I” + fao(&r + m)I* =1,
it follows that
(%) IA(raé)? = 1.



272 A, Ayache

Thus it is clear that there are only a finite number of elements (A{z), u(x))
of Py, that satisfy (x); these elements are of the form A(z) = e~ %< gnqd
p(z) =0, where k€ {0,...,M}. m

_ The following proposition means that “most® of the filter banks in
Vanr4 w1, are both nonseparable and satisfy Cohen-Lawton’s condition.

PROPOSITION 4.6. Let Wonryn = Wonrrene N Varrans © Vassons
be the algebraic subset of filter banks that do not satisfy Cohen-Lowton’s
condition and let Topryn 1z = Toprsn,L N Vanr+n, 1 be the algebraic subset of
separable filter banks. Then

dim(Wanrsn,z U Tonen,o) < dim(Vaszeow,z)-

_ Proof As oy & W2M+N, Ls W2M+N,L is a proper algebraic subset of
Varmrin,z-

Moreover, for all A € SL(2,7), T4, +n,1 18 & proper algebraic subset of
V:q M+, L. Indeed, suppose that for some A we have TzM INL S Vz MAN,L-
Proposition 3.4 will then imply that T2 AN, L = T2 A,z Lhis contradicts
Lemma 4.5 since this lemma entails that 72, +n,z 1s a proper algebraic
subset of Vg M-+N,L-

All this and Theorem 3.5 imply that Wg M+N, LUTs M+N,L 18 a finite union
of proper algebraic subsets of %M+N, L, therefore, W2M+N, r U fg MEN,L

is a proper algebraic subset of Vaarqn,z; then the assertion follows from
Proposition 2.7. =

Let us now state the main result of this paper.

THEOREM 4.7, For every integer M > L — 1, one can construct a real-

analytic menifold Voyrn,p C Vearen,r of dimension M + 1 — L with the
following properties.

(i) Al filter banks in 172M+ N,L generate wavelet bases with critical
Sobolev ezponent > a and with eractly I vanishing moments.

(ii) oo (see (1.9)} is the only separable filter bank in Vayr. N,L-

Proof. Since op is a nonsingular point of Vo N, and 52 M4,z 18 an
open subset of Vapriw,z (see Theorem 3.10 for the definition of SSven,n)s
there exists a real-analytic manifold Vz MmN, C 82 MANL = O%man N
Varten .o of dimension M + 1 — L that contains .

As Tyisyn 1z — {00} is a finite set (see Lemma 4, 5), it is a closed subset
of Vapr+ vz, and consequently V2M+NL = (v2M+NL_T2M+NL)U{UO} isa
nonempty open subset of Vg M +n,z, (see Proposition 3.4 and Theorem 3. 5).

Finally, Va4 w,L is an analytic manifold that satisfies (i) and (ii). m

icm
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Theorem 4.7 roughly shows that “most” of compactly supported wavelet
bases with critical Sobolev exponent > o are nonseparable.
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