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STUDIA MATHEMATICA 140 (1) (2000)

Approximation of abstract linear integrodifferential equations
by
HIROKAZU OKA (Hitachi) and NAOKI TANAKA (Okayama)

Abstract. This paper is devoted to the approximation of abstract linear integrodif-
ferential equations by finite difference equations. The result obtained here is applied to
the problem of convergence of the backward Euler type discrete scheme.

1. Introduction. In this paper we discass the problem of approximation
of solutions of a linear integrodifferential equation
i
uw(t) = Ault) + SB(t —sju{s}ds fort =0,

(IE; u0) 5

U(O) = Uq
in a general Banach space X. Here A is the infinitesimal generator of a
semigroup of class (Cp) on X and {B(t) : t > 0} is a family of bounded
linear operators from Y to X, where Y is the Banach space D(A) equipped
with its graph norm.

The notion of the resclvent operator is central for the theory of hnear
integrodifferential equations. Recall that a family {R(t) : ¢ = 0} of bounded
linear operators on X is called a resolvent operator if the following conditions
are satisfied:

(i) R(-)z € C([0,00); X) for z € X and R{0) = I (identity);
(il) R(\)z € C1([0,00); X) N C([0,00);Y) for z € Y}
(iii) the following resolvent equations hold:
d

dtR( Yo = AR(t

SB {t — s)R(s)xds
0

23

—R(tAm-kSRt—s (s)zds fortZOandng.

Many authors studied the problem of existence and uniqueness of solutions
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2 H. Oka and N. Tanaka

of (IE; up) by proving the existence of a resolvent operator (see Chen and
Grimmer [1], Grimmer and Priiss [2] and Priiss [8]).

The approximation theorem which. says that a solution depends continu-
ously on A and {B(t) : t > 0} may be proved by using the so-called “Kisyxiski
method” proposed in his paper [4]. We are here interested in studying the
problem of approximation for linear integrodifferential equations by finite
difference equations. In the special case of B(t) = 0, the problem of this
kind is known as the problem of approximation of semigroups and was ex-
tensively studied by many authors (see Kurtz [5], Pazy [7] and Trotter [11]).
For the time-discretization of (JE;wup) we consider the following type of ap-
proximation:

k
an Fogsr =ToFok+ > hEBu((k— i)ha)Fny  fork=0,1,2,...,
* i=0
Fn,O == Ina

where Ty, is a bounded linear operator on a Banach space X, such that
(T, — In)/hy is a finite difference approximation to A and B, is a finite
difference approximation to B. Here {h,} is a positive null sequence and
{X,} i8 a sequence of Banach spaces approzimaeting X in the following
sense: There exist bounded linear operators P, from X to X, such that
limpeo |[Pr|ln = ||2| for each z € X. We note that there exists § > 0
such that :

(1.2) | Prz|ln < Blz|| forze X andn > 1.

Now we introduce a few definitions used in the present paper. A sequence
{zn} with z, € X, is said to converge to £ €X if limy o0 || Pn% — 2o |ln =0.
‘When there is no danger of confusion, this type of convergence will be de-
noted by limy, o T, = = and we then say that {z,} is & convergent sequence
in {X,}. The main result in this paper is Theorem 3.1, which asserts that
for z € X, z, € X,, with limy_,e0 Zn = =,

Jim Fopo/n,gon = R(t)o

holds for ¢ > 0 and the convergence is uniform on every compact subinterval
of [0, co), where [r] denotes the integer part of r > 0. This result can be
applied to the problem of convergence of the backward Euler type discrete
scheme for (IE; up).

2. Preliminaries. In this section we show four fundamental lemmas
used later.

LemMA 2.1. Let 7 > 0 and {Cu(t) : t € [0,7]} o sequence of operators
with Cp(t) € B(Xy) for each t € [0,7]. If for all convergent sequences {z,}

icm

Abstract linear integrodifferential equotions 3

in {Xn}, sup{{|Cn{t)zn|n 1t € [0,7],n > 1} < 00, then
sup{ |Crn(t)||ln : t € [0,7],n > 1} < o0.

Proof. Denote by X the space consisting of all sequences & = {z,}
in {X,} such that sup{||zs|n : » > 1} < co. Then X is a Banach space
equipped with norm | - || defined by |Z|| = sup{||znlln : 7 = 1} for
%= {xn} € X. Let Xy be the space of all convergent sequences in {X, }. It
is obvious that .550 is a closed linear subspace of X.Foreachtc [0, 7], the
operator é(t) from X, into X defined by

Ct)z = {Calt)zn} for T ={z,} € Xo

is linear and everywhere defined, by assumption. Moreover, it is easily seen
to be closed. It follows from the closed graph theorem that C(¢) is bounded.
By assumption again we have sup{||C(2)Z| % 1t € [0,7]} < oo for each
# € X;, and so the uniform boundedness principle gives sup{“é(t}” P
te [0,7]} == M < oco.Let n > 1 and z € X,,. Considering the sequence
whose nth component is z and all the other components are zero in }?0 we
have ||Cp()z||n < M|z|n, which implies the desired claim.

LemMA 2.2, Let 7 > 0. Suppose that {Cr(t) : t € [0,7]} s a sequence
of operators with Cp(t) € B{Xn) for each t € [0,7] and {z,.} is a se-
quence in {X,} such that Cp( )z, € BV([0,7]; X,) for each n > 1 and
sup{Var(Cpn(-)zn; [0, 7]) : n > 1} < oo, where Var denotes the total vari-
atton. Let {s,} be a sequence of step functions with 5,([0,7]) C [0,7] for
n > 1. If the sequence {sn(t)} converges to t uniformly on [0,7] as n — oo,
then

n—o

lim S [Cnlsn(t))zn — Cn(t)zn||n dt = 0.

Proof For n > 1 we define a function ¢, from R inte [0, 00} by

0 for t <0,
wn(t) = { Var(Cn(-)zn;[0,2]) for ¢t [0,7],
Var(Cn{-)zn;[0,7]) fort =7

Then for each n > 1, ¢, Is nondecreasing and ||Cr(t1)zn — Cn(t2)Tn|n <
on(ta) — @n(t1) for 0 < & € ta < 7. Now, let £ > 0. By assumption we
choose an integer N > 1 such that n > N, implies t — £ < s,(t} < t + & for
all ¢t € [0, 7]. We then have

1Cn (8 (tNn — Cn(B)nlln < Prlsnlt) V t) — palsa(t) At)
Sn(t+e) —palt—g)



icm

4 H. Oka and N. Tanaka

for n > N, and t € [0, 7]. Integrating both sides of this inequality over [0, 7],
and using the fact that @, (t) =0 for £ < 0, we have

T Tte Tg
S 1Cn(sn(8))@n — Co(t)@nlln di < S Pn(t) di — S on(t) dt
H 0
’ T+E €
= S pn(t) dt — S on(t) dt
T—E 0

for n > N,, and the last term is bounded by 2 sup{Var(Cy{-)zx; [0,7])
n>ll m

Let N > 1 be an integer. By 7 we denote the linear space consisting of
all sequences Z = {2;}}L, in Z. For convenience, we introduce two notations
similar to the convolution of functions:

- : N
E«u={Y Kiw, X
{l:D }2:0
T+R= {iLi_lm}N € B(X) for L={L}, K = {K:} € B(X).
— i=0

Moreover, we define Ka = {Ku}Y, for K = {K;} € B X) and U =
[u;} € X.

LemMA 2.3. (1) a(L+8) = (al) + T =
and U € X. A A

(11) L*(Kl —}«Kg) Lx K1+ LxKs and (Ki+Ko)x L =Ky x L4+ KoL
for L, Kl,Ko S B(X)

(iii) L# (K «%) = (L« K)+0 for L, K € B(X) and i€ X

(iv) Let K, L € B(X) and ¢ € X. If we set J = K » L, then
(2.1) lip, () < W] - 1] + vara(L)).
Here and subsequently ||Q}|, hpw(@) and varm(@) are defined by

19l = max{|Q:] -0 < i < N},

lip, (@) = max{||Qiz — Qi_1z|| : 1 <i < N},

for K = {K;} € B(X), &= {u;} € X;

*(o@) fora € R, T € B(X)

. N
var, (@) = Z Qi — Q12|

i=1
for §={Q}N, € B(X) and z € X.

Proef. Properties (i} and (ii) are obvious by definition. Assertion (iii)
is proved by changing the order of summation. Indeed, for 0 < i < N we

Abstract linear integrodifferential equaiions 5

N
e

(T# (B 1)) = ZLz E(ZKI icuk) Z i1 Ky _pug
=0 =0 I=k
i i—k H
=] Z i lka;uk = Z(E*}?)l Lty = ((f* f?) * 'ﬂ),

0= k=0
Here we write ( ) for the ith component of L % X. Inequality (2.1) of
(iv) is obtained by estimating
i-1
Jix — Ji1o = KyjLoz + Z KLz — Li—y7)
=0
for 1<i<N. =
Lemva 24. If K € B(X) and h = 0 satisfy h| K| < 1/2, then there
evists L & B( ) such that
(2.2) I=R-hi+xK=K-hK=+L.
Moreover, the following estimates hold:
@) 1T < 1B +AIENQ — hIE]) ) exp2rN||K])).
(if) varm(L) < varg (B)+hN||L|- | K| - Hm”-l—hNHLl] var,(K) forz € X.
Proof. Since hl]K[] < 1/2 there exists (I + hKp)™! € B(X). We can
define I,§ B(X ) inductively by

7
Lo =Kol +hEo)™, L= (Kj - hZLj_,:K;) (I +hKo)™,
=1

i
Qo= ([I+hKo) 'Ky, Qj={I+ hKo)""l(Kj - hZKiQJ'—I)
i=1

for j =1,...,N. Rewriting these equalities we have
(2.3) T=R-hL+K and Q=K —hK«@Q.
Since

E*@—h(f*ﬁ)*ézf*ézE*K’—-hf*(ﬁ'*@),
we have K «Q = L * K, which we combine with (2.3) to obtain L= @ The
first part of our assertion is therefore proved. To prove (i), set a; = || L4]|- By
(2.2) we have a; < |R||(1+ A Y] a) for 0 < j < N. We denote by b; the
right-hand side. Then a; < b for 0 < j < N. Since b; — b;_1 = h||K|ja; <
h|| B ||b;, we have b; < (1 — h||E||)~*bj1, which gives

a; < b; < (1= A||E|) by = exp(2hg | KN K| (1 + hao)
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for 0 € § < N. The desired estimate (i) is obtained by noting that agp =
IZoll (= | Ko(I + REa) ) < | K1 - ALK

We now prove (ii). We use (2.2) to represent the difference between L;z
and Lj_1z and estimate the resultant equalities. This yields

Lz — Ljaz|| < || Kz — Kzl + AL - [ Kolf - [l]]
i—1
b Y Nl 1Kz = K1
=0
for 1 < j < N. (See also the proof of (iv) of Lemmma 2.3.) The desired
estimate (ii) follows readily by summing up the inequalities above from
j=1toi=N.u

3. Main result. In this section we prove that if x € X and z, € X,
satisfy lim, oo %, = =, then a sequence {F, [¢/n,12n} in {X,} obtained by
(1.1) converges uniformly to the solution R{)x of (IE;z) on each compact
subinterval of [0, c0). The main result of this paper is given in the following
theorem.

THEOREM 3.1, Let {T,} be a sequence of operators with T,, € B(X,), let
A be a closed linear operator with dense domain D(A) in X, and let {hn}
be a positive null sequence with the following properties:

(a1) There exist constants M > 1 and w > 0 such that
(T5l < Me?®n fork >0 and n > 1.

(az) For ¢ € D(A) there exists a sequence {z,} in {X,} such that
lim, oo Tn = 2 and My Apzn = Az, where Ay, = h YTy~ I,) and I,
is the identity operator on X,,.

(ag) For some Mg > w, the range R(Aof — A) of Aol — A is dense in X.
Let {B({t) : t > 0} be a family of bounded linear operators from Y to X and
{Bn(t) : t = 0} a family of operators with B,(t) € B(X,) for each t > 0

satisfying the two conditions below, where Y is the Banach space D(A) with
its graph norm.

(b1) For eachz € Y, B(-)z € BVic([0, 00); X).
(bz) For eachz €Y, zyn € X, with lim,_ oot = ¢ and Ly — o0 An 2y
= Ax,
(i) Bn()zn € BViec([0, 00); Xn),
(ii) sup{||Bn(t)zp|n :t €{0,7], n>1} < 0o for each T > 0,
(iit) sup{Var(By,()z.;[0,7]) : n = 1} < co for each 7 > 0,
(v) limpoo §g | Ba(8)2n — PuB(s)2||nds = 0 for each 7 > 0.

icm
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Then there exists a unigue resolvent operator { R(t) : t > 0} on X such thai
forz e X and z, € X, with im, o, zn, = =,

(3.1) nlingo Fn,[t/h“]mn = R(t)x

holds fort > 0, and the convergence is uniform on every cornpect subintervol
of [0, c0).

We start with a few remarks important for proving this theorem.

REMARK 3.1. (i} It is well known [5] that under assumptions (a1)—(as),
A is the infinitesimal generator of a semigroup {T(t) : t > 0} of class (Co)
on X satisfying ||T(¢)| < Me*? for ¢ 2 0 such that for z € X and z, € X,
with limp—eo Tn = 2,

(8.2) lim T/ hely, = T(t)z

holds for ¢ > 0, where the convergence is uniform cn every compact subin-
terval of [0, 00). Note that Ag € o(A) since Ag > w.

(ii) Assumption (b1) and (i) of Remark 3.1 together imply that there
exists a unique resolvent operator {R(¢) : £ 2 0} on X satisfying

(63)  Re=T()+ o(V = R0~ Vil —o(V * Bt

for t > 0 and z € X, where {V/(¢) : t > 0} is a locally Lipschitz continuous
family in B(X) defined by V(t)o = (T'* L){¢)z for t > 0 and z € X, and
L(t) is the resolvent kernel of K (£) := —B(£){Aed — A)™* for t > 0, namely

(3.4) Lty = K(t)z — (L= K)(t)z = K(t)z — (K = L)(t)z

for t > 0 and z € X (see [2, Corollary 4] and [6, p. 214, (3.5)]). Here we
write f % g for the convolution of f,g € L} (0, c0); X). It should be noted
that by (b1), K(-)z € BViec([0,00); X) for z € X, and so does L(-)z for
z € X, and that if f & L} ([0, 00); X), then an X-valued function V' * f is

of class C! and

I1(d/d)(V * FON < [Vlluipio § 15 (s)] ds
0
for t € [0, 7], where ||V ||Lipjo,-] demotes the Lipschitz constant of ¥ on [0, 7],
due to the local Lipschitz continuity of {V'() : t > 0} and the fact that V'(0)
is the zero operator on X. (See [3, Proof of Theorem 2.5] and [2, Lemma 2].)

Proof of Theorem 8.1. By Remark 3.1 we only have to prove (3.1). Let
730 and {z,} be an arbitrary convergent sequence in {X,,} with limp o0 &n,
= . We take a real number ¢ such that A\g > ¢ > w, and choose an
integer ng such that (e¥Pn —1)/hn £ a for n = ng. Then we have Mg €
o(Ay) for n > ng and limp,_.oo{Apln — An) ", = (Aol — A) g it follows
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that limp— oo An(Aodn — An) " zn = A(XgI ~ A)1z. (See also [9, Proof of
Theorem 2.1].) This together with (i) of (by) implies
sup{|| Bp (£ Maln — An)  2ulln 1 t € [0,7] and 1 > ng} < oo,

We set

Kﬂ(t) = _Bn(t)('\ofn - An)_l
for t € [0,7] and » > ng. By Lemma 2.1 we have

cr(r) = sup{||Kpn(t)||n : t € [0,7] and n > ng} < o0.
From (iii) and (iv) of (bs) it follows that
sup{Var(Kn{-)zn;[0,7]) : n = ng} < 00,

T

HIEOS | EKn{s)tn — PoK(s)2|nds =0.
a

By Lermnma 2.2 we have

.
(3.5) Jim § | Ka(sa(t)zn — PaK (£)z]|n dt = 0,

0
if {sn} is a sequence of step functions such that s,([0,7]) C [0,7] for n > 1
and that it converges to ¢ uniformly on [0,7] as n — o0, and if {z,} is a
convergent sequence in {X,,} such that limp— e 2, = 2.

Moreover, we take an integer ny such that ny > ng and ex{r)h, < 1/2
for all m > nq1. Let n > n; and set N, = [v/h,]. We now define K, =
{K . (ihy)}i, in B(Xn). Since || Knflhn < 1/2 we apply Lemma 2.4 to find
Ln = {Ln;}im € B(X,) satisfying
(3.6) Ip=Kpn—holn* Ky =K, ~ hoRBp # Lo,

(3.7 er(7) = sup{||Lnifln : 0 <t < Ny, n > m} < oo,

N’ﬂ
(38)  &(r) = sup{ Y |Lnszn— Lngo1zulla:n 2 m} < 0.
je=] :

We shall prove the equality
k-1
(3~9) F‘n,kmn = T,fmn, + Z(Vn,kwl - Vn,kwl—-l)Fn,lmn
=0
k-1
+ Vn,OFn,kmn - Vn,kmn — Aphn Z Vn,k—l—-an,lmn
. =0
for 1 <k < Ny, where Vo = hn Sk o T5 L,y € B(X,) for 0 < k < N
To do so, set iy, = {Fn,kmn}kN;‘o e X, and @, = {((Fn,k.i.]_"Fn’k)/hn)ﬂfn}i\r;(}

icm
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€ X,, and define .;fn, En € Bf‘fn) by En = {A,,...,An} and B, =
{By(ihn)}im. Then the first equation in (1.1) can be written as
(3.10) Tn, = Apiiy + BBy, # Ui
Using Lemmma 2.3 we have, by (3.6) and (3.10),

—Bn * Uy, == I?n * ()\gfn - ﬁn)ﬁn

= (T + hulon  Bn) % (oL — Ay

= AL #8p — Ly % Apfln + T, * (—hnﬁn * Uy )

= XoLn * @ — L * T,
where I, is the identity operator on X.. Substituting this identity into (3.10)

we obtain 7, = Enﬁn + hn(f,n * Ty, — )\gfn * Uy ) whose kth component leads
us to the equality

(Tn)s1 = T (Gin)s + B2 (D % T — AoLn * Gn g
for 0 € k € N,, — 1. Solving this equation we find
(au)k = T«f(an)ﬂ + hi(iﬁn * (En * U, — /\Dzn * an))kml
= TFg, + (T % BB )im1 — Aobn (Vi # Bn )it

Sor1 < k < N, where T = {T%}, € B(X,) and Vo = {Var}ico €

Bf)\(:n). Here we have used the equality V., = hnfn # L, and Lemma 2.3. The
equality above implies (3.9), since Fro = I, and E;:Ol Vo g-1-1Fn el =

b Vo ket Pt + Vo Fn e — Vap for 1 <k < Np.

We shall prove in passing two properties of {Vn‘k}i\rgo.

LEMMA 3.1. If {2,} is a convergent sequence in {X,} with limn_c0 25
= z, then LMy oo Vo, [t/ha)Zn = V()2 uniformly on [0,7].

Proof. Since Vi ji/ngze = Socp™ §

Vi [t/ bl Zn — B,V (t)z|n '
< Me“Ter (T)||zn|inhn + Me¥Tdn(T)
+ 1 sup | Zit/tn) (/B B L(s)2 — PaT(t — 5)L(8)2]| ds
o tElaTl
for ¢ € [0, 7], where () = o | Ln, o) %n — PnL()2||n ds fort € [0,7]. By
(3.2) the integrand of the last term on the right-hand side tends to ZEro as
n — o0o. Lebesgue’s convergence theorem implies that the last termn vanishes

asn — 00,

g:jl)hn Tr[tt/hﬂl—an,zZn ds we find



10 H. Oka and N. Tanaka

1t remains to show that limp—e ¢n(7) = 0. By (3.4) and (3.6) we find

Pult) < S | En([8/hnlhn)2n — PoK(s)2||n ds
0

+ Bnci (7)er ()7 | 2nlln + ex (1) § dn(s) ds
1]
[ & {([8/n]

+ i— [P/ R hn) PuL(r)z — PoK (s ~ r)L(r)z|in dr ds
0

ey

for t € [0,7]. By Fubini's theorem and a change of variables the last term
on the right-hand side is equal to

5( § K ([(54+7)/ha] — ['r/hn})hn)PnL(T)z—PRK(S)L(r)ands)dr.
0 0

By (3.5) the sequence in parentheses converges to zero as n — co. It follows
from Lebesgue’s convergence theorem that the last term tends to zero as
n — oo. By (3.5) again the first term vanishes as n — co. Therefore, there
exists a null sequence {n,} such that ¢n(t) < 7n + cx(7) Sg tn(s) ds for
t € [0,7]. By Gronwall's inequality we have ¢, {7) < n,e°¢(")7 which tends
to zero as . — ©0. m

LEMMA 3.2. Lipy (1) == sup{||Vag ~ Vag-1lln/fn : 1 Sk < Np,n2ng}
< 0Q.

Proof. Since V,, = h,T), * L,, we have, by (iv} of Lemma 2.3,

[(Vakzn = Vas-182)/n|ln < Me*7 (cr()|alln +Er(7))

for 1 < k < N,. Here we have used (3.7} and (3.8). The desired conclusion
follows by applying Lemma 2.1 to the operator Cp(f) defined by Cn(t) =
(Va,it/hn] = V[t /ha]—1)/ P for t € [hn, 7] and the zero operator on X, for
tel0,h,). =

End of proof of Theorem 8.1. Since ||Vp 0lln € hncr(7) — 0 as n — oo, it
is easily seen that (I, — Vi, 0) ™' € B(X,,) exists for sufficiently large n, and
Uy oo {(Tn ~ Vi,0) ™ — Inlln = 0. By (3.3) and (3.9) it suffices to estimate
the difference between T{t)z + & (V * R)(t}z — V(t)z ~ Ao (V * R)(t)z and

k-1 o1
Thzn + Y (Vaket = Voo 1-1)Fnin — Vagtin = Aohn 3 Vak-1-1Fni2n
1=0 =0

for k = [t/hn], t € [0, 7] and sufficiently large n. Here and subsequently, the
sum of the form 37, (...) is meant to be zero.

icm
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First we have
[t/hn]—1
(3.11) th E Vn,[t/hn]—l—an,Imn - P, (V * R)(t)z
=0

ke

[¢/hn]—1 (1+1)bn

s 2

1=0 thy
[t/hn]—1 (I41)Ra

+§§

{hn

Vit i)~ 1=t (Fr 10 — PoR(s)z)|n ds

| (Va ft/hn1=1=1 = Vi, [t/ 1) PrR(8) ]| ds

[t/ hn]l—1 (I4+1)hn

+ > )

1=0 hn
+ hpBsup{|[V(t— s)R(s)z| : 0 < s <t <7}

”Vn,[t/hn]«_anR(S)m — PnV(t - S)R(S).’EH,—,, ds

for t € [0,7). H0 < ¢ < hy then the first three terms are equal to zero.
We estimate them in the case where hn, < ¢ < 7. The first term on the
right-hand side is majorized by

ev(7) S Y\, s /hn) e — . R(8)z]|. ds,

where ¢y (7) = sup{||[Vaklln : 0 £ & £ Np, 7 2 n1} < oo, which follows
from condition (a;) and (3.7). Lemma 3.2 implies that the second term
is bounded by 7 Lipy (T)ho@sup{||R(s)z]| : s € [0,7]}. The third term is
dominated by

SUp [|Va,jt/hol—(s/hn] PaR(8)E = PrV (¢ — 8)R(#)| ds,

tEls, 7]

e )

which tends to zero as n — oo, by Lemma 3.1 and Lebesgue’s convergence

thecrem.
Next, let g € Cl([O,T]; X). We have, by Lemma 3.2,

[t/ o]~
Z (Vn,[t/h =V
[t/hn]=1 (4B

< Lipy(7) Z S (|| Frpzn — P, R(s)zlln
[=0 lhn .

+ || PaR(s)z — Prg(lha) [ln) ds

d
[t/ haj—1— l)Fnlmn_Pn'd?(V*R)(t)m

(3.12) ‘

n
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[t/hn]—1
| S tsiaet = Vi tmalo1-1) Pag(thn) = Pa (v # g)(2)
2, Vit = Vateinal 1) Prg ) = P n

+ [Pz (Vx (9= BORNO)

n
for t € [0,7]. By (ii) of Remark 3.1 the last term is less than or equal to
BV lluipio,r) §o la(s) — R(s)w|| ds. We have

[t/h"n]"l
Z Vn,[t/h,.]—-l—an(g((l + 1)hn)“9(lhn))
=0
[t/hpln
= S Vn,[t/hn]-1_[s/hn]Pn.g’(3) ds,
0

which converges to {¢ V(¢ - 5)¢/(s) ds uniformly on [0,7] as n — oo, by the
same arguments as in the estimates of the second and third terms on the
right-hand side of (3.11). Since

[t/hn]~1

Z (Ve tthn] =1 = Vst /i) ~1-1) Prg(lhy,)
1=0

= Vo, 1t/8,) Png(0) — Vi o Prg([t/ hn] hn)
[t/hn]_‘l

+ Z Vo (t/ha]=1-1(Png((l + 1)An) — Pag(lhy))
I=0

and V(¢)g{0) + Sé V(t — 8)g'(s}ds = (d/dt)(V % g)(t) it follows that the
second term on the right-hand side of {3.12) tends to zero uniformly on
[0,7] as n — oo.

We combine these inequalities and use Lemma 3.1 and (3.2). This yields

1ot /h1n = PuR(t)]n < €n + 1 §llg(s) — R(s)z|ids
0
%

+ czS | Fofa /hnitn — PrR(8)2|n ds
0
for t € [0,7] and g € C*([0,7]; X), where {e,} is a null sequence of positive
numbers and ¢; are positive constants. The proof is completed by an appli-
cation of Gronwall’s inequality, since C*([0, 7]; X) is dense in L*(0,7; X). u

4. Application to the backward Euler type discrete version. This
section is devoted to the problem of convergence of the backward Euler type
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discrete scheme of (IE;up). This problem of parabolic type was studied by
Thomée and Wahlbin {10].

We now define a sequence {Up% : n > 1 and k > 0} in B(X) by the
recursion formula

Un R:—Un R—1 iy .
—ttee o= = AU o+ Y R, B(lk—9h U, fork=12,...,
(41) hn nk zz:; (( r&) ﬂ) Ty

Un,[) = (I - hnA)_l.

Here {h,} is an arbitrary null sequence, A is the infinitesimal generator of
a semigroup {T'(t) : t > 0} of class (Cp) on X satisfying ||T(¢)|| < Me** for
t > 0 where M > 1 and w > 0, and {B(¢) : ¢t > 0} is a family of bounded
linear operators from Y to X such that B(-)z € BVi,.([0, 00); X)) for each
zeY.

LEMMA 4.1. For 7 > 0 there exists a constant M, > 0 such that
k
3" |B(ti)e - Bti-y)zll < Mrllz|y
=1

for0=tg<ti<...<tg=7, k>laondze?.

Proof. Denote by Z the Banach space consisting of all sequences 2 =
{z;} in X such that 350, ||#s]| < oo equipped with the norm ||z|z =
Sieq & for z € Z.

For each partition P = {0 =ty < t1 < ... < t = 7} of [0,7] define the
linear operator Tp from Y to Z by

Tpx = {B(tl).’r — Blty)=, Blts)z — B(ti)z,. .., B(tk)m — B(tg—1)x,0,0,.. 3

for x € V. Bach Tp is easily seen to be bounded. Our assumption on B
implies supp |Tp|lz < oo for each z € ¥. By the uniform boundedness
principle there exists M, > 0 such that |Tp{ly,z < M, for all partitions F
of [0, 7], from which the desired result follows readily. m

THEOREM 4.1. lmy, 00 Up [t/0,]% = R(t)z holds fort > 0 and z € X,
and the convergence is uniform on every compact subinterval of [0, 00).

Proof For each n > 1 with wh, < 1/2, we set X, = X, P, = I,
Ty, = (I = hnA)~Y, Bu(t) = B(t + hn)(I — hpd) ™ for £ 2 0, and Frp =
(I = hyA)YUp  for k > 0. We note here that An, = A(l — h.nA)—l_in this
setting. Relation (1.1) is then derived from the recursion formula (4.1). All
the other assumptions of Theorem 3.1 except for (iii) and (iv) of (bz) can be
easily checked. Condition (iii) of (b2) is a direct consequence of Lemma 4.1.
To check (iv) of (bg), let € ¥ and zn € X satisfy im0 Zn = 2 and
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limp o0 A(T — by A) "'z, = Asz. For each 7 > ( we have
VI1Bn(s)zn — B(s)z|| ds
0 < rsup{[BE)llvox 4 € [0,7 + U = hod) 0, — 2y
+ i | B(s + hp)z—B(s)z| ds
0

for n > 1. Since B(:)z € L ([0,00); X) the last term tends to zero as
n — oo, It follows that condition (iv) of (bg) is satisfied. Theorem 3.1
therefore asserts that limon-.eo Fijt/n,2 = R(t)z, which implies in turn
that limy, o Un ji/pje = R(t)z fort >0 and z € X. m
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Localizations of partial differential operators
and surjectivity on real analytic functions

by
MICHAEL LANGENBRUCH (Oldenburg)

Abstract. Let P{D} be a partial differential operator with constant coefficients which
is surjective on the space A({?) of real analytic functions on an open set 2 C B". Then
P(D) admits shifted (generalized) elementary solutions which are real analytic on an ar-
bitrary relatively compact open set w CC 2. This implies that any localization P, g of
the principal part B, is hyperbolic w.r.t. any normal vector N of 842 which is nonchar-
acteristic for Pp, g. Under additional assumptions P, must be locally hyperbolic.

Surjectivity criteria for partial differential operators have been obtained
in most of the classical spaces of (generalized) functions in the fifties and
early sixties. However, the basic question of when

(0.1) P(D): A(£2) — A(£2) is surjective,

remained open. Here P(D) is a partial differential operator with constant
coefficients, {2 C R™ is an open set and A{f2) is the space of real analytic
functions on f2.

Piccinini [37) showed that the heat equation is not surjective on A(R?) as
was conjectured by Cattabriga—de Giorgi [12]. Then Hérmander [21] charac-
terized (0.1) for convex sets 2 by means of a Phragmén-Lindeldf condition
valid on the complex variety of P. Since then Hérmander’s method has been
adapted by several authors for further studies on this problem (Miwa [36],
Andreotti-Nacinovich [3], Zampieri [40], Braun [9]), and on the related sur-
jectivity problem on nonguasianalytic Gevrey classes (Zampieri [41], Braun—
Meise-Vogt [10, 11]). _

Specifically, (0.1) was proved to hold for operators having a locally hyper-
bolic principal part P, if 2 = R* (see Andersson [2] and Hormander [21])
or if £ is convex and additional conditions on the local propagation cones of
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Key words and phrases: partial differential operator, real analytic function, elerentary
solution, hyperbolicity, local hyperbolicity.
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