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An asymptotic expansion for the distribution
of the supremum of a random walk

by
M. 8. SGIBNEV (Novosibirsk)

Abstract. Let {Sn} be a random walk drifting to —co. We cobtain an asymptotic
expansion for the distribution of the supremum of {Sn} which takes into account the
influence of the roots of the equation 1 — SR &*? F(dz) = 0, F being the underlying distri-
bution. An estimate, of considerable generality, is given for the remainder term by means
of submultiplicative weight functions. A similar problem for the stationary distribution of
an oscillating random walk is also considered. The proofs rely on two general theorems
for Laplace transforms.

1. Introduction. Let {X;}72, be a sequence of independent identically
distributed random variables with a common nonarithmetic distribution #.
Define Sy = 0, 8, = X1+ ... + Xn, n > 1. Suppose the random walk
{5,} drifts to —oco, L.e., with probability one S, — —co as n — co. We set
Moo = 8Upy,50 Sn-

Properties of the distribution of My, have been studied by many authors
for various reasons. First, the problems involving M, are of interest in. their
own right, since the supremurm is one of the underlying functionals in random
walk theory. Second, the distribution of M, appears in some applications;
for example, it coincides with the limiting distribution of the waiting time
process in the theory of queues [7, Sections XII.5 and VI.9]. The existence of
moments of the form E f{ M) was considered for various choices of the func-
tion f(z) by Kiefer and Wolfowitz [12], Tweedie [19], Janson [10}, Alsmeyer
[1], and Sgibnev [16]. Note that although Theorem 5 of Tweedie [19] con-
cerns moments of the form § f(z) w(dz) for the stationary distribution 7 of
the Markov chain Z,41 = max(Z, + Xn+1,0), it is, however, well known
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(see, e.g., Feller [7, Sections V1.9 and XVIIL5]) that « coincides with the dis-
tribution of M. In Borovkov [3], Veraverbeke [20}, Sgibnev {15], Embrechts
and Veraverbeke [6], Lotov [13], Bertein and Doney [2], and Borovkov and
Korshunov [3], the main emphasis in studying the distribution of the supre-
mum was laid upon the asymptotic behavior of P(My > ).

The absolutely continuous component of an arbitrary distribution G will
be denoted by G., and its singular component by Gs: Gy = G — G¢. For a
complex-valued measure &, we denote by %(s) its Laplace transform: &(s) :=
(g exp(sz) x(dx) for appropriate values of s. In particular, (F™*)} () will
stand for the Laplace transform at the point r of the singular component
(F™*)g of the m-fold convolution F™*.

The present paper deals with the distribution of M., when the underly-
ing distribution F' satisfies the following conditions:

(a) {pw(z) F(dz) < oo, where p(x) is some submultiplicative function,
ie, plz+vy) < plz)p(y) for all 7,y € B;

(b) the characteristic equation 1 — F(s) = 0 has nonzero roots in the
strip I (r) :=={s € C: 0 < Rs < 7} for some r > 0;

(c) for some integer m > 1, (F™))(r) < 1.

Notice that condition (c) is automatically fulfilled if the distribution F
has a density. Also, we will show that condition (¢) is necessary in order
to obtain a desired estimate of the remainder term in an expansion for the
distribution of M, (see Theorem 4 and Remark 2).

The approach used in the present paper is based on Banach algebra tech-
niques and two general theorems on Laplace transforms which are proved
in Section 2 (Theorems 2 and 3). Their application allows us to make sub-
stantial progress in two directions. First, the remainder term is estimated by
means of submultiplicative weight functions. The notion of submultiplicativ-
ity is a very general concept, covering a wide range of useful specific functions
(see Section 2). Second, we do not exclude from this general treatment the
situation when some of the roots of 1 - f(s) = ( lie on the boundary of the
strip of analyticity of F(s).

It is known that the distribution of the supremum appears as a convo-
lution factor in the stationary distributions 7 of some Markovian random
walks (see [4] and [5]). This fact allows us to apply the techniques of the
Dbresent paper to obtain, under conditions (a)~(c}, asymptotic expansions for
the 7 with rather general estimates of the remainder terms. We limit our-
selves to the case of oscillating random walk (Section 4). Here an interesting
phenomenon can be observed: coincidence of some roots of the characteris-
tic equations corresponding to the governing distributions of the walk can
modify or even cancel the respective terms of the expansion for 7.
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2. Preliminaries. Let p(z), z € R, be a submultiplicative function,
i.e., ¢(x) is a finite, positive, Borel measurable function with the following
properties: :
p(0) =1, plz+y) <e(z)p(y) foralz yeR
It is well known [9, Section 7.6] that

o ogplz)  logp(z)
(1) —co<r_(p)= lim —=— = sup ——
1
< it 2P _ oy Joge(®) oy e
x>0 T T—+00 &

Here are some examples of such functions on [0, 00): p{z) = (L+x)", r > 0;
@(z) = exp(cz®) with ¢ > 0 and a € (0,1); ¢(z) = exp(yz) for v real. In
the first two cases r () = 0 while in the last case r.(y) = 7. Moreover,
if R{(z), = € R,, is a positive, ultimately nondecreasing regularly varying
function at infinity with a nonnegative exponent a (i.e., R(tz)/R(z) — t*
for t > 0 as £ — oo [7, Section VIIL8]), then there exist a nondecreas-
ing submultiplicative function ¢(z) and a point o € (0,00) such F}_lat
c1R(z) < () < coR(z) for all © > xo, where ¢; and ¢ are some p(?s1?1ve
constants [16, Proposition]. The product of a finite number of submultiplica-
tive functions is again a submultiplicative function.

Consider the collection S(ip) of all complex-valued measures « defined
on the o-algebra B of Borel subsets of R and such that

]y = § ple) x](dz) < 0.
R

Here |x| stands for the total variation of . The collection S(go) is a Banach
algebra with norm |||, under the usual operations of addition and scalar
multiplication of measures, the product of two elements v and % of § ((p)
being their convolution v * & [9, Section 4.16]. The unit element of S(tp) is
the Dirac measure §, i.e., the atomic measure of unit mass at the origin.
Relation (1) implies that the Laplace transform &(s) = Sm‘exp(sm) ﬁ}'(dﬂi) of
% € S(¢) converges absolutely with respect to |4/ for all 5 in the strip

O{p)={s €C:r_(p) £ Rs < ry(p)}-
The following theorem of [14] describes the structure of homomorphisnas
of S(y) onto C.
THEOREM 1. Let m : S{p) — C be an arbitrary homomorphism. Then
the following representation holds:
m(v) = {x(@.v) explon) w(de), v € S(p),

where o is o real number such that r_(p) < a < ri(p) ond the function
x(z,v) of z € R and v € S(p) is a generalized character.
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We shall not give a complete definition of a generalized character here;

in what follows only one property of a generalized character will be used:
v-esssup |x(z,v)| < 1.
z€ER

THEOREM 2. Let o(z), z € R, be a submultiplicative function such that
r_ (@) < r4(1p). Suppose the function {z) )/exp[ri(¢)z], £ = 0, is nonde-
creasing and @{z) /explr—()z], T <0, is nonincreasing. Assume v € S(p)
and let so be an interior point of II{y). Then &(s) = [F(s)—¥(s0)]/ (s — s0),
s € TI(), is the Laplace transform of some measure s € S(p).

Proof Consider the absolutely continuous measure & with the density
k(z), z € R, given by

{ e u(dy) a0,

k(ﬂ:) = z =
— | enl™ y(dy) iz <o

We show that s € S(yp). Set p := Rso. We have

(2) I:= S o(z) k(x)| dz < S S e~e=v) iy|(dy) da
1] 1} x
= Tegyﬂfp(m exp[—r4 ()] exp{lry () ~ ole} de |v|{dy)
1]
< Taw(y exp{le - r+(&)ly} | expllr+ () — o} do lvl(dy)
0 o}
1 o0
e LI
Similarly,
0 [}
® T ) ekl < s | el <o

The equality K(s) = [P(s) — U(sq)]/ (8 — sq), 8 € I (i), is directly verified by
integration. Indeed, suppose s & II{p). We have

0 z
R{s) = — S e*® S 2=y (dy) da

+ S e** S e W) y(dy)de = I + .
0

ko]
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Let s # sp. By Fubini’s theorem, I; = S(ioo(esﬂy — e v(dy)/(s — s0).
Similarly, I, = {37(e®¥ — e*¥)v(dy)/(s — s0). Finally, we have K(s) =
[(s) — P(s0)]/ (5 — s0)-

Let now s = sq. Just as before, we obtain K(s) = [ ye*¥ v (dy). It
is clear that this integral is the limit of the ratio [T(s) — P(s0)]/(s — s0) as
s — 8p, which completes the proof of the theorem.

»

Theorem 2 of |3, Appendix 2] may be regarded as a particular case of
our Theorem 2 for @(z) = e™ for z > 0 and (z) = % for = < 0, where
g<r.

In case ap lies on the boundary of the strip IT (), the situation becomes
more involved. Nevertheless, the following theorem holds (for the sake of
definiteness we consider the case Rsg = ro()).

THEOREM 3. Let w(z), z € R, be a submultiplicative function such that
r—(p) < r+{p). Suppose the function p(z)/exp[ry(v)z], = = 0, is nonde-
creasing and @(z)/exp[r_{p)z], z < 0, s nonincreasing. Assume that
(@) [(+ae@ idn) <oo or | (1+ sl i(ds) < oo,

0 R
depending on whether T_() < r+{p) or r_(¢) = r4(p). Let Rsg = r4().
Then k(s) := [P(s) — U(s0)]/(s — s0), $ € H (), is the Laplace transform of
some measure k € S{p).

Proof. Suppose 7_ (i) < r+(¢). Then the estimate (3) for the integral .J
remains unchanged. As for the integral I, we use in (2) the first of the
inequalities (4) to obtain
(5) I< § yoly) vi(dy) < oo.

0
Let now r_{¢) = r4(¢). Then (5) remains true, and J satisfies a similar

inequality: J < S lylee(y) [¥|(dy) < oo. The theorem is proved.

The measure x5 that appears in Theorems 2 and 3 will be denoted by
T(sg)w,i.e., & =: T(so)v. In the particular case so = 0 we shall write k = T'v
instead of k = T(Q)v.

3. Supremum. Define D{z) = P(M, < z}. For the Laplace transform
of D the following representation holds [7, Section XVIII.5, Theorem 2]:

(6) D(s) mexp{z;li S{e”—l)F”*(dm)}, Rs < 0.
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Denote by G(z) the distribution function of the first negative sum Sy_,
N_ :=inf{k > 1: Sz < 0}. Then [7, Section XVIIL3, Lemma 1]
oo 0
-~ 1

7 1-Gis =exp{— — | T (dr }, Rs > 0.

) (o) g | e a)

Put a = exp{¥ oo, P(S, > 0)/n}. By the factorization theorem [7, Section
XVIIL3],

(8) 1— F(s) = [eD(s)] - [1-G(5)], Rs=0,

Let now conditions (a)—{c) be fulfilled, and suppose the set Z of nonzero
roots of the characteristic equation 1 — F(s) = 0 which lie in the strip
I(r) is finite. (In case F(s) # 1 on {Rs = r}, analyticity of F(s) and
condition (c) imply the finiteness of Z; see, e.g., [8].) Among the elements
of Z there exists one real, say g € (0,r]. Denote the remaining elements of
z by $1,...,51. The multiplicity of the oot s; is an integer m; such that
1-— (s) = (.s — §;)™i F;(s), where Fj(s;) # 0. If s € Z and s # g, then
§ € Z and the root 3 has the same multiplicity as s. Put

1-G(s)
§) = ———0a—— s € II(r)\ (ZU{0}).
£6) = =5 ")\ (20 (o)
Let the coefficients Bjg, k = 1,...,m;, be defined by the asymptotic

expansion

T
0)  £) =S (~L*Bais — s +o(l/(s—s))  ass—sy,

k=1
provided {g |z|™ e®ei® Fda) < oo. Similarly, define B, by the asymptotic
expansion f(s)=—B,/(s—q)+0(1/(s—q)) as s—q, provided { |x|e9® F(dz)
< oo.

Denote by £; the complex-valued measure with density 1(p,c0)(z)e ™%
(14(z) is the indicator function of the set A); the Laplace transform of this
measure is —1/(s — s;}, R(s — s54) < 0. Purther, let £, be the measure Wlth
density 1(p,o0)(z)e™ .

THEOREM 4. Let {X;}52, be a sequence of independent identicolly dis-
tributed random veriables with e commen nonarithmetical distribution F,
and let {Su}2q be the corresponding random walk generated by its partial
sums such that with probability one, S, — —o0 as n — oo.

Let o(z), © € R, be a submultiplicative function such that w(z) = 1 for
z <0, r:=r(p) >0 and the function p(x)e™"™, © > 0, is nondecreasing.

Let q and s; be the nonzero roots of the eguation 1 — ﬁ(s) =0 lying in
the strip II(r) with multiplicities 1 and m; respectively, § =1,...,1. Denote
by N the mazimal multiplicity of those roots which lie on {Rs=r} (N =0
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means that there are no such roots). Suppose that 880(1 + )2V p(z) F(dz)
< oo and (F™)Mr) < 1 for some integer m > 1. Then

I my
(10) D=BE+Y Y Béf*+ R,
j=1k=1
where the remainder R satisfies the inequality §;° (x) |R|(de) < oo.

Proof. We form the following submultiplicative functions: wr(z) :=
(1+ z)*(z) for x > 0 and @x(z) = exp(r'z) for £ < 0, where ' € (0, q)
and the integer parameter k runs from 0 to 2N. Obviously, ry.(pr) =
and r_(pp) =r forall k=0,...,2N. Let p = Z§-=l mj + 1. Consider the
funetion
1~ F(s)i{s—r—1)
(5= @) ITjmals = o)™
Define the function v{s} at the points ¢, s, j = 1,...,{, by continuity.
We will show that v(s) is the Laplace transform Vi{s) of some real-valued
measure V € S{pn) and, moreover, 1/v(s) is the Laplace transform W(s)

of some W & S(¢n), i-e., V is invertible in S{pn).
Representing a rational function as a sum of partial fractions, we have

v(s) := sc{r<Rs<ri\Z

(11) w(s) = [1 — F(s)] l:l — )k]
J=1k= 7 (
where by, bsp are some constants.

By the hypotheses of the theorem, F € S(wan)}. Consider the functions
Finls) = [F(s)—1]/(s —s;)%, k=1,...,m;, 5=1,...,1. We now establish
that if Rs; < r, then fjr(s) is the Laplace transform of some measure
in §(pan), and if Rs; = 7, then f;x(s} is the Laplace transform of some
measure in S{pan_k).

Let v € S(@m). If Rs; < r, then by Theorem 2, T'(s;)v € S{wm),
and if Rs; = r and m > 0, then by Theorem 3, T(s,)u € S(pm—1) (the
operator T'(s;) was mtroduced at the end of Sectlon 2). Therefore, fix(s) =
[T(s;)*F"(s), k = 1,...,mj, j = 1,...,I, are the Laplace transforms of
some measures in S((pgN) or S(pan— k) respectlvely Thus, by (11), v(s) is
the Laplace transform V(s) of some V € S{¢n)

Let M be the space of maximal ideals of the Ba.nach algebra S(pn). The
following facts are well known from the theory of Banach algebras. BEach
maximal ideal M € M induces a homomorphism of the Banach algebra
S(pn) onto the field of complex numbers C; moreover, M is the kernel of
this homomorphism. Denote by v(M) the value of this homomorphism at
v € 5(¢n). An element v € S(px) has an inverse if and only if v does not
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belong to any maximal ideal M € M (in other words, v is invertible if and
only if (M) 3 0 for every M € M).

The space M is split into two sets: M; is the set of those maximal ideals
which do not contain the collection L{gx) of absolutely continuous measures
from S(py), and Ms = M\ M. If M € My, then the homomorphism
S(wn) — C induced by M is of the form v — U(sg), v € S{pn), where sq
is some complex number such that +' < Rsg < r. In this case, M = {u €
S(wn) : fi(sg) = 0} {9, Chap. IV, Section 4]. If M € Mp, then v(M) =0
for each absolitely continuous measure v € S(pn).

We now show that V(M) # 0 for each M € M; this yields the existence
of V=1 € S(pwn). Indeed, if M € M, then, for some sy € {r' < Rs < 1},
we have V(M) = V(sg) # 0. Let M € M,. First, note that the condition
(F™)M(r) < 1 implies (F™ )2 (a) < 1for all @ € [0,7]. In fact, the function
(F™Ma), a € [0,7], is convex and clearly (F™)2(0) < 1, whence the
desired assertion follows. Applying Theorem 1, we have, for some o € [r/, 7],

[FM)|™ = [FT(M)] = |[(F™)s(M)]
= l , (F™)s) exp(ax) (F™) (dw)|
< {exp(az) (F™)s(dz) < 1.

Replacing in (11} the Laplace transforms by the corresponding measures, we
find that V=8—-F4V™* where V* € L(on). Hence |V(M)|=|1 — F(M)| > 0.
This means that there exists an inverse element W = V=1, and that the
function W(s) = 1/V(s), ' < Rs < r, is the Laplace transform of the
measure W. o

Put u{s) = [I — G(s)]W{(s)/a. The distribution G is concentrated on
the negative half-axis and is clearly an element of S(px). Hence u(s) is the
Laplace transform U (s) of some U € §{pn). We have {see (B))
(12) Bls)=uls) — =T gy,

(s —4q) Hj:l(s — 55)™

Again the decomposition into partial fractions gives

qu(s binu(s
uls) S—Q+ZZ( —S)"

j=1 k=1

(13) D(s) =
‘We transform each summand of the double sum:

(14) Jku(s) == by Z u5,6(5;) + by k()

( — 8 )k 1—0 — s )k—m

where u;j0(s) 1= u(s), uz:(s) = [us,i-1(8) —uji—1(s;)]/(s—8;), i =1,...,k.
Applying step by step either Theorem 2 or Theorem 3, we establish that
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the measures U; 5 with Laplace transforms U; z(s) = ujx(s), k= 1,...,m;,

7=1,...,{, belong to S(¢n) or S(¢n_s), depending on whether Rs; is less
than or equal to r. Finally,

byu(s) _ byulg) | bolu(s) —ufg]l _

15 =
(13) 5—q s—g s—q ]

B
_Qq + baug(s),

where by the same Theorems 2 and 3, u,(s) is the Laplace transform ﬁq(s)
of some U, € S{pn) or Uy € S(pn_1}, depending on whether g < r or
g =7. Put
i mj
Re=U+4bUp+> ) binUsg.

Jj=1k=1
By the above, R € S(o). Substituting (14) and (15) into {13) and collecting
similar terms, we obtain
(16)  D(s)=—By/(s~ )+ D> (~1)*Bsn/(s — 5;)* + R(s)-

j=1k=1

The fact that the coefficient of (s — s;)7* is precisely (—1)*B;; follows
from uniqueness of the expansion (9). To complete the proof of Theorem 4,
it remains to go over from the Laplace transforms to the corresponding
measures.

COROLLARY. Let the hypotheses of Theorem 4 be sotisfied. Then

(17)  P(My > ) = Be % /g + ZZB wEF (2 oo)) +r{z),

j=1 k=1
where |r(z)| < |Rj{(z,00)) = o(1/p(x)) as z — oo.

REMARK 1. The particular case of the Corollary when () = e #3%(0:#)
vields the estimate o(e™"") of the remainder r(z) as 2 — oo, which improves
upon the estimate o(zVe™=) of [13, Theorem 2], where N =max;<j<; m;—13
also, in [13] it was assumed that Fi(s) # 1 on {Rs = r}.

REMARK 2. Condition (c) is also necessary for the remainder term R
in Theorem 4 to satisfy {5 ¢(z) |R|(dx) < oo. Indeed, suppose that (c) is
not fulfilled. Then [(F4)}**]2(r) > 1 for all n = 1 [17], where F is the
defective distribution of the first positive sum, i.e., Fi (A) = P(S, € A;
n < oc) and 7 := inf{n > 1: S, > 0}. It is known that D coincides, up
to a constant factor ¢, with the renewal measure generated by F.: D =
ey.2 o(FL)™. This can be derived from the factorization identities (8) and
1 — F(s) = aol[l — G(s)][1 — F(s)], where ag = exp{— Yoy P(S,, = 0)/n}
[7, Section XVIIL6, (6.5)]. Choose sets A, of Lebesgue measure zero such
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that {, e™[(Fy)™)s(dz) > 1. Put A = |J;_; An. Then the Lebesgue
measure of A is zero and

[ e D{ds) =c 3 § &= [(F))]e(de) =

A n=04
But, on the other hand, it follows from (10) and (1) that
{ e D(dz) = { ™ R(dz) < | ¢(z) |Ri(de) < o0
A A 0

This contradiction shows that (c) is necessary for Sgﬁ lz) |R|(dz) < oo to
hold.

4. Oscillating random walk

Derrvrmion ([11]). Let {X,} and {¥..} be two independent sequences
of independent identically distributed random variables. A sequence {Z,}
of random variables is called an oscilloting random walk with governing
sequences {X,} and {V,} if the random variables {Z,} are defined by an
initial value Zy and the relations

Zn+ X, ifZ,>0,
Zn+l—{zn+Yn 1fZ'n. <07
Zn"}'W-n, i_on:O,

where W, = X, with probability p and W,, = Y;, with probability 1 — p.

Denote by Rx and Ry the sets of possible values of X and V. We as-
sume that Rx U Ry is nonarithmetic, i.e., its elements cannot be represented
in the form kd, where d is a fixed positive number and k € Z (Z is the set
of all integers). Let F and F* be the distributions of X; and Y7 with finite
expectations u = EX3; <0 and v = EY7 > 0. Theorem 2 of [4] gives an ex-
plicit expression for the stationary distribution 7 of the oscillating random
walk {Z,}. In this section we investigate the influence of the roots of the
characteristic equations 1 — F(s) = 0 and 1 — F*(s) = 0 on the properties
of 7. To this end we introduce some new notation,

Put §5 =0, S; = Z 1 Yi, k = 1. As before, S, = Ewl X Let LY =
inf{5§, 57,...}. Denote the distribution of L by D*, and let F_ and let Fy
denote respectively the distributions of the first nonpositive sum Sx of {S, }
and the first nonnegative sum Sy. of {Spr}; here N = inf{k > 1: 8, < 0}
and N*(z) = inf{k > 1: 5; > 0}.

Define probability distributions as follows: H = T'F_/ESy and H* :=
TF}/ESy. (the operator T' was introduced at the end of Section 2).
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In this notation the representation for the stationary distribution  of
the oscillating random walk {Z,} derived in [4] takes the following form:

D*H*+~1D**H=:ﬁ1+7r2.
v— U Vo

(18) ™=
Since the restriction (9,0 coincides with 7y (and, similarly, 7r|( 00,0) = T2},
the problem of studying the influence of the roots of 1 — F(s) = 0 and
1~ F*(s) = 0 on the properties of m reduces to similar problems for m;
and ms.

Suppose F(r) > 1 and F*(r) are finite for some = > 0. Along with Z
consider the set Z* of roots of 1 — F*(s) = 0 lying in II(r). If £* is nonvoid,
denote its elements by &7, and their multiplicities by m}, 7 = 1,...,1I".

Notice that the zeros of H* (s) in II{r) coincide with the roots of
1 —F*(s) = 0; moreover, the multiplicities of the zeros of *(8) and those of

the corresponding roots of 1 — F*(s) = 0 are the same. Indeed, this follows
from the factorization identity

(19) 1—F*(s) = [p"D*(s)] M1 — Fi(s)], 0<Rs <,

where b* = exp{} o, P(S} < 0)/n}; identity (19) is a consequence of the
factorization theorem, Lemma 2 of {7, Section XVIIIL.3] and the expression
for D*(s), symmetric to (6). Dividing both sides of (19) by —s, we obtain

(20) fm%;i = [5"D*(s)] 'ESy. H*(s), 0<Rs<r,
whence the assertion about the zeros of H *(&) immediately follows.

Let ¢(z ) be a submult1phcat1ve function such that 0 < r_(¢) < ry ().
We have b*D*(s) = eXP{Zﬂ~1S e*®(F*)**(dz)/n}, Rs > 0, or b*D*(s)
= exp{R(s)], where the measure H}(A) = Zn_l(F*)“*(A N (—oo,0)}/n be-
longs to the Banach algebra of finite measures since |, z F*(dz) > 0. Hence
[57D*(5)] ™" = exp[~R(s)] is the Laplace transform of the finite measure
Yoo o(=1)"k™ /n! concentrated on (—oo,0]. By (1), this measure is ob-
viously in S§(v). Now, it follows from (20) that H* € S{¢) «& TF* € S(3)).
In particular,

S |z|*e™® H*(dz) < oo S lz|¥e"®[1 — F*(z)]dz < oo

R R
(here we have taken (x) := (1 + |z|)*e"). Put
A1) = =Gy, semm\ (Ut

all — F(s)]
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Define the coefficients Cjx, & = 1,...,n;, by the asymptotic expansion

ny
(1) fils) = 3 (-D*Cm/(s—5)* +ol/(s = 5)) a5 sy,
k=1
provided {, |z|™e®%i® F(dz) < oo and { |:c[m3 eRsiz[l — F*(z)]dz < oo;
here and in what follows nj = m; if s; € Z*, and ny; = max(0,m; —m]) if
= ¢7 € E*. Similarly, define C, by the asymptotic expansion

(22) fi(s) = —Co/(s —q) +o(1/(s —q)) ass—g,

provided {, z|e?® F(dz) < oo and {j |z]e?*[1 ~ F*(z)] dz < co.

THEOREM 5. Let {Z,}, be an oscillating rondom walk and 7 be the
stationary distribution defined by formula (18).

Let @(x), z € R, be a submultiplicative function such that ¢(z) = 1 for
2 < 0,7 =r.{p) >0 and the function ¢(x)e ™, & > 0, does not decrease.

Denote by N the mazimal multiplicity of the roots of the equation lwﬁ(s)
=0 lying on the line {Rs = r}, and by Q the mawimal n; corresponding to
such roots (if T =g, then N = Q = 1),

Suppose §o° 2V () F(dr) < o0, §5° aNp(z)[l — F*(z)] dz < oo, and
(F™ )M (r) < 1 for some integer m > 1. Then

i

- [ce +ZZGJ,C£’“*+R1}

i=1 k=1

m =

where the remainder Ry satisfies the inequality Sgo

p(z) | Ra(de) < o0
Proof. According to (18) and (12), we have

e . . _ (S—r—l)P
7o) = DO =) T ey

where ¢(s) is the Laplace transform of the measure K := U * H*. Clearly,

TF* € S{pn). As pointed out above, this is equivalent to H* € S{pn). It

follows from the proof of Theorem 4 that U € S{g), and hence K € S(¢q).
By decomposition into partial fractions, we obtain

y—uh()_c )+bC(S +ZZ bjre(s)

== CREIL

The further reasoning is, on the whole, the sarme as in the proof of Theorem 4;
the main difference is in the need to take into account the fact that some of
the roots s; and £f of 1—F(s) = 0 and 1—F*(s) = 0 may coincide, especially

icm
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when these roots lie on the line {H%s =r} If s5; ¢ 5%, then n; = m; and

Z (Sjicss))k Zb Z —S()k—'” + ijkk ii(8),

where ch,o(s) = e(s), k:-,,-(s) = [ j,,-_l(s)wk:j,i_l(sj)]/(sﬁsj), i=1,...,m;.
Depending on whether Rs; < r or Rs; = r, we apply Theorem 2 or
Theorermn 3 to establish that the measures T(s;)*K with Laplace trans-
forms k;x(s) are in S{pg) or S(wg-») respectively, & = 1,...,m;. Let
now s; = & and ny; = 0. Then, by Theorem 2 or Theorem 3, the function
Sond bike(s)/(s— sj)’“ is the Laplace transform of the measure Y 7, b U *
[T(s; )’“H*] belonging te S(¢q) or to S(wg)NS(eN—m,} C S(po), depending
on Whether Rs; <ror §st =r. Finally, let s; = E’f‘ and n; > 0. Then

Z (Sjics Z bysu(s) + Z bjktm: 5(§3~ i+ Yy,

where Kji, = U [T(sj)kH*] is in S{pq) or S((,oQ )N S(en—k), depending
on whether Rs; < r or Rs; = v, k = 1,...,m}. Thus, X} is the Laplace
transform of some measure in S(pg) N S(N-m:)} C S(vo)- Applying the

already known procedure to the expression K mz(s)/(s — 8;)F, we obtain

T(s; 5
Ljp = Zb jo ket m Z ~ 17 Js_ ;r;k]_l,( 2 + Zbg,k-l-m [T(55)F Kjrmz 1" (5).
p=0 k=1
Clearly, T(s;)* Kjm: = T{(s;)*{U * [T'(s;)™ H*]} is in S(pg) or S(pg-s) N
S(on-m:—k) C S(po), depending on whether Rs; < r or Rs; = r; here
k=1,...,n;. Hmce Q -k > Q-—n; z0and N~m{ -k>N-m]—n; =
N — m; > 0. Applying the same procedure to the term bge(s)/(s — ¢q),
summing up over j from 1 to I, and collecting similar terms, we obtain (by
uniqueness of the asymptotic expansions (21) and (22))

Cjx
— 55)k

P
v

l)k +ﬁ1(3)1

Jlkl

where Ry(s) is the Laplace transform of some measure Ry € S(@o). The
theorem is proved.

The picture on the negative half-axis is quite symmetric.
ReMARK 3. Theorem 5 allows us to derive an asymptotic expansion for
the tail 7((z,00)) as & — oo (see the Corollary of Theorem 4).

REMARK 4. Particular cases of the results of this paper have been con-
sidered in [18]. They correspond to ¢(z) = exp(rz) for z > 0-and ¢(z) =1
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for = < 0. Moreover in [18] it is assumed that BX; < 0 is finite and that on
the line {fs = r} there are no roots of the characteristic equation.

REMARK 5. In Theorems 2-5 the monotonicity conditions on ¢(z} may
be replaced by the following: (y)/exp[r. (p)y] £ Col(z)/explr (p)z] for all
0 <y < z and p(y)/explr-(p)y] < Colz)/explr-{p)z] forall z <y <0,
where € > 1 is a constant.

REMARK 6. Let @(k), & € Z, be a submultiplicative function defined
on the set Z of all integers. If in the proofs of Theorems 2-5 we replace the
Laplace transforms by the generating functions and use the Banach algebras
of complex sequences {¥} such that ¥ oo @(k)|ve| < oo instead of the
Banach algebras S(p), then we obtain analogous theorems for measures and
distributions concentrated on Z. In this case the measures &;, &4, £ and £+
must be replaced by their discrete counterparts. Moreover, in the arithmetic
case there is no need for condition (c).
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