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A splitting theory for the space of distributions
by
P. DOMANSKI (Poznad) and D. VOGT (Wuppertal)

Abstract. The splitting problem is studied for short exact sequences consisting of
countable projective limits of DFN-spaces

(%) 0—+F—-X—G—0,

where F' or @ are isomorphic to the space of distributions D'. It is proved that every
sequence {*) splits for F' ~ T’ iff G is a subspace of P’ and that, for ultrabornological F,
every sequence (*) splits for G o= D' iff F is a quotient of D',

0. Introduction. The main aim of the paper is to give a complete
splitting theory for the space of distributions D' in a spirit similar to the
previous splitting theory for power series spaces {see [V1] or [MV, Sections
30, 31]), and especially for the space s of rapidly decreasing sequences.

We will consider the whole theory in the categories of PLS-spaces and
PILN-spaces, i.e., projective limits of countable spectra of LS-spaces and LN-
spaces, the latter meaning inductive limits of sequences of Banach spaces
where the linking maps are compact or nuclear, respectively. So we will
consider short topologically exact sequences of PLS-spaces

(+%) 0-FLx L a0,

i.e., j is an embedding onto the kernel of the surjective map ¢, and *topo-
logically” means that both j and ¢ are open onto their images. Throughout
the paper algebraically ezact means only that each map in the diagram is
surjective onto the kernel of the next map, while just exact means alge-
braically and topologically exact. The sequence (x+) splits whenever j(F)
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is complemented in X or, equivalently, ¢ has a linear and continuous right
inverse. The splitting of all such sequences (+) (where F and @ are fixed
and all the spaces are PLS-spaces) is denoted by Extpyg(G, F) =0.

We show that a PLN-space G is a subspace of D’ iff Exth4(G, D) = 0.
On the other hand a PLN-space F satisfies Extprg(D’, F)) = 0 if and only if
Fisa contmuous image of D’ satisfying some condition which means exactly
that Extpyg(w, F) =0.Ifwe assume that G and F are ultrabornologlca.l (or,
equivalently, Proj' F = Proj! G = 0, see below), then Extp;5(G, D) = 0 is
equivalent to the fact that there exists a short exact sequence

0=-G oD =D =0

while Exth;q(D’, F) = 0 is equivalent to the fact that F is a topological
quotient of D’ or even there exists a short exact sequence

0= =D - F—0

As we have seen the results obtained are completely analogous to that
for s, the more so since a PLS-space F' is isomorphic to a complemented
subspace of D’ if and only if it is isomorphic to a subspace and isomorphic
to a quotient of D', as proved in [DV2]. The results of [DV2] were applied
io the problem of splitting of differential complexes appearing naturally in
the theory of systems of partial differential equations (see [P] and [T]). Let
us mention that a similar (but essentially different) theory for the space of
smooth functions C°°(£2) has also been developed (see [DV1]). Finally, let
us recall that the isomorphic type of ' = D'({2) does not depend on the
open set 2 C R™ (see e.g. [V5]) and D’ ~ (s')N where s’ denotes the strong
dual of the space s.

1. Notation and preliminaries. For basic properties of LS-spaces see
[F1] (comp. also [F2]}. We will frequently use the fact that a closed subspace
or a Hausdorff quotient of an LS-space (LN-space) is an LS-space (LN-space,
resp.).

Usually, we will denote by F a PLS-space which is a limit of a projective
spectrum F = (Fx,i?’l), where Fy = Ind; Fg;, F'x; are Banach spaces
with closed unit balls By and the linking maps in the inductive spectrum
are compact. The notation concerning the linking maps i§+1 s Fgyq — Fy,
i + ' — Fx will be used also for spectra other than F. We write ' =
Proj F. Generally, we denote by script capital letters projective spectra and
by corresponding Roman capital letters their limits. A spectrum F is called
reduced if

Yk A ¥m >1 P F, =iLF
and, it is called strict if

VE A Ym>1 iPF, =ilK

icm

A splitting theory for the space of distributions 59

or, equivalently, I has a representing spectrum with surjective linking maps.
Without loss of generality we consider from now on only reduced spectra
representing PLS- or PLN-spaces. For a countable spectrum F (or the cor-
responding limit F) we can construct the so-called canonical resolution:

oﬂFHHFK.ﬁ&HFK_,o
KeN KeN
where

H) = GxPren,  or((fx)xen) = (i§T i1 — fi)xen € [] P

KeN

We denote [[ Fix/Imox by Proj* F (or Proj* F, since for PLS-spaces that
quotient does not depend on the reduced representing spectrum, see [V2]
or [V3]). Clearly, by the Open Mapping Theorem, Proj' F = 0 means that
the fundamental resolution is exact. If every short exact sequence {(**) of
LS-spaces splits we say that Ext{g(G,F) = 0. If we consider splitting in
the category of Fréchet spaces, we analogously write Ext'(-,-) = 0. The
above notation has its source in Homological Algebra. An interested reader
can find more on the “homological theory” of les in [P1], [P2], [Rel], [Re2],
[V1]-[V4].

If B C ( are closed absolutely convex bounded sets in an les X, then
X g denotes lin B equipped with the gauge functional of B as its norm and
inc: Xp — X denotes the identity embedding. We call B C X a Banach
disc if X5 is a Banach space. If Y C X, then Y := [\ ,eB+Y. The
condition Proj' F = 0 for PLS-spaces was characterized by Retakh [Rel,
Th. 3] as follows: Proj' F' = 0 iff there is a sequence B = (Bx) of Banach
discs, By C Fg, such that

iE*1Bx 1 C By and VK ALy VL > Ly i Fr, Cix(F)°%.

It turns out that this condition also has some topological consequences
as shown by Vogt (necessity part, [V2, 5.7], [V3, 3.4]) and Wengenroth
(sufficiency part, [W1).

THEOREM 1.1. A PLS-space X saiisfies Proj* X =0 if and only if X
is ultrabornological.

By FUP we denote the ultrabornological space associated with F.

A family of sets (Wiy,,.. nk)) indexed by all finite sequences of natural
numbers is called a strict web in E if the following conditions are satisfied
(if p € NV, k & N, then Wi := Wip),...0)) (see [J, Ch. 5] or [DW],
comp. [MV]):

(W1) W, are balanced convex sets;
(W2) | U{W,,1: o € N} is absorbing in E;
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(W3)  for all o, k, | H{Wyjer1 1% € NV, ¥(i) = (%), i < k} is absorbing
in lin W, x;

(W4)  Worpr +Wertn © W

(W5)  for every O-neighbourhood U in F and every ¢ there is n such that
Wen € U;

(W6)  if (yn) C B, yn € W, n for some fixed ¢, then for every k € N the
series Y 7 1 yn is convergent to an element of W k.

We call an lcs space E a strictly webbed space if it has a strict web. The
class is closed with respect to taking closed subspaces, quotients, countable
projective or inductive limits and contains all Banach spaces; in particular,
all PLS-spaces are strictly webbed.

Now, we need some permanence properties of PLS- and PLN-spaces.

PROPOSITION 1.2. Every closed subspace of o PLS-space (PLN-space) is
a PLS-space (PLN-space) as well.

Proof. Let F = Proj ¥, where F = (Fx,i57") is a spectrum of LS-

spaces. Let X C F be a closed subspace and let Xy := ix(X). Obviously,
Xy is an LS-space, jg“Ll = i?"llxxﬂ acts from Xgyq into Xg. It is
enough to observe that X is equal to the projective limit of the constructed

spectrum X = (Xx, j}f—“). Indeed, topologically we have

X CProjX € ProjF.
On the other hand, if f = (fx) € Proj & and fix € Xx, then for every K and
every O-neighbourhood U in Fy thereis g¥ € X such that ix(g%)— fx € U.

That means that the net (g¥) tends to f and, by completeness of X, f € X.
For PLN-spaces the proof is exactly the same.

Unfortunately, there are quotients of D’ which are not complete [F2, 5.2],
and thus not PLS-spaces. Nevertheless, we have:

THEOREM 1.3. Bvery complete Hausdorff guotient of a PLS-space (PLN-
space, respectively) is o PLS-space (PLN-space, respectively).

Proofl Let F = Proj Fx be a PLS-space and let A be its closed sub-
space. We define Ag :=ig(A) C Fr, Y := FfA, Yk := Fr/Ag. We have
obtained a projective spectrum (Y, J5 ), where TE : Vie,y — Yk is
induced by iﬁ"‘l : Fgn — Fg. We get a “projective spectrum” of short
exact sequences:

0— Ag — Fg — Fg /A — 0.

The following sequence is the limit of this spectrum:

D—>A—j~+F—q>ProjFK/AK—+O,
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where ker ¢ = j(A), 7 is a topological embedding and Im ¢ = F/A (topologi-
cally) is a dense topological subspace of Proj Fr- /A k. Since Im g is complete,
F/A = Proj FK/AK.

Of course, if Fx are LS-spaces, then Fx /A are LS-spaces as well.

For PLN-spaces the proof is exactly the same as for PLS-spaces.

COROLLARY 1.4. Let F be a PLS-space satisfying Proj' F = 0 and let
A be a closed subspace of F. The following assertions are equivalent:

(1) F/A is a PLS-space;

(2) F/A is complete;

(3) Proj* A = 0.

Proof. (1)=(2) follows from 1.3.
(3)=(2). By the proof of 1.3, F/A is a PLS-space iff ¢ is onto. Now,
(3)=(2) follows from [V3, Th. 5.1].

PLS-spaces have nice and useful properties.

LeMMA 1.5. Let X be o PLS-space, Y an lcs and let g : X — Y be
a continuons map. If T : U — V¥V, T({U} € ¢(X), is an operator with o
Banach domain U, then there is a compact Banach disc C in X such that
q(C) 2 T{By), By the unit ball of U.

Proof. By the Webbed Closed Graph Theorem MV, 24.31], we can
assume without loss of generality that g is a quotient map, thus if (W, x) is
a strict web in X then ¢{W, ) is a strict web in Y.

First, we observe that Y is webbed Schwartz, i.e., for every ¢ there is ¢
such that

P
VEInVe >0 g(Wen) € [z + ea(Wy )
=1
for some finite set {z1,...,2,} C V. Indeed, LS-spaces are webbed Schwartz
and the class is obviously closed with respect to quotients, closed subspaces
and countable products. Using the Localization Theorem [J, 5.6.3] we find
@ such that for every k,

T
B :=T(By) € [ Jz: + a(Wp,r))
i=1
(ie., B is webbed compact).

The family (W, x)ken of absolutely convex sets forms a O-neighbourhood
basis for some metrizable complete group topology 7 on X such that B is
precompact in the corresponding quotient topology 7, on Y. Since B is
absolutely convex it is easily seen that

BFCY,
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where Y, = (Y,7,) and ¥, denotes the largest subspace of ¥ where 7, is a
linear topology (i.e., ¥; := (Vxen Unen ?2(Wp,i))- On the other hand, Y, is
a Fréchet space as a closed subspace of Y. Hence, thereis a To-null sequence
(¢4n) such that

B C absconviy, :n € N} °.

We can lift (y,) to a r-null sequence (z,) © X. Obviously, (2,) is also a null
sequence in the original topology of X. Finally C = absconv{z, :n € N} is
the set we are looking for,

The easy proof of the next result is left to the reader (it is based on
the fact that classes of co-Schwartz and co-nuclear spaces are closed with
respect to taking closed subspaces and countable products).

LEMMA 1.6. Every PLS-space { PLN-space) X is semi-Montel and co-
Schwartz {co-nuclear), i.e., for every Banach disc B C X there is another
Banach disc C C X such that ipe : Xg — X is compact (nuclear).

The first result concerning short exact sequences is well known {comp.
[D1, Cor. 3.2]), we give it only to make our presentation self-contained. We
will use it several times without any reference.

ProprosITION 1.7. Let X, Y, Z, U be lcs and let
be a short exact sequence,

(a) If T:Y — U 4s an operator, then there is o unique {up fo equiva-
lence) commutative diagram with both rows exact:

0 7% Xy - g 0
TT TT& Tid
0 y—iex—lsz 0

where
Xy =UxX)/A, A={Ty,—jy)elUxX:yeY}

The operator T' has an extension onto X iff the upper row in the above
diagram splits. If T is a topological embedding, then Ty is a topological
embedding as well and Xy /ImTy ~ U/ImT.

If X, U, Z are LS-spaces (PLS-spaces, PLN-spaces}, then Xy is an
LS-space (PLS-space, PLN-space) as well. Finally, if U is a PLS-space, X
is an LB-space and Z is an LS-space, then Xy is a PLS-space.
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(b} If T : U — Z is an operator, then there is o unique (up to equiva-
lence) commutative diagram with both rows ezact:

0—sY~Llsx—2sz__ .y

N

0 vy yv iy 0

where XY 1= {(z,u) € X x U : gz = Tu} is a closed subspace of X x U.
The operator T' has o lifting to X iff the lower row in the diagram above
splits. If T is o topological guotient map, then Ty is a topological quotient
map as well and kerT =~ kerTy. If X, U, Z are LS-spaces (PLS-spaces,
PLN-spaces), then XY is an LS-space (PLS-space, PLN-space) as well.

(c) Let W,V be lcs and let the following diagram with exact rows com-
mute:

0 17 Jo W a0 v 0
Pole In
0 y—tex—2sz 0

Then P extends onto X iff R lifts with respect to qo.

ReMARK. The procedures described in (a) and (b) are called push-out
and pull-back, respectively. Let us mention that in part (a), Xy is complete
because completeness is a three space property, i.e., if in (++), F and G have
this property, then X has it as well (see [G, Th. 17] or [RD, Th. 1.3]).

Proof of Proposition 1.7. We only prove the last sentence of part (a).
We apply an analogous proof as for 1.3. In the present case we have for
U = Proj Ux a commutative diagram

0 Uy Wy T ¢
0 Y X zZ 0

where Wy == (U x X)/Ax is a Hausdorff complete LB-space (see the
Remark above). As easily seen, it is an LS-space. Using the proof of 1.3 we
immediately get Xy = Proj Wg.

Let D be an LB-space. It is known [Gr, Lemme 2] that for each sequence
(prn)nen of continuous seminorms on D there is a continuous seminorm p
stronger than all p,,. This implies that every operator between PLS-spaces
is a projective limit of operators between steps. In particular, the above
mentioned fact implies that all the reduced projective spectra of LS-spaces
representing a given PLB-space are equivalent.
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Now, assume that G = Proj G, where (Gk) is a reduced spectrum of
LS-spaces, and assume that

Ow—rEi»G—Q-rF——NJ

is a short exact sequence of PLS-spaces. Then we have a comumutative dia-
gram

0 EU Jo éo Qo ﬁO 0

0 B — G — s F 0
~ Tn ~— n

0 | = Grt+1 Gy Fopp—=0

0 Eml sg—2 >F 0

where (E,), (Gn), (F,) are reduced spectra of LS-spaces and

F=ProjF,, G=ProjGy,

@ = Proj Q.

Indeed, it is enough to take gn = Gn and as En the closure of E in the

topology of Gp, while F, := Gp, [ Er. Using push-out and pull-hack, we may

assume analogously that (E,) and (F,) are subsequences of the correspond-

ing given spectra (E,) and (F,); then (G,) is only equivalent to (Gr).
Later on we will use the following two special short exact sequences,

B = Proj By,
J = Proj Jy,

PrOPOSITION 1.8. If D is an LN-space, then there exists o short exoct

sequence
oa@zl_}@zlqp—m.
neN nelN

Proof. This follows easily from [V2, Th. 3.8] or, by use of [MV, 26.24],
from [MV, 26.16] with Ey, & co.
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PROPOSITION 1.9. If an LN-space D satisfies Extig(s’, D) = 0 (or,
equivelently, is a quotient of §'), then there exists o short exact sequence of
the form

0= —-s—=D=0.

Proof. See [DV1, Prop. 1.3].

We will also need some known splitting results. The first two come from
[DV21.

LemMMA 1.10. If Extlo(D, D) = 0, then Extpyq(DY, DY) = 0. In par-
ticulor,

Extpy (D, D) = 0.

Lemma 1.11. If G is a strict PLS-space, D1, Dg are LS-spaces such
that

Extig(D1, D) =0
and H is a PLS-space, then in the exact sequence
0——+G—>D§—>H£+le—*0

the map @ has a right inverse.

The next splitting result is a three space property type theorem:

PROPOSITION 1.12. Let W be an ultrabornological PLS-space and let

0-F-Lx-5HG-0
be o short exact sequence of PLS-spaces. If
Extlis(W,F)=0 and Extprg(W,G)=0,

then Extprg(W, X) = 0 as well.

Proof. Let
0= X Y W =0
be a short exact sequence of PLS-spaces. By 1.7, we obtain a commnutative
diagram of PLS-spaces:

0 G Y 1% 0
R
0—X y W 0

Since the upper sequence splits, the map ¢ extends to amap Q : Y — &
(use Prop. 1.7(c}). It is easily seen that

D—+kerq—>kerQ—q—Y+W-+0
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is an algebraically exact sequence and, by 1.2, it consists of PLS-spaces. The
sequence is also topologically exact because W is ultrabornological (use the
Webbed Open Mapping Theorem). We have a commutative diagram

0 X )4 w 0
(I T
0 ker ¢ ker Q —— W ——0

with a splitting lower row because F' =~ kerg. Hence the upper sequence
splits as well.

‘We finish with a characterization of complemented subspaces of D’ given
in [DV2].

THEOREM 1.13. A PLN-space F is isomorphic to a complemented sub-

space of D' if and only if it is isomorphic to o subspace and to o guotient
of D',

For notions and facts not explained here we refer to [J] or [MV].

2. Quotients of D' and the splitting. Let F = Proj Fiy be a PLS-
space. We say that F € (P,) if and only if for every sequence B = (Bg) of
Banach discs, Bx C F, such that i572 By 1 C Bx we have

VE 3L ig{(i(F)"") Cig(F).
The main aim of this section is to prove the following result:

THEOREM 2.1. For a PLN-space F the following assertions are equiva-
lent:

(1) Extpg(D', F) = 0;
(2) F e (P.) and F is a continuous image of D';
and, under the additional assumption that F is ultrabernological,

(3) F is isomorphic to a quotient of D’;
(4) there is an exact sequence

0D =D — F 0.
In order to prove the main result we need some lemmas.

LeMMA 2.2. For a PLS-space F the following assertions are equivalent:
(1) Extpyg(w, F) =0;
(2) Fe(R,).

Proof. We first prove that (2) implies (1): Let

0oF-YHe- Yoo
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be a short exact sequence of PLS-spaces. Let G = ProjGgx and F =
Proj Fr, Fx © Gx topologically. Moreover, () = Ind; G and By is
the unit ball in the Banach space G.

By the De Wilde Localization Theorem [J, 5.6.3], using the standard

strict web in G, we find a sequence (nx) of natural numbers such that for
every L there 15 M such that

q(ﬁm1 ﬂ...ﬁELnL)Q {z€w:iz =...=zp.1 =0},
where EK; = 'ifleKg. ‘We define Banach discs:
Dy = (?:{')HlBlnl N (i%)-lBgnz N...NBrn,,

in Gy, and Fr, respectively.
We denote by g, an arbitrary fixed element of g~*(e,), where e, is the
nth unit vector in w. By the above arguments, for m > M and every € > 0,

gm €&(Biny N...NBpn,)+F and ipgm €Dy +irF.

Br =D N FYy

Hence

iLgm € WDL - W =Fr
and

iLgm ci FEr  form > M.

Now, we apply (P.,) to the nested sequence (Br)ren of Banach discs.
For every K we find L such that

i (i PP CixF.

Summarizing, we find an increasing sequence M (K) such that ixgm € ixF
for m > M(K). Then for M(K) < m < M{K + 1) we find A, € F such
that ix gm = ixhm- We define Ay, := 0 for m < M(1) and

R((xn)nEN) o= Z ZD'n.(gn - hn);

nel

Riw-— G,

it is casily seen that R is a continuous right inverse for g.

For the reverse direction of the proof assume that (P,) is not satisfied,
thus there is a nested sequence (Bg) of Banach discs and K such that
there exists g1, € irFBL but for each L > Ky we have iﬂngz, & i, F. 1t
is easily seen that 2 = ELZ ko 91 C [l psen Far is isomorphic to w, where
gr = (0,...,0,95,0,...), gr at the Lth place.

Let (ar)ren € w be a given sequence. Then

argr = igvr +up for L=>1
where vy, € F and wy, € 27PBy. Thus

(argr) = or({zL)Len)
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for
M o
. LI
Ty = w—a,]\,IQM-|—Z::LM’UL— Z Tas UL
L=1 L=M+1

(series convergent in (Fr)g,). Here ox denotes as usual the quotient map
in the canonical resolution of F. We have proved that Z C Imayr. Finally,
we have a short exact sequence

0—sFoX-%2- 0,

where X := 07'(Z) and ¢ = oz|x. By 1.2, X is a PLS-space. If the above
sequence splits, then there is an operator B : Z — X C [} rew £ such that
go B=1dz. Let B(gr) = (bi,L,b2,1,.. O bar,r. € Far; then
(i) i%+1bM+17L - bM,L =0for M 7!: L;
(i) 17 br41,0 ~ br = 915
(iii) for each K we have Ly > K such that b, =0for L > Ly.

Condition {i) implies that there is by, & F such that ipsbr = byr,z for all
M > L. If we choose L > Ly, we get
E5,01 = Ry br = Ui br n = xobr — o, = ixobr € ixe, (F),
a contradiction.
The method of proof of 2.2 cannot be used for more complicated spaces
DY (except llf) since in the proof we use specific properties of one-dimen-

sional spaces (for example, projectivity) and since the topology of w is
Fréchet, unlike the case of general spaces DY, where D is an TLN-space.

COROLLARY 2.3. For an ultrabornological PLS-space F the following are
equivalent:

(1) Extppg(w, F) = 0;
(2) F is strict.

Proof. Clearly, strictness implies (P,,). On the other hand, if F is ul-
trabornological, then Proj* F = 0 and there is a sequence of Banach discs
B = (B), By C Fz, it"* By C By, so that for every L there is M with

i (Fag) i F B

(see Section 1). For given K we find L according to (F,) and then M
according to the above. We obtain

ix (Fu) S i (it FP") C igF,
which means strictness.

Now, we show that (F,) has strong consequences for the structure of the
space F.
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LemmaA 2.4. Let F be o PLS-space (PLN-space) sotisfying (P.,). Then
F® s q strict projective bimit of a sequence of LS-spaces (LN-spaces, re-
spectively) Hy, where Hy = (ig(F))*>.

Proof By 1.5, Banach discs in ik (F) are exactly images of compact
Banach discs in F. Of course, by 1.6, iy (F) is then co-Schwartz (or co-
nuclear). Now, it suffices to show that there is a fundamental sequence of
Banach discs in ig (F).

Let B be an arbitrary Banach disc in F. There is a sequence {(ns) sen of
natural numbers such that

BC () ix"(Brnx)-
KeN
If Cg = ﬂJSK(iJK)—l(BJ,nJ) and Dy = Cx Nig(F)°%, then
ix(B) Ci%(Dr) for every L > K.
Moreover, we can apply (P,) to the nested sequence (Cx)xen and then
VYK 3Ly VL > Ly i%(Dy) Cix(F).

By 1.5, i(Dy) C igx (D) for some compact Banach disc D in F. In partic-
ular,

BL,K,(TLJ) = z‘%{(DL)FK
is a Banach disc in iz (F)! Since By, k,(n,) depends only on (n.;}s<r, we have
only countably many distinct sets of that form and they form a fundamental
sequence of Banach discs in ix (F). :

REMARK. The above proof gives a useful description of a fundamental
sequence of Banach discs in i x (F') and a fundamental family of Banach discs
in F whenever F' € (F,).

The property (F,,) also has some surprising “splitting” consequences.

LEMMA 2.5. Let F,G be PLS-spaces and let F € (P.), G be ulira-
bornological.

(a) If Exthig(G, F) =0, then Extpyg(G, F®) = 0.

(b) If G € (P,) and Exthpg(G, F®) =0, then Extpg(G, F) =0.

REMARK. Of course, for any LN-space D we have DV € (F,) and it is
ultrabornological.

Proof of Lemma 2.5. (a) Consider an arbitrary short exact sequence of
PLS-spaces (use 2.4)

0 FP* X L@ —0.
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By 1.7{a), we obtain the following commutative diagram, where TOws are
exact and all spaces are PLS-spaces:

0— > F—> (X, 7) —2> G —=0

-

0 Fub X —1=a
By the assumption, g, has a continuous linear section § : G — (X, 7).
By 1.5, X and (X,7) have the same families of Banach discs. Since G is
ultrabornological, the map S is continuous also when we equip X with the
topology TP, This completes the proof because the topology of X is weaker
than 74P,
(b) Consider an arbiirary short exact sequence of PLS-spaces

0 F—-X—-G—=0

By 1.12 and 2.2, X & (P,), thus using 2.4 we obtain the diagram

0 F X G 0
b
00— (F, 'T) Xvb G 0

where 7 is the topology on F induced from X'P. By 2.4, X"? is a strict
PLS-space and, by 1.2, {F, 7) is a PLS-space. Of course, Proj* X = 0 and
Proj!(F, ) = 0 because of Cor. 1.4 {comp. [V3, 5.4]). By Th. 1.1, (F,7)
is ultrabornelogical and therefore it must be the ultrabornological space
associated with F. By the assumption, the lower sequence in the above
diagram splits and hence the same holds for the upper one (see 1.7(c)).

LeMMA 2.6. If F is a strict PLS-space, Fxtprg(D', F) = 0, then there
exists a strict spectrum (Fi)xen, F = Proj Fi, so that Extlg(s', Fx) = 0
for all K.

Proof. Let {Fx)ken be any projective spectrum representing F with
surjective linking maps. Let

O—‘*FK—?X&S’-—)O

be an arbitrary short exact sequence of LS-spaces. On the other hand, by
1.8, we have a short exact sequence

Oﬁ@llﬁ@ll —wq—)slwo,

By the lifting property of [y and by the Grothendieck Factorization Theorem,
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we can lift ¢ with respect to Q) and we obtain the following diagram:

0 Py x 2 s 0
TR TS Tid
0 B Dl L g 0

Similarly, by Lemma 1.5, we can lift R to F with respect to the surjective
map ix : ' — Fx and we get ancther commutative diagram, § = Sy 0 Sq,
where X1 is a PLS-space {apply 1.7(a)):

0 Fy X2y 0
T e Tsl Tid

0 F X, g 0
TRl TS; /’id

0 @hL Dl L 0

Since the middle row splits, so does the upper one (use 1.7(c)).

LEMMA 2.7. For every PLN-space F there exists a short ezact sequence
of PLN-spaces of the form

0= - K—F—0,
where K is a subspace of D'.

Proof. Every nuclear Fréchet space G is a subspace of s [J,21.7.1}, the
latter space is a quotient of s ([V0, 1.6]). This implies that & is a quotient
of a subspace of s. By duality, every nuclear DF-space is a subspace of a
quotient of &'. We have proved that F is a subspace of T1@Qn, where Q,, are
quotients of &', By 1.9, for every n there exists a short exact sequence of the
form

f—g —s—=Qn—0
Taking products we get
0-—>’D’—>D’—q+HQnm~+0
and. K := q~1(F) gives the sequence we are looking for {use 1.2).
Praof of Theorem 2.1. First we consider the case of ultrabornological I
(i.e., Projt F = 0). While (4)=(3) is obvious, we prove (1)=>(3), (3)=(4)
and (4)=(1).

(1)=>(3). Because of Cor. 2.3, Lemma 2.6 and Prop. 1.9, we may choose
a surjective spectrum (Fx)zen of F such that for any K there is a short
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exact sequence
0—38 —5 — Fx — 0.
The canonical resolution gives the first line of the following diagram, the

product of the above sequences its right column, the rest is obtained via
1.7:

(s")N > (sr)N

0 0

The middle row splits by assumption, hence H ~ F @ (s')Y. The left column
gives the first line of the following commutative diagram, the right column
is constructed as previously:

0 0
0 (shN Fg(s N —[]g Fx —0
0 (s’)N G (SI)N 0

(s ()"

0 0

The middle row splits (see 1.10), hence G =~ (¢')V. So we have an exact
sequence

0~ ("N = ()N = Fa s —o0.
Since Extprg((s)Y, (s)%) = 0 (again by 1.10), we can lift the canonical
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injection (s") — F & (s')¥ and this yields a complemented subspace ¥ of
(s"N and an exact sequence

0= (N sy S5 Fo0.
We add to this sequence the following trivial exact sequence:
0— ("N 24 (Y 50— 0.

The Pelczyhski Decompeosition in the form of [V5, Prop. 1.2] implies
Y & (s")¥ = (s')N and we have obtained the required sequence.
(3)=(4). By use of Lemma 2.7, we find an exact sequence

0 (6N K — F —0,
where K C (s')N. Let @ : (s)¥ — F be a topological quotient map. Then

we obtain the following commutative diagram (use 1.7) with ¢ a topological
quotient map:

0 (s")¥ K F 0
Tid Iq TQ
0 (s")N X (s")N 0

The lower row splits by 1.10. By 1.13, K is a complemented subspace of (s')Y.
This completes the proof by the same argument as in the previous part.
(4)=(1). Let
D—F-X-LD =0
be an exact sequence of PLS-spaces. Combining it with the sequence given
in the assumption, we obtain an exact sequence

0= (= (&)W = X L (HY —0.

Lemma 1.11 yields a right inverse for g.

Now, let us consider the general case.

(1}=(2). By Lemma 2.2, F' € (P,). Lemma 2.5(a) and (1)=>(3) imply
that 7 is a quotient of 7.

(2)=>(1). By Lemma 1.5, F“® is a topological quotient of D'. Thus, by
(3)=(1), Extpy (D', F¥®) = 0. Now, apply Lemma 2.5(b}.

The example below shows that (F,} does not imply ultrabornologicity.

ExAMPLE 2.8. We give an example of a non-ultrabornological Kothe
PLN-space F' with a continuous norm and dense Banach discs in the steps

such that F satisfies (P,,) but there is no representing strict projective spec-
trum of LS-spaces.

REMARK. In view of Lemuna 2.4, the associated ultrabornological topol-
ogy of F' ig the topology of an LS-space.
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CoNsTRUCTION. We define

p—2m—Kk)gnk—k*—2"k for k< m,L—1,
p2m—K)gn(L-1)=K*=2"k for [, 1< k <m,
222“+”k_mk‘2"m form<k<L-—1,
for m,L—-1<k.

On,k,Lm =
922" +n(L~1)-mk—2"m
It is easily seen that
On e, Lym S Onk,L+lm 04 Gog L 2 G, lmebl-
Thus we can define

F = {(2,4) : for all L there is m with sup |z, xlankn,m < 0}

n,k
and it 1s the projective limit of the spaces

< 0o}

Fy, := {(znk) : there is m with ||(zn k)|l z,m =

'n‘i
The spaces Fy are LIN-spaces because for all m, L with m > L the series

IO M (GRS St S k)

.
bk, L,m p——

converges. Moreover, for m > L+ 1 we have
U, L, L+1,m = 9ny—2(m—L-1) 0,
Opn,L,L,L4+1 n—o0
hence ii’“(FLH) is a proper subspace of Fr. In particular, there is no
equivalent strict spectrum representing F.
Finally, we show that for 2 < I < m and §(L) := 1 4+ sup,, 2nE=2"" e
have

n kLt 1m1 S S(L)max(0n k1,13 8n,kLm) for every n k € N.

Indeed,
Qo L fork<L -1,
Gn b, L+1,mtl < S(L)an,k,l,L for L £k <m,
Qo kL, form+1<k.

Let By be the unit ball of the norm ||- ]|z m in Fy,. The above inequality

means that
B]_,L M BL,m C S(L)BL+1'm+1.

Hence
B1,2 N Brm C S(L)(Brt1,m+1 N Byr41) € S(L)S(L + 1)Brizme2.
Repeating this inductively we get
B].,L n BL,m. CF
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Since every nested sequence B = (By) satisfies for some sequence (nz) the
inclusion

By C ) Bin,,s
J<k
we see that By, C F and obvicusly {P,) is satisfied.

3. Subspaces of D' and splitting. Now, we prove an analogue of 2.1
for subspaces.

THEOREM 3.1. For a PLN-space F the following are equivalent:
(1) Extprg(F, D) = 0;
(2) F is isomorphic to a subspace of D',

and, under the additional assumption that F is ultrabornological,

(3) there is an exact sequence
0=F D -0 =0

Proof. (1)=+(2). By Lemma 2.7, we obtain a short exact sequence
04D = K—=F—=0

with K C D', Hence .F is isomorphic to a complemented subspace of K by
(1).

(2)=(1). 1t suffices to show that every short exact sequence of PLS-
spaces of the form

(l) D =Y > F—0

splits. We may choose spectra (Yy) and (Fi) for ¥ and F respectively so
that

(2) 0= =Yy —Fy—0

are exact and the “projective limit” of these sequences is equal to the se-
quence (1) (sce Section 1). Moreover, we may assume that Fy are subspaces
of ¢ (i.e., step spaces of (s')N = D'). By [V6] (see [MV, 31.5, 31.6, 30.1]),
all the sequences (2) split and there is a projection Py : Yy - &'. Now,
Py oix is the required projection for {1).

Now, assume that F is ultrabornological, i.e., Proj* F = 0. We show
(2)=(3). |

If F C D, Q=D/F, then Proj' F = 0 implies (Cor. 1.4) that Q is
a PLN-space. We apply Lemma 2.7 in order to get the last column of the
following diagram, the rest is obtained via 1.7:
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P

Q> F—>D —>Q—>0

b1

0—F—>H—>=K—0

b

D —7
b
0 0

where K ¢ D’. The first column splits by 1.10. So we obtain an exact
sequence

(3) 0—+F—=D - K0

By 1.13, K is isomorphic to a complemented subspace of D'. We multiply

(3) by
0—=0—-D LD 0

and using the Pelczynski Decomposition as at the end of the proof of (1)=>(3)
of Th. 2.1, we get the required sequence.
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