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On the bundle convergence of double orthogonal series
in noncommmutative Lo-spaces

by

FERENC MORICZ (Szeged) and BARTHELEMY LE GAC (Marseille)

Abstract. The notion of bundle convergence in von Neumann algebras and their Lo-
spaces for single {ordinary)} sequences was introduced by Hensz, Jajte, and Paszkiewicz
in 1996. Bundle convergence is stronger than almost sure convergence in von Neumsann
algebras. Qur main result is the extension of the two-parameter Rademacher—Men’shov
theorem from the classical commutative case to the noncommutative case. To our best
knowledge, this is the first attempt to adopt the notion of bundle convergence to multiple
series, Our method of proof is different from the classical one, because of the lack of the
triangle inequality in a noncommutative von Neumann algebra.

In this context, bundle convergence resembles the regular convergence introduced by
Hardy in the classical case. The noncommutative counterpart of convergence in Pring-
sheim’s sense remains to be found.

1. von Neumann algebras and bundle convergence. As a back-
ground, we shall give a brief account, without proofs, of the basic notions
and results in von Neumann algebras. The reader interested in details may
consult the books by Dixmier [3] and Jajte [7, 8].

Let 2 be a o-finite von Neumann algebra with a faithful and normal
state ¢. Then the Cauchy-Schwarz inequality holds true:

(1) (BT A < YBB)G(ATA), ABed
Furthermore,

(12) A S Ay A

where || - || denotes the operator norm in 2.
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One may introduce a scalar product on 2 by setting
(1.3) (A, B):=¢{B*A}, A,Bel

By (1.1), it is easy to see that (2, {-,-}} is a prehilbert space over the field C
of complex numbers. Denote by Ly = La (2, ¢) its completion, by (-,-) the
scalar product, and by || - || the norm in L.

The celebrated Gelfand-Naimark-Segal representation theorem states
that there exists a one-to-one *-homeomorphism 7 of 2 into the algebra of
all bounded linear operators acting on L, and there is a cyclic vector w in
L5 such that

(1.4 HA) = (r(A)w,w), Ae
Relations (1.3) and (1.4) can be combined into the following one:
(A, B) = (n{A)w,m(Bw), ABe
From (1.2} and the equality

(1.5) A" Al = |41, Aecq,
which holds in any von Neumann algebra U, it follows immediately that
(1.6) Im(Aw|| = {p(A* AP < A* AR = |Allo, Ae

Consequently, 2 endowed with the scalar product (-, ) defined in (1.3)
can be identified with the norm dense subset w()w of Lo.

The notion of bundle convergence in Ly (as well as in the von Neumann
algebra %) for single (ordinary) sequences was recently introduced by Hensz,
Jajte, and Paszkiewicz [6]. One can adapt it to double sequences as follows.

With any double sequence (Dy; : k,1 =1,2,...) of operators in % , the
cone of positive (selfadjoint) operators in 2, for which

(1.7) > i@ﬁ(Dm) < o0,

k=1 I=1
one can associate a double bundle

(1.8) P =PDy) = {P € Proj®: sup HP(iZn:DH)P”m is finite
k=1 l=1

m,n>1
and | PDyPlle — 0 as k+1 — oo},

where Proj 2 denotes the class of all projections in 2I.

The crucial fact is that the bundle P is “abundant” enough to contain
projections arbitrarily close to the identity operator 1 in : for every £ > 0
there exists a projection P in P(Dy) such that ¢(1 — P) < ¢.
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Now, a double sequence {gm, : m,n = 1,2,...) of vectors in L is said
to be bundle convergent to some p in Lg, in symbols,

b
Omn — £ asm—+n— 00,

if there exists a sequence (R,,) of operators in 2 such that

(1.9) Z Z lemn ~ & = 7(Rmn || < o0,

m=1n=1
and there exists a bundle P = P(Dy,) such that for each projection P in P,
(1.10) |[BinnPlloo — 0 asm-+n— co.

Since the intersection of two (or even a countable number of) bundles
is a bundle again, bundle convergence enjoys the property of additivity.
Furthermore, bundle convergence implies almost sure convergence (but not
conversely), and the lmit of a bundle convergent sequence is unique in the
selfadjoint part of L. For details, we refer the reader to [5] (almost sure
convergence) and [6] (bundle convergence).

REMARK. We point out that the above definition of bundle convergence
of double sequences can be actually reduced to the case of the classical
bundle convergence of single sequences introcduced by Hensz, Jajte, and
Paszkiewicz [6] as follows.

Let (D;:j=1,2,...) be a single sequence of operators in 2, such that

=}
(1.11) qb(D]) < Q.
j=1
The classical (single} bundle P = P(D;) associated with (D) is defined by

(112) Pi= {P € Proj : sup Hp(ipj)PHm is finite
nzl Ny

and |[PD; Ploc — 0 as j — oo}.

Then a single sequence (¢; : § = 1,2,...) of vectors in Ly is said to be bundle
convergent to some ¢ in Ly if there exists & single sequence (4; : j = 1,2,...)
of operators in % such that

(1.13) Dol — ¢ = m(A)wlf? < oo

i=1

and there exists a classical (single) bundle P such that for each P in P we
have

(1.14) [|4;P)lcc =0 a8 j — oc.
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Now, our definitions (1.7)—(1.10) are simple reformulations of (1.11)~
(1.14) if the terms of the double sequence (ox) are reindexed into a single
sequence ({;), for example, by making use of the familiar diagonalization
process due to Cantor. That is, set

(1=, Cei=g12, (i=ean,  {ai= a1,
{5 := o2, C6:=o031, C(7:=0Q14, efcC

(1.8) is the only condition which requires an explanation. According to the
above diagenalization process, we have to require that

w5 our3oenn)r].

(k):k-HI<m 1=
n=1,2,...,m a.ndm:l,z,...}

is finite, instead of the first requirement in (1.8). However, these two require-
ments are equivalent, due to the fact that the Dy, are positive (selfadjoint)
operators in %.

We note that it is immaterial how the double sequence (gi:) is rearranged
into a single sequence.

For simplicity, however, we adhere to the notations in (1.7)-(1.10) in
what follows.

2. Noncommutative Rademacher—Men’shov theorem. We recall
that a double sequence (£ : &k, I =2,3,...) of vectors in L is called orthog-
onal if

(‘Eki; é‘klll) =0 whenever (k: l) ?[: (kh ll)
By the completeness of Lo, if

z E ”Eklllz < 09,

k=2 1=2
then the sum
o0 o
(2.1) o= ZZ&H
k=2 =2

as well as the remainder sums

Gmn 1= Z Z £t

k=m+1l=n-+1
exist in the norm of Ly for all m,n = 1. Dencte by

m N
Tmn :zzzgkh m,n > 2,

k=2 =2

icm

Bundle convergence of double orthogonal series 181

the rectangular partial sums of the double series in (2.1). It is plain that
(2.2) G Omn = 0ml + 01n — Omny, ™M,N 21,

with the agreement that oy, = o in case min(m,n) = 1, where o is the
zero vector in La.

Qur main result reads as follows.

THEOREM 1. If (€u1: k,0=2,3,...) is an orthogonal double sequence in
Lo = La(A, ¢) such that

[= a] oo

(2.3) D>l (log k) (log 1)? < oo,
k=2 [=2

then

(2.4) gmn—go as m +n — oo.

The logarithms are to base 2 in this paper.

ProOBLEM. Theorem 1 can be viewed as the two-parameter Rademacher—
Men'shov theorem in noncommutative Lo-spaces. By virtue of (2.2), we may
interpret the conclusion of Theorem 1 in the form

Omp — O ~+ 0 88 M, T, - 00,

where o is defined in (2.1). This kind of interpretation resembles the notion
of regular convergence of double complex series, introduced by Hardy [4]
and rediscovered by the first named author [10, 11] in an equivalent form.

However, the problem of how to attribute a precise meaning to the limit
relation above in the sense that the rectangular partial sum oy, is arbitrarily
“close” to its sum o as both indices m and n are large enough, is still open.
In this context, the limit relation (2.4) says that the remainder sum g, of
the series in (2.1) is arbitrarily small if at least one of the indices m and n
is large enough.

On the other hand, the definition of the limit relation

(2.5) @mn Lo asmn— oo,

which would be the noncommutative counterpart of convergence in Pring-
sheim’s sense, has not been made clear yet. We emphasize that max(m,n) —
0o in (2.4), while min(m, n) — oo in (2.5).

By definition, (2.4) guarantees the existence of a sequence (Rmn) of
operators in U satisfying (1.9) with ¢ := o and the existence of a bundle P
such that (1.10) is satisfied for each P & P. Motivated by (2.2), set

Ron = Rt + Rin — Rmny,  mam=2,3,...
It is plain that ﬁmn € %, and for each P € P,

ﬂfémnPHm — {0 asm,n— 00
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(cf. (1.10)), but we are in trouble as to the fulfillment of an analogue of
(1.9). Since

O — Omn — w(ﬁmn)w
= (om1 — T(Bm1)w) + (010 — T{Rin)w) — (@mn — T(Rmn )},
we can only state, via the triangle inequality in L, that
6 — Omn — ﬂ(ﬁmn)wu -0 asm,n— oo,

without involving any summation with respect to m and/or n.

To sum up, in any reasonable definition of the limit relation (2.5) one has
to require the fulfillment of (1.10) with m,n — oo instead of m +n — oo.
However, it is not clear what kind of substitute for (1.9) expressing a certain
rate of approximation makes sense.

REMARK. Finally, we make a historical remark. In the classical commu-
tative case, the almost sure (everywhere) convergence of double orthogonal
series, under condition (2.3), was first proved by Agnew [1], while the reg-
ular convergence of the same double series was proved by the first named
author [10]. The reader interested in the classical theory of orthogonal series
may consult the monograph by Alexits [2].

3. Auxiliary inequalities. We recall the definition
A= (4*A)Y2, Aeq

The square root makes sense, since A*A ¢ 2. Unfortunately, the traditional
triangle inequality

| A1 + Ao} € |A1] + 42, A1, 42 €9

does not hold in general. However, the following weaker substitute Is avail-
able in any von Neumann algebra .

LEMMA 1 (see, e.g., [8, p. 4]). If ¢; € C and A; € A for 1 £ j < n, then
n 2 kil T
|3 <3 i Y14
=1 i=1 =1

The next lemma gives a simple sufficient condition for bundle conver-
gence.
Lemma 2 (see [6, pp. 30-31)). If (gmn) C Lo and
o0 o0
Y- 2 lemall® < oo,
m=1 n=1

b
then pmn — 0 G5 M+ 1 — oC.
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Actually, Lemma 2 is proved in [6] for a single sequence (g¢n) C Lo,
but any diagonalization process reduces the two-parameter case to the one-
parameter case in an obvious way. It does not matter how the double se-
quence {(Qmy) 1s rearranged into a single sequence. ’

The noncommutative version of the famous Rademacher-Men’shov in-
equality reads as follows.

LEMMA 3 (see [6] and also [8, Lemma 5.5.2 on p. 65]). Given any finite
orthogonal single sequence (§; : 1 < j < N) in Ly(2, ¢} and a number § > 0,
there exist o sequence (A; : 1 £ § < N) of operators in U and an operator
D in 24 such that

i — w(A)w]| <8, 1<jF<N,

S
=1

2
<D, 1<n<N

and .
$(D) < (log2N)2 Y " |41 + 6.
j=1
The next lemma formulates the noncommutative version of the two-
parameter Rademacher—Men’shov inequality.

LEMMA 4 (see [9}). Given o finite orthogonal double sequence (& : 1 <
i< M,1<j<N)in Ly, ¢) and a number § > 0, there exist a double
sequence {A;; 1 1 <4 < M, 1 <j < N) of operators in & and an operator
D in YUy such that

[1€s5 — 7 ( Az}l <6,

1ii Aij

i=1 j=1

1<i<M,1<j< N,

2
<D, 1<m<M, 1<n<N,

and
M N
#(D) < (log2M)*(log2N)* 3 7> lléi]* + 4.
gl gu=l
4. Proof of the main result. We begin with proving two lemmas,
which are interesting in themselves.
LEMMA 5, If (€x) 48 an orthogonal double sequence in Lo such that

(4.1) S5 lignil* (log k){log ) < oo,

k=2 [=2
then

(4.2) Q27 29 Lo asp+gqg— oo
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Proof. By orthogonality and (4.1), we have

ZZ“@MQH —ZZ Z Z 121l

p=1lg=1 p=1 g=1 k=2P4-1{=2941

Il S 151

2Pk @29l

||&1l|? (log k) (log ) < o0

118 I]8 |
e ]

o
il

2
T
N

Now, Lemma 2 yields (4.2).

LEMMA 6. If (Ex) is an orthogonal double sequence in La(2, ¢) such
that

(4.3) 3°F lewl*(log k) (log 1) <
k=2 =2
then
(4.4) Om,29 — 02,20 Lo asp+q— oo, whilem € I,

Proof. We have to construct an appropriate bundle. To this end, first
set

Brg= ), & k=23,

=291

;g=0,1,...

Clearly, for each fixed ¢ > 0, the single sequence (::kq
orthogonal in L2 and

Dk o=23,..)is

(= o)

1Ekgl? = > llgul®

I=2241
Second, let (8, : p=0,1,...) be a sequence of positive numbers such that

(4.5) > 252 < oo,

p==0
and apply Lemma 3 separately for each dyadic group
(Brg:hel,={2%,27+1,...,2°t1 _1})

with the product d,é,, where p > 1 and g > 0. As a result, we obtain a
double sequence

(471\;{,{7:74:61p forp=1,2,...;¢=0,1,...)

E(A\kq:k=2,3,...;q::0,1,...)
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of operators in % and a double sequence (D) of operators in 2/, with the
following properties:

(4.6) [Ekg — m{(Ag)w|| < 6,04, k€ I,
(4.7) |Smq ~ 85 % < Doy, me I,
where
(48) S71%:; B Z‘qu:
k=2
and
(49) ‘?b(ﬁpq) S (P+1)2 Z |l§kq||2+5p6q, P=11211 q=0113
kET,

By (4.3), (4.5), and (4.9), we have

iiqﬁ(ﬁpq) Z{(p+1)22 Z ll€ral? +55}

p=1qg=0 kelp [=2941

lémill*(log 28)* > 1 +ZZ¢5pég < oc,

q:29 <l p=1g=0
where we used the fact that Y 4§, < oo, thanks to the familiar Cauchy
inequality for real numbers. This means that the double sequence {(Dpq :

p > 1, g = 0) of operators in 2, determines a bundle, say P.
Next, we prove that

MS ﬂMS
s i

<

x
!
]
—
Il
n

(4.10)  om2¢ — Qar,20 — 7(Spng — §2p,q)w 2o asp+go oo, me L.
From (4.5), (4.6), and (4.8) it follows that

i Z Z [ (2v,20 — @m,20) — "T(gm’,q . §mq)"’-’”2
p=1mel, ¢=0
S ID 1D SYCHEE RN |

p=lmeEl, g=0  k=2P+41

o0 o0

<3N S m—- )6, < 3; 231352;052 < .

p=1mel, ¢g=0

Again, applying Lemma 2 gives (4.10).
In order to prove (4.4), it remains to show that

(4.11) ﬂ(gmq — Sgp, g )W 2o asptqg—roo, mel,.
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Since qu — Sae g itself belongs to 2, the fulfillment of condition (1.9) is

trivial. Let us check (1.10). Given any projection P in P, by (4.7), (1.5),
and the second property of a bundle expressed in (1.8), we conclude that

”(qu - SZP,Q)PIEO = HPIqu - SZP,q|2P”oo
< ||PDpgPlloc — 0 asp+g-—+o00, m€ Ip.
This justifies (4.11) and completes the proof of Lemma 6.
The symmetric counterpart of Lernma 6 is the following.

LEMMA 7. If (£x) is an orthogonal double sequence in Ly such that

33 6wl (log k) (log £)®

k=2 =2
then

(4.12) O2p,n — 020,29 2o as pg—o0, nE Iy

REMARK. It is interesting to note that after having proved Theorem 1,
Lemmas 5-7 can be essentially improved. (See Corollaries 1 and 2 in Sec-
tion 5.)

Proof of Theorem 1. We start with the representation
(4.13)  Omn = 020,20 + (Om,2e — 020,20) + (029,n — 027 24)
+ (Omn — @m20 — P2p,0 + 027,21), ME I, andn € [,

Taking into account (4.2), (4.4), (4.12), (4.13), and the additivity property
of bundle convergence, it is enough to prove that

b
(4'14) Tmn ™= Omn — Om2e — 02p,n + O20,2¢9 —* 0
asp+g—00, mEI,and n € I,
in order to conclude {2.4).

Let {5,) be a sequence of positive numbers satisfying (4.5). We apply
Lemma 4 separately for each dyadic group (éx : k € I, and | € I) with
8p8,, where p and ¢ run over the positive integers. As a result, we obtain 2
double sequence

(A :kel,andlelforp,g=1,2,...) = (An : k,1=2,3,...)
of operators in 2 and a double sequence (Dpg) of operators in 21, with the
following properties:
(4.15) ikt — m{(Ar)w|| < 3,64, k€ Iand € Iy;
(4.16) |Tran|* € Dpgy, m € Ipand m € Iy;
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where

EZAH’

k=2 =2

(4.17)  Tmn := Smn — Sm2e =~ Sapn + Sop 00 With  Spn 1=

and

(418)  B(Dpg) < (P+1*(q+1)% D" D lléwl® + 858y pig=1,2,...
kel, i€l

From (2 3), (4.5), and (4.18) it follows that

ZZ¢(qu) < ZZ{IH“l +1)22 Z“Ekinz"‘ép‘sq}

1g=1 p=1g=1 kElplel,
< ZZHSME (log 2k)*(log 21)2 (25 ) < 00.
k=2 =2

Consequently, the double sequence (Dpq : p, ¢ =1,2,..
determines a bundle, say P.
Next, we prove that

) of operators in 2.

(4-19) Tmn — W(Tmn)"-’ = Q@mn — Om,29 — Q27 n T G2p 2
— T(8mn — Sm2: — Sap.m + S2p 20w 20

asp+q— 00, m € I, and n € I (c¢f. (4.14) and (4.16)). By (4.5), (4.15),
and (4. 17) we have

53l -

M= nes

=ZZ DN DIDS (ém—ar(Am)w)“z

g=lmel, nel, k=2r+411=2e41

ZZ ST N (m-27) (n — 297576,

p=l g=1mel, nel,

T (Ln)w|*

IA

(2231’62) < 0.

LDIr—l

Again, applying Lemma 2 gives (4.19).
Finally, we show that
(4.20) (T ) = (S — Sm,20 — Sap.n + Sz 20)w = 0

as p+q — 0o, m € Iy and n € I. By (4.16) and (4.17), Tinn itself belongs
to 2, so (1.9) is automatically sat1sﬁed Given any projection P in P, by
(4.16), (1.5}, and (1.8), we conclude that (1.10) is also satisfied:

“TmnP”go = “P|Tmn|2P||oo < “PquP“oc -0
as p+ g — oc, m € I, and n € I;. This justifies (4.20).
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Combining (4.19) and (4.20) yields (4.14), and completes the proof of
Theorem 1.

5. Bundle convergence of subsequences. Instead of requiring the
bundle convergence of the whole double sequence {gmn : m,n=1,2,.. ) to
o € L, one may raise the question of the bundle convergence of a double
subsequence {@m,n, :P:q=1,2,.. .} defined in the next theorem.

THEOREM 2. If (£u) is an orthogonal double sequence of vectors in Lo,
{my:p=1,2,...) and (ng : g = 1,2,...) are strictly increasing sequences
of positive integers such that my =n; = 1, and

Tp+1 Mg+1

(5.1) Zz(iogzp) (log2q)* 3 > llgml* <oo,

p=1 g=1 k=mgy+1 I=ng+1
then

(5.2) Ompmg =

o0 oo
E Z fu Do asptg— oo

k=mp+1l=ng+1

By (2.2), we may interpret the limit relation (5.2) in the following sense:
the double subsequence {oym,,n, : 2,¢ = 1,2,...) of the rectangular partial
suras of the series in (2.1) converges to its sum o

Omymg —0 — 0 35P,g — 00
under condition (5.1), which is weaker than (2.3).
Proof of Theorem 2. Set

TMp41 Tegtl,

Epgi= 3 > &y Pa=12,...

k=mgy+1i=ng+1

Clearly, (5pq : 2,9 = 1,2,..
vectors in L, and

.) is also an orthogonal double sequence of

Mgl Mgt

=2
1Zpal>= > > lléml®
=mp+1l=ng+1
Since the consecutive remainder sums of the new series 3 2 ; 3.2 Spq
coincide with the subsequence (gm,.n,) of the remainder sums of the original
geries in (2.1):

o o o] oo
ZZEmz Z Z &, mTs=12,...,
p=r g=s k=mp+1l=n,+1

Theorem 2 is an immediate consequence of Theorem 1.
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It is instructive to consider Theorem 2 in the particular cases where

mp = 2P~ 1 and/or ng =271 pg=1,2,...

COROLLARY 1. If (€} is an orthogonal double sequence of vectors in
Ly and

o0 o
(5.3) 3 S 11wl (log log 2k)? (log log 21)? < oo,
k=2 1=2

then gzr 29 >0 as P4 ¢ — oo,

COROLLARY 2. If (&) is an orthogonal double sequence of vectors in Lo
and

(5.4) ZZHEM (log k)2(loglog 21)? < o0,

k=2 1=2
b
then Om,0¢ — 0 a8 M+ g — 00.

Corollaries 1 and 2 improve Lernmas 5 and 6, since conditions (5.3) and
(5.4) are essentially weaker than (4.1) and (4.3), respectively. Lemma 7 can
be improved analogously.
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Composition operators and the Hilbert matrix
by

E. DIAMANTOPOULOS and
ARISTOMENIS G. SISKAKIS (Thessaloniki)

Abstract. The Hilbert matrix acts on Hardy spaces by multiplication with Taylor
coefficients. We find an upper bound for the norm of the induced operator.

1. Introduction. The classical Hilbert inequality

o0 1/
(1.1) (Z p) "< Sm(ﬁ/p (Zlakl)

n=0
is valid for sequences a == {an} in the sequence spaces If for 1 < p < 00, and
the constant /sin(n/p) is best possible [HLP}. Thus the Hilbert matrix

1
()
i+3+1/, =012,

acting by multiplication on sequences, induces a bounded linear operator

o0
g
Ha=1b, bn=§n+k+11

oo
>
k=0n+k~|—1

on the [P spaces with norm ||H|i».» = m/sin{m/p) for 1 < p < co.

The Hilbert matrix also induces an operator H on Hardy spaces H?, as
explained below, by its action on Taylor coeffiicients. In this article we prove
an analogue of the inequality (1.1) on Hardy spaces. More precisely we show

THEOREM 1.1. (i) If 2 < p < oo then

()l < s 1l

Jor each f € HP,
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