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Composition operators and the Hilbert matrix
by

E. DIAMANTOPOULOS and
ARISTOMENIS G. SISKAKIS (Thessaloniki)

Abstract. The Hilbert matrix acts on Hardy spaces by multiplication with Taylor
coefficients. We find an upper bound for the norm of the induced operator.

1. Introduction. The classical Hilbert inequality

o0 1/
(1.1) (Z p) "< Sm(ﬁ/p (Zlakl)

n=0
is valid for sequences a == {an} in the sequence spaces If for 1 < p < 00, and
the constant /sin(n/p) is best possible [HLP}. Thus the Hilbert matrix

1
()
i+3+1/, =012,

acting by multiplication on sequences, induces a bounded linear operator

o0
g
Ha=1b, bn=§n+k+11

oo
>
k=0n+k~|—1

on the [P spaces with norm ||H|i».» = m/sin{m/p) for 1 < p < co.

The Hilbert matrix also induces an operator H on Hardy spaces H?, as
explained below, by its action on Taylor coeffiicients. In this article we prove
an analogue of the inequality (1.1) on Hardy spaces. More precisely we show

THEOREM 1.1. (i) If 2 < p < oo then

()l < s 1l

Jor each f € HP,
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(it) If 1 < p < 2 then
[H{zw <
for each f € H? with f(0) =

The proof will be given in Section 3 and involves an expression of H
in terms of weighted composition operators of which we can estimate the
Hardy space norms.

Recall that the Hordy space HP, 1 < p < oo, of the unit disc I is the
Banach space of analytic functions f : D — C for which

SlIl('JT/p) ”f”Hp

N AR
(12) i = ({1=Pg7) <o

for finite p, and || f)leo = sup,ep [f(2)]. For 1 < p < g < 0o we have H! D
H? 5 H? 5 H* and H? is embedded as a closed subspace in L#(T), the
Lebesgue space on the unit circle, by identifying HP with the closure of
analytic polynomials in ZP{T). Additional properties of Hardy spaces can
be found in [DU].

To study the effect of the Hilbert matrix on Hardy spaces let f{z) =
> oo @nz™ belong to H. Hardy’s inequality [DU, p. 48] says

Sl e,

n>0 n+l™

and it follows that the power series

F(z) = — )"
&= (S avr)r
n=0 k=0

has bounded coefficients, hence its radius of convergence is > 1. In this way
we obtain a well defined analytic function F' = H(f) on the disc for each
f € H. A calculation shows that we can write

: 1
(1.3) H(f)(z) = | F(t)y— db,

0 — Lz
where the convergence of the integral is guaranteed by the the Fejér-Riesz
inequality [DU, p. 46] and the fact that 1/(1 — £2) is bounded in ¢ for each
zeD.

The correspondence f +— H(f) is clearly linear and we consider the

restriction of this mapping to the spaces H¥ for p > 1. For p = 2, the
isometric identification of H? with {2 gives

[Hl g2 zrz = .
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On the other hand H is not bounded on the spaces H' and H*, For H*
this is because the constant function 1 is mapped to

1
H(1Nz) = 10g
which is not a bounded function. For H?, let ¢ > 0 and let

1
fs(z) = ;
(1-2)(tlog 115) "™
a function which belongs to H! [DU, p. 13] and is positive on [0,1]. We
assert that the analytic function ‘H(f.) does not belong to H' for small e.
Indeed using (1.3) we find

oa 1

Hif) =3 (s at)

n=0 0

and if we assume H(f.) € H! then Hardy’s inequality implies that the
quantity
oo

Znilif"fs“ -

n=0

felt

1 1
=log — } dt
fs(t)(t log t)
1
-ty log )"
is finite. For e < 1 thisis a contradlctlon.

The operator H is however bounded on H? for all 1 < p < oo. This is
known and a quick way to see it is to view M as a Hankel operator. In fact
'H is a prototype for Hankel operators (see [PA] for details). We will not
pursue this aspect further except to note that a Hankel operator is bounded
on H? if and only if it is bounded on each HP for 1 < p < oo (see [CS]}.

The results of [CS] alsc imply that H is not bounded on H*, a fact that we
obtained by a direct argument above,

Il
[y I I N e e

dt

2. H in terms of composition operators. In this section we indi-
cate how H can be written as an average of certain weighted composition
operators.

Every analytic function ¢ : I — D induces a bounded composition
operator

Cy:frrfodd
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on HP for 1 < p < oo (see [DU, p. 29]). In addition if w(z) is a bounded
analytic function then the weighted composition operator

Cu,g(f)(2) = w(2) f($(2))

is bounded on each H?. More information about these operators can be
found in [CM] or [SH]. We will not need here any of their properties except
the fact that they are bounded.

The connection of the Hilbert matrix with composition operators comes
as follows. For f € H! the Fejér-Riesz theorem, which guarantees conver-
gence, along with analyticity shows that the integral in (1.3) is independent
of the path of integration. For z € I we can choose the path

21) ) =0 = G

le. a circular arc in D joining 0 to 1. The change of variable in (1.3) gives

0<t<1,

1
1 t
2.2 = dt.
(22) H(AE) §(t—-l)z+1f((t—1)z+l)
This expression says that the transformation H is an average
1

H(F)) = | Bf) () dt

0
of the weighted composition operators
(2.3) T3(f)(z) = wil2) f(¢e(2)),
where
s ad i) =
wile) = ooy, and e = E—1z+1

It is easy to see that ¢; is a self-map of the disc, hence f ~» fo ¢, is bounded
on H?P, and for each 0 < t < 1, wy{z) is a bounded analytic function. Thus
T;: H?P - HP 1 < p < 00, 1s bounded for 0 < t < 1.

3. Proof of the Theorem. We first obtain estimates for the norms
of the weighted composition operator T;. The estimates are achieved by
transferring 7} to operators Ty acting on Hardy spaces of the right half plane,
which are isometric to Hardy spaces of the disc. The form of Tt permits
estimates of its norm, thereby the estimate for the norm of T, follows.

LemMA 3.1 If p > 2, then

1/p—1
(3.1) [Tz < m“f”_ﬂ'?, 0<t<,
for each f € HP,
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Proof. The Hardy space HP(IT) of the right half plane I7={z : R(z) >0}
consists of analytic functions f : T — C such that
oo

(32) 11y = s9p § 1@ +iw)? dy < co.

— g

-These are Banach spaces for 1 < p < 0.

Let p(z) = (34 2)/(1 ~ z) be the conformal map of I onto IT with
inverse u~1{z) = (2 — 1)/(2 + 1), and let
4m) /P
V) = s ),
It can be checked that this map is a linear isometry from H?(II) onto H?
with inverse given by

e HP(ID).

1
—1 _ -1 ]
14 (g)(z)_ ﬂlfp(l+z)2/?g(M (Z)), QGH .
Let T; : HP(IT) — HP(II) be the operators defined by
T,=vinv

and suppose h € HP(II). A calculation shows that ﬁ are weighted compo-
sition operators given by

(3.3) Ti(h)(2) = 1 _lt)ﬁlp ((

where

1
t—1)u1(z) + 1

1-2/p
) h(@t(z))a O0<t<l,

_ t 1
Bi(z)=podrop T (2)= 52+ 7

is an analytic function mapping I into itself. By an elementary argument

we see that if z € IT then |(t — 1)u=1(2) + 1| > ¢ and since 1 — 2/p > 0 we
have

tZ/pwl

ITe(h)(2)] < Ao

Ih(@:(2))]-

Integrating for the norm we have

B o = sup_( S TP dy)
D<o
t2/p-1 i 1 \ [P i/p
<oz, (1 p(eherwr ) @)
$2/p—1 oo pl—t 1/p
(1""75)2/” 11— t<x<m(_goojh(X+zY t )

where we have changed the variables X = t&-z + 13 and ¥ = 1y, to obtain
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P —

= (1 — )P pcxcoo
tl/p-—l

T {1

The conclusion follows.

1/p—1 e . i/p
t sup (| h(X +iY)PdY)
7ll ze (-

For the final step of the proof we will need some classical identities abt?ut
the Gamma and Beta functions (see for example [WW]). The Beta function
is defined by

3
B(s,t) = Sm"“‘l(l —z)lds
0

for each s,t with R(s) > 0, R(t) > 0. The value B(s, ) can be expressed in
terms of the Gamma function as B(s,t) = I'(s)I'(¢)/ (s + t). We are also
going to use the functional equation for the Gamma function

which is valid for non-integer complex z.
Now suppose p > 2 and f € H? with || flla» = 1. Then
2ar

1/»p
iH )|z = sup ( | i ere®)? %)

0

= sup (Zir ‘ §Tt(f)(rei9) dt‘p g) v

r<l 00

1 2 ] do\*®
<{ou ([ TNEEIP5)
<1

T
(by the continuous versiofl of Mir?kowski’s inequality)
= i |Te(F) e dt < it“?“l(l —t)7H7 db
0
= l33(1/10, 1-1/p)=T{1/p)l(1~1/p)
Y
" sin(r/p)’

and this gives the assertion for p > 2.
Suppose now 1 < p < 2 and f € H? with f(0) = 0. Then f(z) = zfo(z)
with ||fllz» = | fol|z». Writing H in the integral form (2.2) we see that
1

H(F)(2) = | T(fo) (=) dt
. o]
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where T; are the weighted composition operators

i t
7600 = e (Fmmen)

We now follow the proof (with same notation) of Lemma 3.1 to estimate the
normas of 7;. Letting 7; = V-1 L,V : HP(IT) — H?(IT) we find

. t 1 2-2/p

3.4) T(h =

B4 FONE) = s (o) M), o<t<l,
for each h € H?(IT). Because 2—2/p > 0 for p > 1, the rest of the calculation
in Lemma 3.1 goes through and we conclude

T tl/p—l

I Z:() > < m1
for each g € HP?. Using this norm estimate we can repeat the final step of
the proof of the case p > 2 to obtain

iy
IH(H) | rr < m“fo”m

and this finishes the proof of the theorem.

|g”HP, 0<t<l,

= mﬂfﬂma

REMARKS. We do not know if the inequalities in the theorem are sharp
but it is expected they are. Alsc we have not been able to remove the
restriction f(0) = 0 in the case 1 < p < 2. One can cbtain an inequality
which holds for all f € HP, 1 < p < 2, as follows: Write f(2) = f(0)+ fo(2)
with f5(0) = 0; then

H(F)(2) = FOYH()(2) + o) (2)
= F(0)2 Yog = + H(f)(2).

Using the second part of Theorem 1.1 and the fact that ||f — f(0)||as <
1 llze + |£(0)] < 2| F)|m» we obtain
2
H == ;
I < (e + )17
an inequality which is certainly not the best.

1
Ogl—z
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