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STUDIA MATHEMATICA 141 (1) (2000)

Weighted weak type (1,1) estimates for
oscillatory singular integrals
by
SHUICHI SATO (Kanazawa)

Abstract. We consider the Aj-weights and prove the weighted weak type (1,1) in-
equalities for certain oscillatory singular integrals.

1. Introduction. Let K ¢ C*(R™\ {0}) satisfy
(1.1) |K(z)| <clz™",  |[VE(2)] < caf™™7
(1.2) | K()dz=0 forallab(0<a<b)
a<frel<b
The smallest constant for which (1.1) holds will be denoted by C(K).
We consider an oscillatory singular integral operator:

T(f)(@) =pv. | FCOVK (- y)f(y) dy
IRYL

=lm | VK (- y) ) dy,

g0
lz=yl>e

initially defined for f € &(R"™) (the Schwartz space), where P is a real-valued
polynomial:

(1.3) Pl,y)= Y,

o] <2, |B] SN

aesTYP.

The following results are known.

TuroreM A (Ricci-Stein [9]). Let 1 < p < oc. Then T is bounded on
LP(R™) with the operator norm bounded by a constant depending only on the
total degree of P, C(K), p and the dimension n. ‘

TrzoReEM B (Chanillo-Christ [2]). The operator T is bounded from
LY(R*) to the weak L*(R™) space:

2000 Mathematics Subject Clussification: Primary 42B20.
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2 8. Sato

f\l;%hl{w € R™ Tz} > Al < el fllzs,

with a constant ¢ depending only on the total degree of P, C(K) and the
dimenston 1. ‘

See also [1] and (3] for the weighted weak type (1,1) estimates for con-
volution operators with oscillating kernels.

Let w be a locally integrable positive function on R™. We say that w £ A;
if there is a constant ¢ such that
(1.4) Mw)(z) € cw(z) ae.
where M denotes the Hardy-Littlewood maximal operator. The smallest
constant for which (1.4) holds will be denoted by Cy(w).

In this note we shall prove that T is bounded from L}, to L1 (the weak
L}, space) for w € A;:

THEOREM. There exists a constant ¢ depending only on the total degree
of P, C(K), C1{w) and the dimension n such that

sup dw({z € R™ : [T(f)(2)| > A}) < el fllzs,
A>0

where w(E) = {gw(z)dz and ||flly, = §1f(z)|w(z)de.

The theorem will be proved by a double induction, as in [9] and [2]. Let
P be a polynomial as in (1.3). We assume that there exists a multi-index «
such that |a| = M and aqp # 0 for some 3. We write

(L5) Pay) = 3 2°Qa(y)

] <0
and define

L = max{deg(Qu) : Qu # 0, o] = M}.
Then 0 < L < N. We assume that L > 1 and

X, |aap| = 1.
‘ 18l=L
Under this assumption on the polynomial P, we define
Tu(@)= | &P"VE(@—y)f(y)dy.
lz—-y>1
To prove the Theorem, we shall use the following result in the induction.
PROPOSITION. Let i > 0. There exists a constant ¢ depending only on

the total degree of P, 1 and the dimension n such that if C(K),C, (w) <,
then

sup u({z € R : (Tun (@) > A < el 1y
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REMARK 1. By the Theorem and the extrapolation theorem of Rubio
de Francia, we get the L2-boundedness of T for all p € (1,0c) and all
w € A, where L, is the space of all those measurable functions f which
satisfy || filzz, = ({|f(z)|Pw(z) dz)'/P < oo and A, denotes the weight class
of Muckenhoupt.

We shall give the outlines of the proofs of the Theorem and the Proposi-
tion in Sections 2 and 4, respectively. Our proof of the Proposition is based
on the techniques used in Christ [5] to prove the weak type (1,1) estimates
for rough operators (see also Christ [6], Christ-Rubio de Francia [7] and Sato
[10]). We also use the geometrical argument of Chanillo-Christ [2]. We have
to prove a key estimate (Lemma 7 in §5) in the unweighted case in order to
apply the method of Vargas [11] involving an interpolation with change of
measure. To prove Lemma 7, we need a geometrical result for polynomials
(Lemma 5 in §5). We shall prove Lemma 5 in §7 by using the results and
arguments appearing in the proof of Chanillo~Christ [2, Lemma 41].

Finally, we note that in this paper, the constants with the same notation
are not necessarily the same at each occurrence.

2. Qutline of proof of the Theorem. To apply the induction argu-
ment of [9] we need some preparation. We may assume that M > 1 and
N > 1; otherwise the Theorem reduces to a well-known fact that the oper-
ator

A(f)(w) =pv. | K(z ~ ) f (W) dy

is bounded from L} to L (see, for example, [8]).
‘We write a polynomial in (1.3) as follows:

M M
Pla,y) =Y. 3 2%Qaly) = D _ Filz),
F=0

j:U |a|mj

say. We further decompose P; as follows:

N N
Pi(wy) =Y ¥ aapny’ = > Prlz,u),
=0 || == =0
|B]=t
say. For § =1,...; M and k = 0,1,...,N, define
j-1 k
(2.1) Rix(m,y) = 3 Pa(z,9) + 3 Pie(,9)-
g=0 $=() ’

Note that Ry = S0 _oPs (j=1,...,M). _
For j = i, . ,ME and k = 0,1,..., N, we consider the following propo-
sitions.
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PROPOSITION A(4,k). Let i > 0. There exists a constant ¢ depending
only onn, j, N and the dimension n such that if C(K),Ci(w) <7 and if
Rj is a polynomial as in (2.1), then

sup Aw({z € R™ : [Ti()(@)] > A) < cfl £y,

where
Tin(f)(z) =pv. | eF*EVK (2 — 1) f(y) dy.
]Rﬂ

Then the Theorem follows from Proposition A(M, N). We shall prove it
by double induction. We first note that A(1,0) follows from the LL-LL*
boundedness of the operator A.

Next, we observe that if M > 2 and if A(j, N) (1 € j < M —1) is true,
so is A(j + 1,0) since

Ripio(®,y) = Ryn(z,9) + D, 002"
leef=g+1
and hence |Ti+10(f)z)| = [Tin(f)(z)|. Thus, to complete the induction
starting from A(1,0) and arriving at A(M, N), it suffices to prove A(j, k+1)
by assuming A(j,k) (0 € k < N, 1 < 7 < M). To achieve this, put R =
Rjry1s By = Rjk, Tip1 = S. We note that

R(z,y) = Ro(z,9) + > aapz®y’.
. Jox|=3
18] =k+1
We may assume Cjy = MaX|q)=j, |8|=k+1 [Gasl 7 0. Then by a suitable di-
lation we may assume Cj, = 1. This can be seen as follows. We first note
that, for a > 0,

S(f){az) = p.v.| eV K, (z - y) fay) dy,

where K,(z) = a" K (az). Assume the boundedness of S for the case Gy, = 1.
Then, choosing a to satisfy a?**+C;; = 1, and using the dilation invariance
of both the class Ay and the class of kernels satisfying (1.1} and (1.2), we
get

w({z € R* 1 [$(f)(@)]| > A} = wal{z € R" : |5(f)(az)| > A})
et S |f(ez}a"w(az) dx
A" iz, -

We split the kernel K as K = Ky + Ko, where Ko(z) = K(z) if |z| < 1
and Koo{z) = K(2) if || > 1. Assuming Cj, = 1, we consider the corre-
sponding splitting § = S5y + Seo:

So(f)(z) = pv. | RE¥ Koz — ) £ (y) dy,

IA

Il
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Saa(£)(2) = [ RED K (@ — 9) F () .
In the next section, we shall prove
{2.2) Sup Aw({z € R 1 |Sa(f) ()] > A}) < dfifllza,,
while by the Proposition we have
(2.3) sup hu({z € R™ : [Soo(f)(2)] > A}) < ellfllzy,-

Combining (2.2) and (2.3), we shall complete the proof of A(4, k1), which
will finigh the proof of the Theorem.

3. Estimate for S5j. In this section, we shall prove, under the assump-
tion made in §2, that if C{K),Ci(w) < n (n > 0), then Sy satisfies {2.2)
with a constant ¢ depending only on j, N, n and n.

Pirst, we shall prove

(31  w({z e BO,1): SN > <ea | F@) () dy,
lyl<2
where B(z,r) denotes the closed ball with center x and radius 7 > 0.
Lemma 1. Let w € Ay, Let T' be an operator of the form
T(He)=pv. | K@i@dy=lim | K@pfWdy ae
Rn lz—y|>e

for f € LY, where the kernel K satisfies | K (z,y)] < cglz —y|™™. Fore >0,
put

T.(f)z)=pv. | K{zy)f(y)dy.
|z—yl<e
Suppose

iupf\w({w € R : [T(f)(z)] > A}) < ewllfllry,

>0

Then there exists a constant ¢ depending only on the dimension n such that
sup du({z € R* ¢ [Te(f) ()} > A}) < elew + coCr(w)) |1 f 2, -
A>0

Proof. The proof is similar to that of the Lemma in [9, p. 187]. We shall
prove
(32)  w{{z € B(h,e/4):|T.(f)(=)| > A})
< (2ey + ceopCr{w) A S
|y—hj«<be/4

uniformly in h € R™. Integrating both sides of the inequality in (3.2) with
respect to h, we get the conclusion of Lemma 1.

|f{)hw(y) dy
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Split f into 3 pieces: f = fi+ fa+ f3, where fi(y) = f(y) if [y—h| < /2,
fily) = 0 otherwise; faly) = fly) if &/2 < |y — hl < 5e/4, fa(y) = 0
otherwise; f3(y) = f(y) if |y — h| = 5e/4, f3(y) = 0 otherwise. Note that if
lz—h| < /4, then To(f1)(z) = T(f1)(z) since [y—h| < g/2 and |z—h| < /4
imply |z — y| < €. So by the assumption on T, we have

w({z € B(h,e/4) : {T:(f1)(z)] > A})

= w({z € B(h,e/4) : [T(f1)(z)| > A})
<w({z : [T(fi)(z)] > A})
< A frllzy,

P S
ly—h|<Be/4

|F{)lw(y) dy.

Next, if [g—h| < /4 and /2 < ly—h| < B5e/4, then g/4 < |z—y| < 3¢/2,
and so

)@ < e |
|y—hi<5e/4

fa(y)l dy.

Hence, by Chebyshev’s inequality,

w({z € B(h,e/4) : |Te(f2)(z)] > A})
< ceoA"rw(B(h, e/4))e™™ S
|ly—k|<be/4

() wly) dy.

| f2()| dy

< ecpCr(w)rt S
|y—h]<5e/a
Finally, if j# — h| < &/4 and |y — h| > Be/4, then |z — y| > &, and so

Te(f3)(z) = 0. Combining these, we get (3.2). This completes the proof of
Lemma 1.

Now we turn to the proof of (3.1). If |z} < 1 and |y| < 2, then

l exp(iR(z, y)) — exp (z (Rg(m,y) + Z aaﬁy“+’3))1 < cle -y,
!.Blﬂiil

where ¢ depends only on k,j and n.
Hence, if |z| < 1, then

SoeN@I < W(ew (i Y awsy™) 1)) (@) + eI()(a),

|cef=d
|Bl=k+1
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where
U(f)(z) =pv. | BV Ky (z — ) £(y) dy,
INHy= | |-y fy)dy.
|-yl

Note that U(f)(:c) = U(fXB(O’g))(.’B), I(f)(;r;) = I(fxB(Q,g))(I) if |CE1 < 1.
By the induction hypothesis A(j, k) and Lemma 1, we see that U is bounded
from Ll to LL*. On the other hand, since

| -y =Y

iz — y| " Prw(z) dz

le—pi<l L0 2 1<|z—y| <29
<ey 227 | w(z)de < eM(w)(y),
3<0 le—yl|<2i

by Chebyshev’s inequality we have
w({z € B(0,1) : I(f}{z) > A})

<3t (] ey () de) | F ()] dy
[¥]<2  |z—yl<1

<cCi(w)a™ | 1F@)hey) dy.

lul=<2

Combining these results, we get (3.1).
Similarly we can prove

(33)  w({zeBRhD:|SHNEI >N <™ | [f»)hwly) d,

ly—hi<2

where ¢ is independent of h € R™. To see this, we first note that

So(f)(@ + h) = p.v. | RPN Ky (2 — y) fly + R} dy
and

Rz + h,y+h) = Ri{z,y,h) + Z apr™Y?.
1£}?——|*?’1’—1
We can apply the induction hypothesis A(j, &) to the operator
pv.|eFEVM K (@ — y) f(y) dy

to get its boundedness from LY to L. Thus, by the same argument that
leadls to (3.1) we get
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w({z € B(h,1) : [So(f){z)] > AP
= mpw({x € B(0,1) : |So(f)(z + h)| > A})

<ed™ | |fy+mwly +R)dy
|yl <2

<eA?t S
ly—h|<2

| £ (w)|wly) dy,

where mpw(z) = w(z + h), and we have used the translation invariance of
the class A;. Integrating both sides of the inequality {3.3) with respect to
h, we get (2.2).

4. Outline of proof of the Proposition. We may assume f € G(R").
By Calderén-Zygmund decomposition at height A > 0 we have a collection
{Q} of non-overlapping closed dyadic cubes and functions g, b such that

(4.1) F=g+b
(4.2) A<l Al < ey
Q
(£.3) @(UQ) < ellfllza/A  forallve A
(4.4) lgllco < €A;
(4.5) lollz: < eollfllzz  for all v € A
(4.6) b= bo;
Q2
(4.7) supp(bg} C @;
(4.8) SbQ = 0;
(4.9) ballzs < eAlQ].

REMARK 2. In this note we do not use (4.8).

Let a polynomial P be as in the Proposition. We assume, as we may,
that M > 1 as in the outline of the proof of the Theorem in §2. We write
P as in (1.5). Then let q(y) = 351, ca%” be the coefficient of 2. By a
rotation of coordinates and a normalization, and by discarding a negligible
difference, we see that to prove the Proposition we may study T, assuming
max|g|=y, |cg| = 1; in this case the condition max|g|=ar, g|=r |@ap| = 1 may
not hold (see [2, p. 151] and Sublemma 2 in §7).

We pick a non-negative p € C§°(R") such that

supp(p) C {1/2 < |z]| < 2}, ic,a(’fjn:) =1 if|z]> L
=0

icm
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Put Kj(,y) = 027 (z—y)) K (z,y), where Koo(z,y) = e PENK (2 —y)
(Koo(z) is as in §2) and decompose Koo (z,y) as Koo(2,y) = 3o Ki(2,9).
Define

Vilf)(e) = K;(z,9)f () dy  for 20
and put

V()= V;(H)lz).
i=1

Then To = Vo + V. In the following, we study V' only, since we easily see
that Vo is bounded on L, (w € A;).
We set (see [5-7])

Bi= Y bg (i=1), Bo= Y b
Q|=2tn lQI<1

Put 4 = |J 0, where () denotes the cube with the same center as @ and
with sidelength 100 times that of €. Here and below all cubes we consider
have sides parallel to the coordinate axes.

When z € R™ \ U, we observe that

(4.10)  V(b)(z) = V(Z B (@) = 3, > § Kile,u)Bily) dy

i>0 i>0 §>1
=" > {Kiz,9)Bily) dy
120 §2i41
=S N (K v)Biswydy =D Y VilBj-s)(z)-
s>l ji>s s>1j>s

In §5 we shall prove the fellowing.

LEMMA 2. Suppose w € Ay. There exzists an € > 0 such that, for any

posilive integer 3,
H Z V; (Bj —s)
izs

In §6 we shall prove the following.

2
—E£Ss
., Sy,

w

LEMMA 3. Suppose w € Ai. Let |« |lo,w denote the operator norm on
L2 . Then there exist constants ¢,d > 0 such that

1Villgw € c27%  forallj = 1.

Assuming Lemmas 2 and 3, we now prove the Proposition. From Lemma
3 we easily see that V' is bounded on L%, By this boundedness, (4.1), (4.4),
(4.5), (4.10) and Lemma 2 we have
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(411)  w({z e R*\U : [V{F)(@)] > A})
<w({z e R*\U : [V(g)(z)| > A/2})
vwl{z e RP\U : [V(b)(z)| > A/2])

2
< X glty + A% 3D Vi(By-)

s>1jza L%
< Al + ot (e g 7Y’
521
< fllny.
On the other hand, by (4.3) we see that
(412) wld) < cad | fllzy -

Combining (4.11) and (4.12), we get the boundedness of V" from L, to L1,

This completes the proof of the Proposition.

5. Proof of Lemma 2. For k,m.z 1, put
(5.1)  Hum(z,y) = | Kilz,2)Km(zy) dz
= [eT FEAITPENR (2 — 2)K (2 — y)r(z — 2)pm(z ~ y) d.
Then ViV (f)(z) = | Hem(2, ) f(y) dy, where V* denotes the adjoint of V.

LeMmAa 4. Let k > m > 1. Then Hgp(x,y) = 0 unless [z — y| < 42%;
and

(1) [ Hgm(z, )] < 277,
(2) [ Him(z, y)| < 275727 ™ g(2) — g(y)| /M.

Proof. We prove the estimate (2) only since the other assertion imme-
diately follows from (5.1). We first note that

(8/821)M(P(2,2) — Pz,y)) = M){(q{z) — a(v)).
Hence, from van der Corput’s lemma it follows that

b
l Sei(P(z,:z:]—~P(z,'y)) dz| < cla(z) — aly)| =™,
Q@
for any a and b (see [2, p. 152]).
"Therefore by integration by parts in variable z; in (5.1), and by using
the estimates in (1.1), we easily get the conclusion.

For the rest of this note P{z) will denote a real-valued poiynomial on R™.

icm
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DEFINITION 1. For a polynomial P(z) = 2jat<n a3 of degree N,
define B

[Pl = Egllg:lcvlaa[-

DEFINITION 2. For a polynomial P and 8 = 0, let
R(P,f)={z e R" : |P(z)| < B}.

Let d{E, F') denote the distance between sets E and F. We now state a
geometrical lemma for polynomials which will be proved in §7.

LemMA 5. Let k, m be integers such that k > m. Suppose N > 1. Then,
for any polynomial P of degree N satisfying | P|| = 1 and any v > 0, there
erists a positive constant Cn n . depending only on n, N and v such that

[{z € B(a,2") : d(z, R(P,2"™)) € v2™}| < C’n,NﬂZ(n_l)kZm
undiformly in o € R™,

Let A > 0 and let {B;};50 be a family of measurable functions such that
(52) }1B;| < A
Q@
for all cubes @ in R™ with sidelength £(Q) = 27.
Then we have the following.

LeMMA 6. Let the kernels Hy; be as in Lemma 4. Then we can find a
constant ¢ such that
J

> sup |{Bis(y) Ha(m,y) dy| < eX2
=8 z€R®

for all integers § and s such that 0 < 5 < 7.

DeriNITION 3. For m € Z (the set of all integers), let Dy, be the family
of all closed dyadic cubes Q with sidelength £(Q) = 2™.

Proof of Lemma 6. Fix z € R®. Let
F={QeDi.:QnB(x2"?)#£0 (0<s<i<y).

Then cleatly 30 r |Q| < c2im,
Decompose F = Fy U F1, where

Fo={Q € F: QNR(g(:) — q(x),2"¢7)) # 0}
and Fy = F \ Fo. Then by Lemma 5 we have
(5.3) Y @l < ealnanie,

QEFo
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By Lemma 4(1), (5.2) and (5.3), we see that
G4) > VB H(my)ldy < 2™ Y | |Biss ()] dy

QEF Q QeFu @
' <e2™A 3 |Q|
QeFo
< e27impgn-ligize
= cA2i7I7e,

Next, by Lemma 4(2), (5.2} and the estimate Poer 1@< 2’ we have

55) > VIBica@)Hji(z,y)l dy

Qern Q

< c@mingTigm k=M N i, (y)|dy
QER Q

< 27Imgig I /MA N Q) < eagTign Eim /M,

QeF

From (5.4) and (5.5) it follows that

$1Bivs @) Hjslz,p) dy = Y | 1Biss(y) Hui(, y)| dy
QeFQ

=3 > 1By} Hyslz,v)l dy

v=0QEF, Q
< eA(2879 4 gmigm hli-a)/My
Thus we see that
j j
25;115: $1Bizs(v) Hyi(z,y)| dy < A > (@i i Rliza) My

i=s i=s

< ex2™0.

This completes the proof of Lemma, 6.

By Lemma 6 we readily get the following.

LeMMA 7. Let {B;};»0 be as in Lemma 6. Suppose >isolBilizr < oo

Then, for any positive integer s, we have

2
| 2 VilBsn)|, < 027 Y Byl
3-8

jz0

icm
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Proof. Let {-,-} denote the inner product in L2, Using Lemma 6, we see

that
IS vitsin|, <230 S 1 Bs- ) ValBia)

izs izsi=s

<2 Z Z |<Bj_3, V;,*K(Bz—s»!

j2$ i=8
i
<23 S B 12 V7 Vil(Bis) | oo
=28 i=3s

<cA27F Z ||Bj»-sHL1-

Jzs

This completes the proof.

DEFINITION 4. For each j > 0, let G; be a family of non-overlapping
closed dyadic cubes @ such that £(Q) < 2¢. We suppose that if Q &
Giy, B € Gy and j # k, then Q and R are non-overlapping and that

Piz0 Ecgegj- Q] < 00. Put § = ;5,5
Let A > 0. With each @ € § we associate fg € LY such that

| Ifol <AIQI,  supp(fo) c @.

A; = Z fa-

Qeg;

We define

LEMMA 8. Let v be a locally integrable positive function and let s be a
positive integer. Then

| > vitas-) i <X Y |Qlinf MM(),

iZs * Qeg

where infg f = infaeq fx).

Proof. The proof we give here is essentially the same as that in [11]. We
include it for completeness. We may assume Yo |Q|infq MM(v) < oo.
Let {-,+}, denote the inner product in LZ, Then, if s < i < 7, we see that

“G(Aj—a)sVi(Ai—a))u :
= S (S Kz, y)Ai—s (1) dys Kz, 2)A;—5(2) dz)v(w) dx

= (i) § Aica () [ K5 (2,0) Bis(, 2)0(a) do ) dz dy.
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Put
oy, %4, §) = 27727 J
B(9,29T2)NB(2,2412)
Let cg denote the center of a cube Q. If Q € G;,, R € G;_, and if
By, 2/72) intersects B(z,2772) for some y € @ and some z € R, then
R C Bfeg,n'/?29%19), Thus we have

v{z) dz.

i
D HVi(Ai=a), Vildiza)bol

i
ZS | Aj—s{ Slu‘lws(z)Jv(y,z i,4)dzdy
]

=c Z SlfQ(%‘)JZ Z S‘fR(ZNU(y,z;@',j)dzdy
QEGi—« i=3 REG; s
' J

<c Y r{|fowldy Y ) inf M(v) | | fa(2)] dz
Q€G;-s i=s REG:—,

RCB(oq,nlf?29+10)
= I}
say. Since

inf M (v) | {fr(2)| dz < A|R] inf M(v) < A | M(v)(2) dz
R
and cubes in § are non-overlapping,

I<eh B gmin {

M(v)(z)dz| | fo () dy

QEG;-, B(eg,n'/227+10)
<ech fMM dy < e)? inf MM (v).
cA > in @) lfow)ldy <c 3 \QI% (v)
Qeggms Qegj—ﬂ

Therefore, we get the conclusion by summing over j > s, since

| v, <230 S 10 -0, Al
jzs h

F>a dm=s
We prove Lemma 2 by the interpolation argument of [11] between the
estimates of Lemmas 7 and 8.

LEMMA 9. Let F denote the family of dyadic cubes arising from the
Calderdn—Zygmund decomposition in §4. Then, for all t > 0, we have

icm
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2
| {Z W(Bj_g)(x)| min(v(z), t)dz < X’ Y Q| min(tT",igf MM®@)),
izs QEF
where g is a positive infeger and v is a locally integrable positive function.
Proof We define

={Q E.F:ingM(v) < t27°}
and 7} = F\ F. For 5 > 1, put

D, be, Bi= ) b

|Q|=2'" 1Q|=2%"
QEF: QeF;
and
Bp= Y bg, > b
Q<1 Q=1
QeF: QerFy

Then B; = Bj + B} for j > 0. Hence

S l E VJ'(Bj—s)(m)r min(v(z), ) dz

N 2] !;w(B;_s)(m}‘"’mm(v(:c),t)dm
+2f | LWL (@) min(o(z), ) do
|§JVJ Bl z)\ 2)da + 2| ’ZV(B” *tda
=TI+11
say.

Applying Lemma 8 with 4; = ¢ B (see (4.7) and (4.9)), we get

IgeXN Y |Qinf MM(v) =c) Y |Q|min(t27° Jinf MM (v)).
QeF QeEF:

By Lemma 7 with B; = cz B} (see (4.7) and (4.9)), we have
1< ex2™ S |BY |l <eX?27° 3 1@

§=0 QEF}
=cX Yy @ min(t2™, inf MM (v)-
QEFs
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(Here ¢; and ¢o are normalizing constants.) Combining the estimates for 1
and I], we get the conclusion.

Now we finish the proof of Lemma 2. Multiplying both sides of the in-
equality in Lemma 9 by t=9 (6 € (0,1)), then integrating them on (0, o0)
with respect to the measure dt/t and using

o0
dt
S min{ A, £)t=% =
5 i

=cpA’® (A>0) for some cp > 0,

we get

56) || VB @) @) e

i>s

<cX? Y Qe inf MM (v )i
QeF

<27 3" | 1 f(x)] de i%EMM(u)l"ﬂ
QEFQ
< ex2”% [ £(2)| MM (v) ()"~ da,

where the second inequality follows from {4.2).
If w € Ay, then w'™ € A; for some § > 0; so substituting w'*¢ for v
and putting 6 = ¢/(1 4 4) in (5.6), we get Lemma 2.

6. Proof of Lemma 3
LEMMA 10. Let || |l2 denote the operator norm on L2. Then, for j > 1,

Cia, 273/2-min(L/MM/L)ij2  (pf o4 L)
Vill2 £ ’ j ’
[Vill2 { Cpr 227 (M =1L).

Estimates of this kind have been obtained in Ricci~Stein [9]. Here we
give an alternative proof.

Procf of Lemma 10. Fix z. Let
B =R(g(-) — g(e), 277"y N B(2,2*?) and F = B(z, 2%\ E.
Define
£={Q€D_jnyr: @NE # 0},

where [a] denotes the greatest integer not exceeding a. Then by Lemmas
4(1) and 5 we have

(6.1) S \Hys(z,0)ldy < 3§ [Hys(a, ) dy < 27" 57 |Q)

- QEEQ QeE
< e2mIpT ML

icm
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For v =10,1,..., let
Fy = Bz, 2" n (R(q(")
Then F = J,_,

~ (=), 27T\ R(g(-) — g(x), 277MHY)).
F, For 0 <w<j(M+L)—1,let
Fo={Q € D_yp—v-1y1): @NF, £ 0}.
Then by Lemma 5 we have
\F,| < Z Q| < c2ftn—tg-lGM-v-1)/L]
QEF,

So by Lemima 4(2) we see that

S VHj i (z,y)| dy < 272329 v/M | | < po—ig-v/Mg-IiM—v—1)/1]

Fu

< C2 jz—-jM/L2 1/M I/L)
Thus, if M # L, then
FMAL)-1

(6.2) > VIH () dy

=) Fy

S cz—jz-—jM/L(z'm(l/Mwl/L) _ 1)—1(2—j(M+L)(1/M—1/L) — 1)

2 (oMLY _

and if M = L, then
FMAHLY~1

(6.3) ST | Hymy)ldy < e27¥5(M + L),
v=0 Fy

l)_1(2"jL/M _ 2«jM/L);

Finally, by Lemma 4(2) we have
(6.4) S |H;i(z,y){dy < cging~ig—iL/M U Fy’

Uvpsominy Fe Ve (M4L)
< ga~igIb/M,
By (6.1)--(6.4) we see that

Oy g2 3 minBMMITN (M £ L),
sup §I1H i ()l dy < {Csz—zj (M =L).

We have the same estimate for sup,, {|Hj;(z,y)}| dz. From these results
we get the conclusion since

IV V3l < (up gm0 ) (sup] i) o 2) il

and [|V5Vjll2 = |V;13.
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Now we prove Lemma 3. It is easy to see that |Vj||2,w < ¢w. By inter-
polation with change of measure between this estimate and that of Lerama
180, we get
(6.5) Villawe < %,92_(1_ﬂ)j/2
for all 6 € (0,1). We have w't® £ A for some ¢ > 0; so substituting w!*¢
for w and putting € = 1/(1 +¢) in (6.5), we get the desired estimate.

7. Proof of Lemma 5. Our proof is an application of the methods
appearing in the proof of [2, Lemma 4.1]. We use some tools and results
given in [2].

Drrmrrion 5. Suppose n > 2. Let
Sm={Qm + (0,...,0,7) : j € Z},
where m = (my,...,mp_1) € Z" 71 and @, = [0, 1" + (ma,..., Mpny, 0).
We call S, a strip.
DEFINITION 6. Suppose n > 2. For m € Z*1, we define
Lo = {Qm +(0,...,0,7) 1 ju < § < ja},

where ji, jo € Z U {~oc0,00} and @Q,, is as in Definition 5. We call I,, an
interval,

DEFINITION 7. For a set B C B, we put
N(E)={z e R" : d(z,E) < 1}.
Let P be a polynomial of degree N as in Lemma 5. We consider R(P,3)
for 3 > 0 (see Definition 2).

LeMMA 11. Suppose that n > 2 and N > 1. There exists a positive
integer Cp, v depending only on n and N such that for i = 1,...,Chon we

can find U; € O(n) (the orthogonal group) and families of cubes Im,i C Sm
(m e Z™1) so that

(1) N(R(P,3)) Uf’;“l‘N U;(L;), where
£i=U{Q:Q€ U Jm,i};
mezn—l
(2) card(Jim,i) < c for some constant ¢ depending only on n, N and a.
REMARK 3. If Lemma. 11 holds, then we have, for any v > 0,
Cn‘N,'r
o d@RE A < | UL
i=1

for some positive integer Cy, y,, depending only onn, N and v, where U; and
L; are as in Lemma 11. This can be proved by considering a finite number
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of polynomials which are defined by translating P and by applying Lemnma
11 to each of them. (See [2, p. 149].)

To prove Lemma 11, we need the following results given in [2].

SUBLEMMA 1. Suppose nn > 2. For any positive integer N, there exisis a
positive integer Cp, n depending only on n and N such that for any strip S,
any polynomial P of degree N and any v > 0,

{Q es:@NR(EY) # 0}
is a union of at most Cy, v intervals. (See Lemma 4.2 of [2].)

SUBLEMMA. 2, Suppose n > 2. For any positive integer N, there exist

positive constants An n and By n depending only on n and N such that
AnN||P| £ iPo Z|| < Ban| Pl

for every polynomial P of degree N and every Z € O(n), where Po Z(x) =

P(Ex).

SuBLEMMA 3. Suppose n > 2. For any posilive infeger N, there exists
o positive constant C,, n depending only on n and N such that for any
polynomial P of degree N we can find © € O(n} so that

gin ||D5(Po8)|| = CrnliP o el

where D; = 08/0zx;.

Now we prove Lemma 11. We use induction on the polynomial degree
N. Let A(N) be the assertion of Lemma, 11 for polynomials of degree N.

Proof of A(1). Let P(z) = > i, a:z; + b. First, we consider the case
|an| = 1. Now we show that if I is an interval such that each cube of I
intersects R{P, ), then card(I) < c for some ¢ depending only on n and /3.
Let y € Q & I satisfy |P(y)| < 8. We note that

P(y+dey) — Ply) =da, fordeR,

where e; is the element of R* whose jth coordinate is 1 and whose other
coordinates are all 0. Therefore, if y + de, € Q' € I, we see that

i T
ziélé, |P(2)] 2 |P(y + den)| — ; |as] = |dan| — B8 — ;M) > |d|— B —n.
This easily implies that card(I) < c.
By this and Sublemma 1, there exists a constant c depending only on n

and 3 such that

card({Q € §: QNR(P,B) #0}) < ¢
for all strips §. Therefore, if we put

Jm ={Q € Sy : A(Q,R(P, f)) <1},
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then card(Jn) < ¢ for some ¢ depending only on n and 3; and N (R(P, 8)) C

L, where
[::U{Q:Qe U Jm}.
meEn—1

Next, we consider any polynomial P of degree 1 such that ||P|| = 1.
Then if Pi(z) = P(Uz) for a suitable U € O(n), we have D, P, = 1.
Hence, by what we have already proved we get A (R(P1, 8)) € £. It follows
that M{R(P,3)) C U(L) since N(R(P o U, )} = U"IN(R(P,B)). This
completes the proof of 4(1).

Now we assume A(N ~ 1) (N > 2) and prove A(N). For a polynomial
P of degree N such that [|P|| = 1, we choose @ € O(n) as in Sublemma, 3.
Put

Ey = R(P26,8)n (| R(D;(P20),8));
i=1
and for £ = (K1,...,6p) € {~1,1}" put

Ey={z €R(P00,8): £;Di(Po@)(z)>pfor j=1,...,n}

Then
R(Poesﬁ):EOU U By
me{—1,1}»
and so
(7.1) NRFPo8,8)=NEB)U | NEo).
wef{-1,1}n

We separately treat the 2" + 1 sets on the right hand side.
First, clearly

(72) N () € | N(R(D; (P o 0), 8))

§=1

Since O = [|D;(P 0 @)|| ~ 1 (this means that ¢~! < |D; (P o @) <
¢ for_slome ¢ > 1 depending only on n and N) and R(D;(P o @®),8) =
R(C;D;(P o ©),C;*B), we can apply the induction hypothesis A(N - 1)
to the right hand side of {7.2).

Next, we fix & and consider N (B, ). Pick O, O(n) such that O,(e,) =
n~Y2k. Define .

T

Dj=Do\{QeDy: (UR((Dj(Po@))OON,B))HQ%(D}.

g=1
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Since ||(D;(P o 8)) 0 O, ~ 1 by Sublemmas 2 and 3, we can apply the
hypothesis A(N — 1) along with Remark 3 to

G=U{Qetpg; (QR((Dj(Po@))oOMﬁ))HQ%@}

to get
(7.3) N(@) cljuie)

for some U] € O(n) and some £} such that
g=U{eee U 7
mezn—l

for some Jy, ; (C Sm) satisfying card(J;, ;) < c.
We have to study O71(E,) N|JD;. First, we note that if O;1(E,) in-
tersects @, @ € Dj, then

(7.4) in ki D;(Po@)(Opy) > forallye Q.
<i<n
This can be seen as follows. Suppose that there are j3 and yp € @ such
that k4,0, (Po@}(Ouyo) < 8. Then, since we have x;, Dy, (Po©)(0xz) > 8

for some x € @, by the intermediate value theorem we can find z € Q such
that | Dj, (P o ©)(Okz}| < B. This contradicts the fact that Q@ € Dg.

By (7.4) we have
(75)  OME)N| DS
cl {QeDs: zin ki D;(Po8){(Oxy) > Blorally € Q
and R(P o @00, ) NE # 0},

For a strip 5, put
E={Qef: 112112 ki Di(Po@)(Ogy) > Blorallye @
<jsn
and R(Po@o 0 3)NEQ # 0}

We shall show card(€) < Cn v
We first see that £ is a union of at most C, » intervals. Put

E={Qes: |in D;(Po@)Oky)| > B forall y € Q
<j<n
and R(Po @00, B8)NQ # @}.
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Then

n

£ =([(S\{Qe S : R((D;(Pe6)) 00, 8)NQ #0}))
j=1
N{QEeS:R(Po@s0,,8NQ #}

We observe that the complement of a finite union of intervals in a strip S
is also a finite union of intervals, and the intersection of finite unions of
intervals is also a finite union of intervals. Hence, by Sublemma 1 we see
that £ is a union of at most O, v intervals: £ = U; Ji-

Consider any J;. Then by the intermediate value theorem we have either

lgign kiDj(Po®)(Ouxy) >p forallye U{Q 1 Qe Ji}

or
o0 k;D;(Po®)(Ouy) < —f forallye| J{Q: Qe s}

Thus £ is a union of a subfamily {L;} of {J;} : £ =, L.
Let I be any interval in {I;}. We need the following (see [2, p. 151]).

SUBLEMMA 4. There exists o constant c,, depending only on n such that
if T, €I and y, — o, > cp, then

T
Yy — r:Z)\iO;“lei
i=1

for some A € R such that ;) > 3.
Proof We see that

n n—1
Ocly —z) = Z(?Ji —2:)0ge; = Z(yi — i) Orei + (Un — za)n "2k
=1 i==1
k(3
= 3 (Vg = mo)ss + i)
=1
for some b; € R such that |bs| < ¢, which is feasible since |y — 2] < 1 for
t=1,...,n— 1. This readily implies the conclusion.

Put Y = Po©@0Oyx. Then VY (z) = 051 (V(Po©)(Ok)); s0, if 2,y € T
and yn — Zn > ¢p, by Sublernma 4 we have

icm
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; )\-,,D.L(P Q @)(OR($ -+ t(y - E))) dt
=1

I
O ey

e,

> ) Aikifl 2 3nf > 34,

e

i=1

where (-, -) denotes the inner product in R". Since R(Y,5) N Q # B for all
Q € I, we can conclude that card(l) < ¢, + 3.

Combining the above results, we have card(£) < Cp n as claimed. From
this and (7.5) we easily see that

(7.6) N(O;l(En) anpg) cr,

where £ = | H{Q : Q € Uppegn-1 Jm} for some Jp, C Sy, with card(Jm) €
C‘-m,,N-
By (7.3) and {7.6) we have

N(OFA(Ex)) € M(@) UN(074(EBx) n | D5)
c (Uuien) v
and so, observing N (O71(EL)) = O N (EL),
(7.7) N (E) < (|JOTI£)) U O(£).

Since N(R(P o @, 8)) = 0N (R(P, 8)), by (7.1), (7.2) with A(N — 1)
and (7.7) we get A(N). This completes the proof of Lemma 11.

Proof of Lemma 5. We see that R(P,2¥™) = 2™ R(P, 1), where
P(z) = 27N P(2™).

Note that || P|| = 1. (See [2, p. 151].) This observation enables us to assume
m = 0 to prove Lemma 5. Clearly, we may also assume «y = L.
Thus it suffices to show, for k > C,

(7.8)  |{z € B(a,2): d{z,R(P,1)) < 1}| < Cpn2> 1"

uniformly in e € R®.

If n =1, (7.8) easily follows from Chanillo-Christ [2, Lemma 3.2] (see
also [4]). Suppose n > 2. Then (7.8) follows from Lemma 11 with § =1 and
the obvious estimate

|B(a,2%) N U (L)) < c2tvDF,

where U;(£;) is as in Lemma 11. This completes the proof of Lemma 5.
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A variant sharp estimate for
muliilinear singular integral operators

by
GUOEN HU (Zhengzhou) and DACHUN YANG (Beijing)

Abstract. We establish a variant sharp estimate for multilinear singular integral
operators. As applications, we obtain the weighted norm inequalities on general weights
and certain LlogT I type estimates for these multilinear operators.

1. Introduction. We will work on R®, n > 1. Let mq, m2 be two positive
integers and m = my +mq. Suppose that K & C*(R™ \ {0}) is homogeneous
of degree —n and satisfies

\K(2)] < Clz|™ and |VK(z)| < Cle|™ ! for |z| #0,
S K(z)z7dx =0 for any jv] < m.
Jmi=1

Let A; be a function on R™ whose derivatives of order m; belong to the space
BMO(R?) for j = 1,2. Define the multilinear singular integral operator
Tay 4z DY

Hj:]_ P11 (Ajiz,y)

|z —y|™

(1) Tapaf@) =pv. | K@~y fly)dy,
R" _
where Pm;+1{A;; %, y) denotes the (m; + 1)th order Taylor series remainder

of A; at = about y, precisely,

(2) ij-}«l(Aj; T,y) =4 (z) — Z

| ce| <omis

1 4 &
= D45z — )%

It is well known that the operators of this type have been studied by
many authors (see [2], 4], [5] and [9]). We point out that the first result in
this direction was established by Coifman, Rochberg and Weiss in [5]. The
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Key words and phrases: multilinear singular integral operator, sharp estimate,

weighted norm inequality, BMO. )
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