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STUDIA MATHEMATICA 142 (1) (2000)

Centralizers for subsets of normed algebras

by
BERTRAM YOOD (University Park, PA)

Abstract. Let G be the set of invertible elements of a normed algebra A with an
identity. For some but not all subsets H of G we have the following dichotomy. For z € A
cither cwc™ = z for all ¢ € H or sup{[lczc™}|| : ¢ € H} = oo. In that case the set of
z € A for which the sup is finite is the centralizer of H.

1. Introduction. Let A be a normed algebra with identity e, center Z
and set G of invertible elements. For a subset H of G we set

F(H) = {zc A:sup{|lezc | : c € H} < o0}

We determine subsets H for which, given z € A, either cxe™ = z for all
c€ H orz ¢ F(H). An equivalent statement is that F(H) is the centralizer
of H, that is, the set of y € A where yx = zy for all x € H.

Our interest in this situation arose from a result not stated but which
follows directly from arguments due to Le Page [6]. See [1, p. 42] where the
exposition is readily modified to show the following.

TuEoREM 1.1. Let A be a unital Banach algebra {over the complex field).
Then x € F(G) if and only if v € 2.

Here, of courde, Z is the centralizer of G. The proof of Thecrem 1.1
depends heavily on complex variable theory via Liouville’s theorem. Inci-
dentally, Theorem 1.1 holds if G is replaced by Gy, the principal component
of G. See [8, p. 14].

We study cases where A4 is not necessarily complete and G is replaced by
subsets H. We describe one instance. Let IN be the set of nilpotent elements
of 4. Then for each v € N we have e —v € G. Let H be the set of these
¢ - . We show that F(H) is the centralizer of H. It follows that, for y € A4,
either yv = vy for all v ¢ N or

sup{||(e - v)yle = v) 7| : v € N} = o0.
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2 B. Yood

A particular instance of F(H) has received some attention. Let B(X)
be the algebra of all bounded linear operators on a Hilbert space X
and V € B{X) be invertible. Let By be the set of T € B(X) for which
sup{[{V*TV"|| < 00 : n = 0,1,...}. The set By has been studied by sev-
eral authors. We cite the paper [2] of Deddens and that of Herraro [3] where
further references can be found.

2. On centralizers. Trivially, F(H) contains the centralizer of H. This
set inequality can be proper as it is for a finite subset of ¢ not contained
in Z. More interesting instances where H is infinite are given below. Our
majn concern is to find H for which F({H) is the centralizer of H.

We let I represent the set of all integers, I those > (¢ and I those < 0.

We turn attention to N. For w € N we say that the order of nilpotency
of w is the largest integer n for which w™ # 0.

We make some preliminary calculations for use in the proof of Theo-
rem 2.1,

LevMA 2.1, Let v € N and r € I*. Suppose that, for y € A, yv® = v*y
whenever k > 2. Then
(e~ v)yle —v) 7" =y +rlyv — vy} + r’(vy — vyv).
Proof. (e—wv)" and (e —v)"" are finite sums where
(e—v) =e—rutrir—10*/2+...,
(e—v) T =etrvtrir+1)07/24...
since (e — v)™" = (e + Y_p_, v*)" where v is nilpotent with order n. Note
that viyv! = yo'™d = o**y if either ¢ > 2 or j > 2. The expansion of
w = (e—v)"y(e— )" involves v'yv’ terms. Those for which 7+ < 2 yield
w =y + rlyy —vy) + {3y — ) + ...
For the terms involving viyw’ for 4 4 § = k, with a particular & > 3,

y factors out and these terms add up to yv* times the coefficient of v*
in the expansion of e = (e — v)"(e — v)™". That coefficient is zero. m

THEOREM 2.1. Let H be the set of all ¢ —v for v € N. Then ¥(H) is
the ceniralizer of H.

Proof. Let y € F(H). We must show that vy = yv for all v € N, Of
course, (6—wv)" € H for all r € I. Suppose first that v has order of nilpotency
one. Then, for r € IT, (e—v)" = e—rv and (e~v)™" = e+rv. For y & F(H),
{(e — rv)y(e + rv)} is a bounded sequence. Thus {r{yv — vy) — ruyv} is a
bounded sequence and so

(yv —vy) —rvyw — 0
as r — oo, Hence vyv = 0 and yv = vy,
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Next let w € H have order of nilpotency two. Then, by the above,
yw? =w?y. We have (see Lemma 2. 1) (e—w)™yle — w) ™" =y + r(yw —wy)
+r¥(w?y — wyw).

Hence {r(yw wy) + 3 (w?y — wyw) is a bounded sequence. Thus yw —
wy + r(w?y — wyw) — 0 as r ~ oo 80 that yw = wy.

Assume now that, for an integer k > 2, y permutes with all v € N with
order of n11potency < k. Let w € N have order of nilpotency &k -+ 1. Then
yw’ = wiy for all § > 2. By Lemma 2.1 we have

{e—w)yle —w)™ =y +r(ypw — wy) + r(wly — wyw).

As above this implies that yw = wy. This inductive argument completes the
proof. m

We turn our attention to a normed algebra B over the complex field
which has no non-zero nilpotent one-sided ideals. Let S denote the socle
of B [4, p. 64]. Each minimal right ideal of B is of the form pB where p is
an idempotent. We call such an idempotent a minimal idempotent. Let P
denote the set of minimal idempotents of B.

THEOREM 2.2, The centralizer of S is the same as the centralizer of P.

Proof. Let y be in the centralizer of P. We must show that y is in the
centralizer of 8. Let p € P, z € B, z # 0. There exists a complex number A
with pxp = Ap.

Suppose first that A # 0. Then {pz)® = Apz so that ¢ = A~'pz is an
idempotent. Inasmuch as ¢B = pB we see that g € P. Hence ypr = pay.

Suppose that pzp = 0. Set w = z+ ap where « is a scalar. Then pwp # 0
and thus

yp(z +ap) =plz+ap)y foralla#0.
Therefore ypz = pzy so that, finally, y is in the centralizer of S. m

We return to the study of A, any normed algebra, and make some pre-
liminary calculations involving an idempotent p. Let A be a scalar, A #£ 0,
A % 1. We show that either py = yp or

sup{||(e — Ap)"y(e ~ Ap)™"|| : n € I} = 0.

Let p # 0, p 5 e be an idempotent in A and let A be a scalar, A # 0,
Az 1. Let ¢ = e - p a0 that (e*—)\p) g+ (1 — A)p where gp = pg = 0. For
any k € It we have
1) (=M =qg+1-Np (e-d)F=g+(1-A)Fp.

Thus (e — \p)* and (e ~ Ap)~F are of the form e — ap for a scalar a # 1.

Let y € A, For each n € I we set

d(n,y) = (e — Ap)"y(e— Ap)™".
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Then
(2) d(n,y) = qua +pyp+ (1 — A)"pyg+ (1 — A)"qyp.

Weset H. = {(e—p)":nelt}and H_ ={(e~Aip)*:nel }.

THEOREM 2.3. If [L ~ Al > 1 then F(Hy) = {y € A : py = pyp}
end F(H.) = {y € A :yp =pyp}. If 0 < |1 = X| < 1 then F(H,) =
{y € A:yp=pyp} and F(H.) = {y : py = pyp}.

Proof. Suppose{l—2A| > 1. Then (2) shows that € F(H..) if and only

if pyqg = 0 or py = pyp. The other statements follow from (2) in the same
way. m

In every case considered in Theorem 2.3, the centralizers of H.. and H_
are all {y € A: py = yp}. Let A be the algebra of all two-by-two matrices
and let p and y be given by

() 022

Then pyp = py (resp. yp) if and only if b = 0 (resp. ¢ = 0) and py = yp if
and only if b = ¢ = 0. Therefore, if |1 — A| > 1, F(H,) properly contains the
centralizer of H .

COROLLARY 2.1. Let A be any scalar, A # 0, A # 1, and H = {{e~Xp|™ :
nel}. Then F(H) = {y: py = yp}.

Proof. This follows immediately from Theorem 2.3. m

There are important classes of Banach algebras which are the closure
of the linear span of its idempotents. As is well known this holds for von
Neumann algebras [7, p. 119].

COROLLARY 2.2. Let A be a unital Banach clgebra which is the closed

linear span of its idempotents. Let H be any open subgroup of G. Then
F(H)=2Z.

Proof. Yor each idempotent p #£ 0, p # e there exists a scalar A,
0 < |l—A| # 1, so that ¢~ Ap € H. Then H contains (e~ \p)" for all n € L
We apply Corollary 2.1 to see that py = yp for y € F(H).

3. A generalization of Theorem 1.1. The setting for Theorem 1.1
is a Banach algebra A over the complex field. The completeness of A is
essential for the proof in [1, p. 42]. Here we show that the requirement of
completeness can be relaxed. It is sufficient that, in the normed algebra A,
the invertible elements form an open subset. In the language first used by

Kaplansky in (5], A should be a Q-algebra. Examples of incomplete normed
(-algebras abound. '
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For our work here, A will represent a unital normed @-algebra over the

complex field with completion A°. Let G (resp. G°) be the set of invertible
elements in A (resp. A¢).

LEMMA 3.1. G°NA =G,

Proof. Clearly, G C G°N A. Suppose z € A where ¢ ¢ GG. Then either
x has no left inverse or no right inverse. Say 2 has no right inverse, so that
V = {zw : w € A} is a proper right ideal in A. Then V is contained in a
maximal proper right ideal M of A by [4, p. 6]. As A is a Q-algebra, M is
closed in A. Therefore for some d > 0, ||e — zw|| > d for all w € A and hence
le — zy]| = d for all y € A°. Consequently, = has no right inverse in A®. =

THEOREM 3.1. In the normed Q algebra A we have F(G) = Z.

Proof. For any y & F(G) we have sup{||cyc™?|| : ¢ € G} < K for some
real K. Let w € G w = lim =, with each z, € A. As G° is open in A° we
may suppose that each z, € G*N A. By the preceding lemma, each &, € G.
Therefore ||z yz;;}|| < K for all n = 1,2,... so that |wyw™}| < K for all
w € G¢. By Theorem 1.1, y is in the center of A® and so is in the center
of A m

4. On F(H) in Banach algebras. Henceforth A represents a Banach
algebra. We retain our previous notation where H is a subset of G. For
c € H we set Ty(zx) = cxze™ and

M(z) = sup{||T.(z)|| : ¢ € H}.

THEOREM 4.1. Either F(H) = A or the complement of F(H) is dense
in A.

Proof. Suppose that F(H) # A. For each positive integer n set &, =
{z € A: M(z) < n}. Each &, is closed in A. We show that &, cannot
contain a non-empty open subset I' of A. Suppose otherwise. Let zp € I
For some £ > 0 we have w € I' if ||w —~ zp)| < e. Let y € A, |yl = 1. Then
@o 4ty € I' for |t| < &. For each ¢ € H we have | To(zo + ty)|| < n for
all + with |¢| < €. Then ¢|Te(®)|| € | Te(zo + &y)[| + || Te(zo)|| < 2n. Hence
y € F(H) so that F(H) = A contrary to our assumption.

Next let £2,, be the complement of $,. Each (2, is a dense open subset
of A. By the Baire category theorem the intersection (/2. of all the sets
(2, is dense in A. But V2, ={z € A: M(z) =oc}. m

Note that if we set Hy = H U {e} we have F(H,) = F(H). Therefore
there is no loss of generality in assuming e € H.

LEMMA 4.1, F(H) is o subalgebra of A and M(z) is a Banach algebra
norm on F(H). e
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Proof. Let z,y € F(H) and c € H. As To{zy) = To(2)T.(y) it is easy
to see that F(H) is a subalgebra and that M (z) is a normed algebra norm
on F(H).

Clearly, M(z) > | z|| for all z € F(H). Let {z,} be a Cauchy sequence
in F(H) in the M(z) norm. Then {z,} is a Cauchy sequence in A so there
exists y € A where |z, —y|| — 0. As {M(z,)} is a bounded sequence we
have M(z,) < K, for a real K and all positive integers n. For ¢ € H we
have

ITe@) | < [ Tely = @a)l| + [ Te(@a)ll < el e 1y — @l + K
we let n — oo to see that y e F(H). w

THEOREM 4.2. F(H) is a closed subset of A if and only if the norms |||
and M(z) are egivalent norms on F(H).

Proof. Suppose that F(H) is closed in A. Now sup{||Te(z)|| : c € H} is
finite for each « € F(H). By the uniform boundedness theorem there exists
a real number L so that |Ti(z)|| < L|jz|| for all z € F(H), ¢ € H. Then
M(z) < L|z|| on F(H) so that the two norms are equivalent there. The
converse is clear. m

We have no example of a case where F(H) is not closed in 4.
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On sharp reiteration theorems and weighted norm inequalities
by

JESUS BASTERO (Zaragoza), MARIO MILMAN (Boca Raton)
and FRANCISCO J. RUIZ (Zaragoza}

Abstract, We prove sharp end forms of Holmstedt’s reiteration theorem which are
closely connected with a general form of Gehring’s Lemma. Reverse type conditions for
the Hardy-Littlewood—Pdélya order are considered and the maximal elements are shown
to satisfy generalized Gehring conditions. The methods we use are elementary and based
om variants of reverse Hardy inequalities for monotone functions.

1. Introduction. Given a fixed initial pair of compatible spaces, interpo-
lation theory provides us with methods to construct scales of spaces with the
interpolation property. The classical methods of interpolation all share the
following reiteration principle: by iteration these constructions do not gener-
ate new spaces. Reiteration theorems thus play a central role in these theo-
ries. In particular, reiteration simplifies the process of identification of inter-
polation spaces. Holmstedt’s reiteration formula [Ho|, for the real method of
interpolation, provides quantitative estimates and plays an important role
in a variety of applications to classical analysis and approximation theory.

Let A be a pair of compatible Banach spaces, 0 < 8p < 61 < 1,0 < ¢;
< o00,1=0,1, n =01 — 8. Then Holmstedt’s formula states that

YL d 1/q0
s -0 - 8
GRS S A P O R LS
0

T g, 48 M
+t{ ] (S“"lK(s,f;A))‘“—;} -
$i/n
Holmstedt’s formula is also valid if 8y = 0 or é; = 1. For example, if
8, = 1 we have
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