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Orbit equivalence and Kakutani equivalence
with Sturmian subshifts

by

P. DARTNELL (Santiago), F. DURAND (Amiens) and
A. MAASS (Santiago)

Abstract. Using dimension group tools and Bratteli-Vershik representations of min-
imal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are
topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.

1. Preliminaries. In the last decade concepts and techniques coming
from the theory of C*-algebras have been exhaustively used in topologi-
cal dynamics in order to explain various phenomena appearing mainly in
Cantor dynamical systems. In particular, those concepts together with the
description of minimal Cantor systems by means of Bratteli-Vershik trans-
formations [HPS), [V1], [V2] gave rise to a complete invariant of orbit and
strong orbit equivalence for this class of maps [GPS], [HPS]. In the same
vein the authors of [BH| obtained new results about flow equivalence and
orbit equivalence for non-minimal Cantor systems. In particular they ob-
tained new conjugacy invariants for subshifts of finite type. The study of
gubstitution systems and Toeplitz systems in this scope was undertaken in
[F], [DHS] and [GJ] respectively.

If we consider two (strong) orbit equivalent Cantor systems, their Brat-
teli-Vershik representation without considering the order is in some sense
the same [GPS), [HPS]. Therefore, we can ask which additional property
could imply topological conjugacy, in other words how to recover the order.
In this direction it is proved in [BT] that with a continuity condition on the
cocycles involved in the orbit equivalence we get flip conjugacy. In general,
(strong) orbit equivalence is not enough. It is known [O], [Su| that in the
game class of orbit equivalence we can have all possible entropies. In the case
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of odometers it is easy to show that orbit equivalence implies topological
conjugacy.

Among the different conditions we can consider, Kakutani equivalence
appears as a natural one which is intirnately related to the order. In that
case the systems can be represented by diagrams that are the same up to a
finite number of edges and vertices.

In this paper we solve this question when one of the systems is a Sturmian
subshift.

THEOREM 1.1. Let 0 < @ < 1 be an irrational number and (X, T) o min-
imal Cantor system. The Sturmian subshift (2,0) and the system (X,T)
are Kokutani and orbit equivalent if and only if they are topologically con-
Jugate.

The proof is based upon a detailed study of a Bratteli-Vershik represen-
tation of Sturmian systerns. In that case we only need orbit equivalence and
Kakutani equivalence because there are no infinitesimals in their dimension
groups. We remark that for two Sturmian systems only orbit equivalence is
needed. Also, there is a simple condition for having topological conjugacy of
Sturmian subshifts (2,,0) and (2, ¢): @ = B or &« = 1— . Indeed, both sys-
tems have the same eigenvalues {na+m | n,m &€ N} = {ng+m | n,m € N}.
Since 0 < o, 8 < 1 we get the result.

In the case of general Cantor minimal systems the answer to our question
is not known, even for substitution dynamical systems. From [DHS] we get
a detailed representation of these systems by means of Bratteli-Vershik dia-
grams which does not give us the group of automorphisms of their dimension
groups. _

The paper is organized in three sections and two appendices. In the
present section we give the background for what we will need later. The
construction of a particular Bratteli-Vershik representation for Sturmian
subshifts is done in Section 2. In Section 3 we prove Theorem 1.1. In the
appendices we prove a matrix proposition needed for the proof of the main
theorem and we compute the dimension group of a Sturmian subshift.

In what follows, we give some definitions and notation that will be used
in the paper.

1.0.1. Topological dynamical systems and subshifts. A topological dy-
namical system, or just dynamical system, is a compact Hausdorff space X
together with a homeomorphism T : X — X. We use the notation (X, T).
It X is a Cantor set we say that the system is Cantor. That is, X has a
countable basis of closed and open sets and it has no isolated points. A dy-
namical system is minimal if all orbits are dense in X, or equivalently, the
only non-empty closed invariant set is X.
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A particular class of Cantor systems is the class of subshifts. They are
defined as follows, Take a finite set or alphabet A, The set A2 consists of in-
finite sequences (2;);cz with coordinates z; € A. With the product topology
A% ig a compact Hausdorff Cantor space. We define the shift transformation
o : A" — A% by (0(z)); = 4 for any z € A%, { € Z. The pair (AZ,0)
is called a full shift. A subshift is a pair (X,o) where X is any o-invariant
closed subset of A%. A classical procedure to construct subshifts is by con-
sidering the clogure of the orbit under the shift of a single sequence z € A%,
2(x) = {oi(z) | i € Z}.

Let (z;)sen be an element of AN, Another classical procedure is to con-
sider the set {2(z) of infinite sequences (y;)icz such that for all i < § there
exists k& > 0 such that y;y41 - Yj = TEZg4l .- Thyj—i. 10 hoth cases we
say that (£2(z), o) is the subshift generated by x.

In a minimal subshift any finite sequence of symbols appears with bound-
ed gaps in any sequence of the system.

In this paper we consider two kinds of minimal subshifts: substitution
subshifts and Sturmian subshifts. Let us first describe Sturmian subshifts.

Let 0 < o < 1 be an irrational number. We define the map R, :
[0,1[ = [0,1[ by Ra(t) =t + o (mod1l) and the map I, : [0,1] — {0,1}
by In(t) = 0if t € [0,1—0of and I,(t}) = 1 otherwise. Let 2, be the
set {(Io(RE(t)))nez |t € (0,1} € {0,1}%. The subshift (24,0) is called a
Sturmian subshift (generated by ) and its elements are called Sturmian
sequences. There exists a factor map (see [HM]) v : (24,0) — ([0,1[, Ro)
such that

B _f2 ifBe{na|nem},
[y ({Bh] = 1 otherwise,

Let 8 € [0,1[. It is well known that £2, = 23 if and only if o =
and also that (£24, ¢) is a non-periodic uniquely ergodic minimal subshift.
Sometimes we will write ({24, o, 4) instead of ({24, ¢) where  is the unique
ergodic measure of (12,,0). We give later a useful characterization of Stur-
mian subshifts to obtain Bratteli-Vershik representations of these systems.
For more details and properties of Sturmian sequences and subshifts the
reader can refer to [BS] and [HM). '

A substitution is a map 7 : 4 — AT, where AT is the set of finite
sequences with values in A. We associate with 7 a A X A square matrix
M, = (Mg p)a,bea sSuch that mgp is the number of times the letter b appears
in r(a). We say that  is primitive if M, is primitive, i.e. if some power
of M, has strictly positive entries only. A substitution 7 can be naturally
extended by concatenation to At, AN and A% We say that a subshift of A%
is generated by the substitution T if it is generated by a fixed point for 7 in
AR (see [Q] for more details). . : :
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In this paper we are concerned with three notions of equivalence between
dynamical systems. Let (X, T') and (Y, S) be dynamical systems. We say that
they are topologically conjugate if there is a homeomorphism ¢ : X — Y
such that ¢ o T = § o ¢. We say that they are orbit equivalent (OF) if
there is a homeomorphism ¢ : X — ¥ and integer functions n : X — 7
and m : X — Z such that for any z € X, ¢ o T"®)(z) = § o () and
¢ o T(zx) = S™=) o ¢(z). Now assume the systems are minimal; then the
maps n, m are uniquely determined. Under this hypothesis we say that the
systems are strong orbit equivalent (SOE) if the maps n,m have at most
one point of discontinuity. Finally, for Cantor systems, we say they are
Kakutani equivalent (KE) if both have subsets that are closed and open
(clopen) such that the corresponding induced systems are topologically con-
jugate.

1.0.2. Bratteli-Vershik representations. A Bratteli diagram is an infinite
graph (V, E) which consists of a vertex set V and an edge set E, both of
which are divided into levels V =V UVi U..., E=E; UE,U... and all
levels are pairwise disjoint. The set Vj is a singleton {vy}, and for & > 1,
Ey, is the set of edges joining vertices in Vj_; to vertices in V;. It is also
required that every vertex in V3 is the “end-point” of some edge in Ej, for
k > 1, and an “initial point” of some edge in Epyq for k > 0. We define
the level k to be the subgraph consisting of the vertices in V; U Vi+1 and
the edges Ej 11 between these vertices. Level 0 will be called the hat of the
Bratteli diagram and it is uniquely determined by an integer vector

U1
1= c vall,
Uy
where each component represents the number of edges joining vy and a
vertex of 17.

We describe the edge set By using a Vi x Vj_; incidence matrix whose
(¢, 7)-entry is the number of edges in Ej Jjoining vertex j € V41 to vertex
t € Vi.

An ordered Bratteli diagram B = (V, E, <) is a Bratteli diagram (V,B)
together with a partial ordering < on F. Edges e and ¢’ are comparable if
and only if they have the same end-point.

Let k& < I in N\ {0} and let By, be the set of all paths in the graph
joining vertices of V;_; to vertices of V;. The partial ordering of F induces
another in Ey; given by (ex,...,e;) < (fx,..., f;) if and only if there is
k<i<lsuchthate; = f; fori < j <lande < fi.

Given a strictly increasing sequence (Mn)n>o of integers with my = 0
we define the contraction of B = (V, E, <) (with respect to (Mn)n>o0) a8
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(Vi 520, (Brmu4+1,mpp Jn>0, 3), where = is the order induced in each set
Em 41,mny, of edges.

‘We say that an ordered Bratteli diagram is stationary if for any k& > 1
the incidence matrix and order are the same (after labeling the vertices
appropriately).

Given an ordered Bratteli diagram B = (V, E, <) we define Xp as the
set of infinite paths (ej,es,...) starting at vy such that for all ¢ > 1 the
end-point of e; € E; is the initial point of e;1.1 € E;1. We topologize X g
by postulating a basis of open sets, namely the family of eylinder sets

Uley,...,en) ={(fi,fa,.. ) €Xp | fi=e; for L <i <k}

Each Uleq, ..., ex) is also closed, as is easily seen, and so Xp is a compact,
totally disconnected metrizable space.

‘When there is a unique ¢ = (T1,%1,...) € Xp such that =; is maximal
for any ¢ > 1 and a unique y = (y1,%2,...) € Xp such that y; is minimal
for any 1« = 1, we say that B = (V,E,=) is a properly ordered Bratteli
diagram. Call these particular points Zwa. and #mi, respectively. In this
case we can define a dynamics Vg over Xp called the Vershik map. The
map Vg is defined as follows: let (e1,€2,...) € X5\ {Zmax} and let k > 1 be
the smallest integer so that ey is not a maximal edge. Let fi be the successor
of ey and (f1,..., fe—1) be the unique minimal path in By 1 connecting vo
with the initial point of fi. We set VB(a:) ={f1, - -1, Frs €ht1, - ) and
Vi (ZTmax) = Tmin. The dynamical system (Xg,Vg) is called the Brafteli-
Vershik system generated by B = (V, E, %). The dynamical system induced
by any contraction of B is topologically conjugate to (X, Vg). In [HPS] it
is proved that any minimal Cantor system (X, T") is topologically conjugate
to a Bratteli-Vershik system (Xg, Vg). We say that (Xp,Vg) is a Bratteli-
Vershik representation of (X,T).

1.0.3. The notion of & dimension group. Let (X, T) be a minimal Cantor
system. Its dimension group is defined as K°(X,T) = C(X, Z) / orC (X, Z),
where C{X,Z) is the countable additive Abelian group of c::mtmuous func-
tions on X with values in Z and 8r : (X, %) — C(X,Z) is the f:obound-
ary operator Op(f) = f o T ~ f. The positive cone of KO(X,T) is the set
KO(X,T)* of equivalence classes of positive functions. We also d1§tmgu,15h
an order unit [1] which is the equivalence class of the constant function equal
to 1,

Let (V, E) be a Bratteli diagram and (M;)izo be the corresponding in-
cidence matrix of levels. Recall that My = u correspond:::& tf) the hat of the
Bratteli diagram. We define Ko(V, E) as the inductive limit of the system
of ordered groups

7 3 gvil M, gival M,
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that is, Ka(V, B) = .'iii)n(Mi, ZIVil). This group carries a natural order given
by a come Ko(V,E)*. We also distinguish an order unit 1 which is the
element of Ky(V, E)t corresponding to 1 € Z = Z/!. For more details we
refer the reader to [GPS].

In [HPS, Th. 5.4, Cor. 6.3] it is proved that if (X, T') is a Cantor minimal
gystem and (Xp,Vg) its Bratteli-Vershik representation, then the ordered
groups with distinguished order units K° = (K°(X,T),K°(X,T)*, [1])
and Ko = (Ko(V,E), Ko(V, E)*,1) are isomorphic. In [GPS, Th. 2.1] it
is proved that KV is a complete SOE invariant. They also proved that the
quotient group K%/Inf(K?°) is a complete invariant of OF, where Inf(X9)
is the subgroup of K°(X,T) consisting of elements a € K°(X, T) such that
—gfl]<a<eljforal0 <€ Q.

In this paper we are particularly concerned with computations of di-
mension groups that are direct limits of sequences of integer matrices in
GL(2, Z). That is, Ko(V, E) is computed from the sequence

z5p2 M2 M
where M; € GL(2, Z) for ¢ > 1. In this case and under some other conditions
(see [ES]), the ordered group (Ko(V, E), Ko(V,E)T) = li_r_)n(M,-,Z2,Zﬁ_) is
isomorphic to (Z?, P,) where

P, = {(‘T) € 7?
Y
for some o € R,

We will say that a matrix M € GL(2, Z) is an automorphism of (Z?, F,)
ifM-P,=P,.

Finally, let us agree on some notation. The 2 x 2 identity matrix will
be denoted by Iz = [1 0]. If M is a matrix with real entries, the notation
M = 0 (respectively M < 0, M > 0, M < 0) will mean that all entries of
M are > 0 (respectively <0, > 0, < 0).

x-c«~|—y20}

2. Bratteli~Vershik representations of Sturmian subshifts. A
morphism f : {0,1} — {0, 1}* = {0,1}* U {e}, where ¢ is the empty word,
is called Sturmian if the image under f of each Sturmian sequence is a Stur-
mian sequence. In [MS] it is proved that a morphism is Sturmian if and only
if it is an element of the free monoid 8t generated by the morphisms E ¢
and ¢ from {0, 1} to {0,1}*, where

BO)=1, ¢(0)=01, (0)= 10,
E1y=0, ¢(1)=0, F1)=0.
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In what follows the morphisms g, and v,, n € N\ {0}, from {0,1} to
{0,1}* defined by

0,(0) = 01", ~,(0) = 1072,
on (1) = 017, (1) = 107,

will play a very important role. Forn > 1, v, = (EE)””1$¢ and pp, = Evn,
therefore both belong to St. The following theorem is due to Hedlund and
Morse [HM].

THEOREM 2.1. Let & be a Sturmian sequence.

(i) There is n > 1 such that © = ...v_jvgv1... where (Vikcz 5 @
sequence taking values in {01%, 01"} or in {107%1, 107}

(ii) If z = gn(2) or £ = v,(2), for somen > 1 and z € {0,1}%, then =
is Sturmian.

Proof. Assertion (i) follows from Theorem 7.1 of [HM], and (ii) is The-

orem 8.1 of [HM]. w

Let (X, o) be a Sturmian subshift and a € {0,1}. We denote by [a] the
set {(z:)icz € X | ®o = a}, which turns out to be a clopen subset of X.

PROPOSITION 2.2, Let {X,0) be a Sturmian subshift. There exists a se-
quence (Cn)nen taking values in {01,71, 02,72, .} such that

(i) ¥ = limy 00 C1...$n(00...) generates (X, o).

(i) The sequence {Pn}nen of partitions of X, given by Py = {[0], [1]}
and Py = {o*¢.. . Ga(la]) [0 S k < |G- Gala)l, @ € {0,1}} forn = 1,
haa the following properties:

(@) (ool (0D UG Gt (1) E e GO U Gr - - Gal[1]),

{(b) P, < Pp+1 os partitions,

(c) the set Mem(Cre - $n(0]) U la- .. Cal[1])) consists of one point
only,

(d) this sequence of partitions generates the topology of X.

Proof. Assertion (i) follows from Theorem 2.1, and (ii) comes from
the fact (which can be proved by induction) that for all » € N and all
z € X, z has a unique decomposition into a concatenation of elements of

{G . ¢nla) @€ {0,1}}. m

Let (X, ¢) be a Sturmian subshift and {Pr}nen be the sequence of parti-
tions given by Proposition 2.2, With such a sequence there is associated an
ordered Bratteli-Vershik diagram B = (V, B, <) which can be described as
follows: For all n € N\ {0}, V;, consists of two vertices and Ep; is givenlby
¢n and described in Figure 2.1, the hat is determined by Fp and it is (1)
and this ordered Bratteli-Vershik diagram is isomorphic to (X, o) (for more
details see [HPS)] or [DHS]).
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(b) Level n for on

{a} Level n for vn

Fig. 2.1

3. Proof of Theorem 1.1. The assertion of Theorem 1.1 will be a
consequence of Proposition 3.1 stated below and the construction of the
Bratteli-Vershik representation for Sturmian subshifts given in Section 2.

The following standard notation in number theory will be exhaustively
used. The simple continued fraction expansion of @ & R is denoted by
@ = [cp : ¢1,C2,...]. If @ is quadratic irrational this expansion is ultimately
periodic, that is, there exist T > 1 and p € N such that ¢; = ¢;ypp for
1 € {p,...,p+ T — 1}, k € N. In this last case we will use the notation
o =[co:cC1,. - Cp1,Cp, -1 Cpra—1)- For @ = (G571, 7 6r—1] we define
the matrix

M, = N, “Neg_g oo Negs

T—1
where N, = ['; é] forneN,

PROPOSITION 3.1. Let o be a positive quadratic trrational number with
periodic simple continued fraction expansion o = [dy :dy,...,dp—1] such
that T is o minimal length period and d; > 0 fori e {0,...,T—1}. If M
is an automorphism of (Z2,P,) such that M(2) >0 for some (:) >0 in
72, then there exists k € Z such that M = M},

We will devote Appendix A to the proof of Proposition 3.1.

For the remainder of this section, we consider a fixed Sturmian subghift
(£25, o). First, we study in detail the Bratteli-Vershik diagram of the Stur-
mian subshift found in the last section. By Proposition 2.2 there exists a se-
quence ((n)new in {01,71, 02,72, ...} such that y = limy o0 (1...¢a(00...)
generates {2z, o). '

For all n > 1 the matrices associated with v, and g, are respectively

(3.1) M(T")T—[n+l 1] and M(‘-’"Jz[l n~{-l].
7 1 1 n
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These matrices can be factored as

(¥n) — 11 | 1
M [1 0] {1 0]’
{on) — 11 |n 1 ) 01
M [1 0] [1 0} [1 o)
that is, M{™) = Ny . N, M{#) = Ny - N,, - No.
We order the edges of the factor blocks in (3.2) as shown in Figure 3.1.
These orderings are compatible with the ones the original matrices had, in

the sense that when we contract we recover the orderings required for -,
and op-

(3.2)

(a) Ordering inducing y» (b) Ordering inducing gp,

Fig. 3.1

In view of the discussion above, we conclude that a Bratteli-Vershik
representation associated with (2, 0) can be obtained as a concatenation
of blocks associated with matrices Ny, n > 0. Since N, - Ng - Npp = Npporn,
we can contract the diagram to obtain a new onme in which the matrices
associated with the blocks are of the form Ny with d > 0. (If the first
matrix is Ny, we contract it with the vector (1) associated with the top

edges in Ey, or the hat, and the new diagram will also have () as its hat

and no Ny matrix any longer.) . o
Let us analyze the order structure in this ordered Bratteli-Vershik dia-

gram. Notice that a level with incidence matrix Ny, can appear with two
possible different orderings. We will use the notation 05,2) to indicate a level
with incidence matrix Ny, ordered as shown in Figure 3.2(a), and O for a
level with incidence matrix Ny, ordered as shown in Figure 3.2(b). If m > 1,
the second ordering appears exactly when it comes from a level contraction.
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Em=1, 05” is the ordering for N7 when it represents a bottom block in
Figure 3.1, and 0% the block on top of it.

(2) Ordering O (b) Ordering O,(,;l)

Fig. 3.2

Summarizing, with any Sturmian subshift ({27, o) we associate a Brat-
teli-Vershik representation whose incidence matrix and ordering for any level
k > 2 are Ny, O((;:), with d > 0,1 € {0, 1}. We will call this representation
standard. We state the following corollary.

COROLLARY 3.2. Let (25,0} be o Sturmian subshift. There are a se-
quence (dy)r>1 of positive integers and o sequence (ix)k>1 € {0,1}Y such
that the Bratteli—Vershik sysiem defined by the ordered Bratteli diagram with
level k given by Ofiz“) for k > 1, and hat given by the vector (i), is topolog-
ically conjugate to {(, o).

The following technical lemma will be useful later.

LEMMA 3.3. Let ((Na)kzo, (05" )iz0) ond (Na,)xzo, (OF*)kza) be
two sequences of matrices and orderings coming from standard Bratieli-
Vershik representations of Sturmion subshifis.

o If (dr)r>0 i not the constant sequence (111...), then iy = i for all
k large enough.
o If (di)rxo is (111...), then either iy, = ji for all k large enough, or

i # Jk for all k large enough, and in both cases ig41 # ix for k large
enough.

Proof. Suppose there is k£ > 0 such that iy # jz. Without loss of
generality we can suppose that i, = 0 and 4 = 1.

First we assume that dy # 1. Since 5 = 0 (this corresponds to a non-
contracted level), we have iz_; = 1 and the incidence matrix at level k — 1
is Ni. On the other hand, since jx = 1, level k for the second diagram
1s contracted, and thus the order associated with the previous level must
be jk—1 = 0. By the same argument, jy_, = 1 with incidence matrix Ny,
which implies that ix_2 = 0 and the corresponding incidence matrix is
also Ni. This way, we prove inductively that dy =dy = ... = dj_; = 1, with
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h=te2=...=0=jk1=jfpa3=...and ip g =ip g=...=1=j, =
Ju—2 =...Ifdy =1, the same procedure implies that dg = ds = ... =dp = 1

with similar conditions for the orderings in each level of both diagrams. m

We will now try to get more information about this Bratteli-Vershik
diagram by studying its associated dimension group, and in particular we
will be interested in the automorphisms of the group. For that we need the
following proposition whose proof is given in Appendix B.

PROPOSITION 3.4. Let ({2z,0) be a Sturmian subshift. Then the ordered
group (K%(02,0), K®(2,0)") is isomorphic to (2%, Py _zy/a).

Let {Ng, | ¥ € N} be the collection of matrices associated with the
standard Bratteli-Vershik representation of (2, o). From Proposition 3.4,
(K°(2%,0), K°(f25,0)T) is isomorphic to (Z?,P;_gz)/z). On the other
hand, from the Bratteli-Vershik diagram one can compute this crdered
dimension group as @(Zz,Ndk)- Set & = [dp : d1,da,...]. By [ES, Th.
3.2] we have (Z%, P,) = li_r_)n(Zz,Ndk). We conclude that (27, Py_z) /=) =
(Z?,P,). Again by [ES, Th. 3.2], the simple continued fraction expansion
of o is eventually equal to that of (1 &)/@&. Since the simple contin-
ued fraction expansions of @ and (1 — @) /@ are eventually equal we have
(KO(‘Qﬁa U)iKO( @) G)"E") = (szp'of) = (Z27P¢x)-

The following lemma implies that if @ is not a quadratic algebraic num-
ber, the identity is the only automorphism of the dimension group
(K°(2%, o), K°({2g,0)1). For the sake of completeness we give the proof.
Similar results appear in [S].

LEMMA 3.5, Let 8 > 0 and M = [’; Z] € GL(2,Z) \ {I.} be an auto-
morphism of (Z?,Pg). Then: '

(i) B is o quadratic algebraic number.

(if) M does not have any column £ 0.

(i) If moreover B is irrational, then b # 0,¢ # 0 and the irreducible
polynomial for 8 in Q[X] is '

d—a c
b X - '6'.

Proof It is clear that if M- Pg = Pj3, then there exists an integer & such
that the vector M- ( jﬁ) € ’? is equal to & _lﬁ). This implies that (—a--b3)-
(=B) = (—c+dB) - 1, which is in turn equivalent to b3+ (d—a)8~c =0
This proves (i) and (iii). ‘ ‘ _ '

" To prove (i), assume that the first column of M is negative. Then M
would fail to be an automorphism of Pg, since it would send the vector
(é) € Pg into () ¢ Ps (an identical argument works if the second column
is negative). m '

X%+
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Let us study the case of @ quadratic irrational. We recall that o = [dg :
d1,dg,...] is the number defined above from the standard Bratteli-Vershik
representation of ({2z, ). Thus, the continued fraction expansions of o and
@ are ultimately periodic, and since they are eventually equal, the period
in both expansions is the same. Moreover, by Lemma 3.3, the sequence
(Oc(il’“)) k>0 of orderings is eventually periodic, with the same period. Without
loss of generality we suppose that o and the orderings are periodic: a =
[do : di,...,dr_1] (otherwise we multiply up all matrices in the Bratteli~
Vershik diagram that appear before they become periodic, and we get a
new “hat” and a periodic diagram), and we let T be the length of the
least period of the simple continued fraction expansion of a. Recall that
My =Ng._,-... - Ng, - Ngj,.

We get

COROLLARY 3.6. Let @=[cp : €1,...,Cp,do, d1,...,dr_1] be a quadratic
irrational number and o = [dy : dy,...,dr.1], where do,dy,...,dp—1 > 0
and T is the length of a minimal period of the simple continued fraction
expansion of a. Then:

(i) If a # [1], then (f2z,0) is topologically conjugate to a stationary
Brotteli-Vershik system with stationary incidence matriz M, = Nag_y oo
Nd1 . Ndo-

(i) If a = [1], then (f25,0) is topologically conjugate to a stationary
Bratteli-Vershik system with stationary incidence matriz M, = N, - N1 and
order induced by 0&0) followed by Ogl). "

Before giving the proof of Theorem 1.1 let us remark that Theorem 1 of
[DHS] and the last corollary imply for a quadratic number @ that (2, 0)
is a substitutive system. The converse is also true. In fact, if ({25, 0) is a
substitutive system it is clear that there are non-trivial automorphisms [P];
then using Lemma 3.5 we conclude that & is quadratic. We are now ready
to prove Theorem 1.1.

Proof of Theorem 1.1. Let 0 < @ < 1 be an irrational number such that
(§25,0) and (X, T) are Kakutani and orbit equivalent. From the Kakutani
equivalence, given a Bratteli-Vershik representation of ({2, o), by deleting
and adding a finite number of arrows, we get a representation of (X,T).
Let o = [dg : dy,dy,...] be the real number coming from the standard
Bratteli-Vershik representation of the Sturmian system. By contracting both
diagrams we assume that they are the same, up to the corresponding hats

o=(2) = o ()
Uz . U2
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respectively. Then
(K°(2,0), K (02, 0)") = (K°(X, T), KX, T)*") & (2%, Pa).

It is easy to see that the unique infinitesimal of the ordered group
(Z2,P,) is (8). Consequently, ({25,¢) and (X,T) are strong orbit equiv-
alent. It follows that there is an automorphism M of {(Z*, P,) such that
M - u=v.If @ is not a quadratic irrational, then by Lemma 3.5, M = I
and u = v, which implies that both representations are the same, and the
systems are topologically conjugate.

When o is a quadratic irrational we can assume it is periodic with ex-
pansion o = [dp:dy,...,dr_1]. Then, by Proposition 3.1, there is k € Z
such that M = MZ*. Thus, M* . u = v. Without loss of generality we can
assume k > 0.

We consider two cases. First assume « # [1]. Then by Corollary 3.6(i),
M, is the stationary matrix in the Bratteli-Vershik representation of the
gystem. Then by contracting the first k levels of the diagram with unit u we
get the diagram of the system with unit v. This proves they are topologically
conjugate.

We now suppose that @ = [1]. There exists an integer k such that
M = NF. On the other hand, by Corollary 3.6(ii), the stationary matrix
of the Bratteli~Vershik representation of the system is M, = Ny - Ny. We
contract the ordered Bratteli diagram starting with v, to get a new ordered
Bratteli diagram with hat w = M*v = u = () and with stationary
matrix M, = NiNy. In this way we have two stationary ordered Bratteli
diagrams, B, and By, which can only differ in the orderings of M. If the
orderings are the same then the proof is finished, hence we can suppose that
the orderings are given by Figure 3.3. Let By and B be respectively the

Fig. 8.3. The two possible orders for N{

stationary ordered Bratteli diagrams with the same incidelnce matrices :and
orderings as B, and By, for levels k > 2, but with hat (). In [DHS] it is
proved that (Xz,,Vs,) and (Xp,, Va,) are respectively isomorphic to the
subshifts (X1,0) and (X2z,0) generated by the substitutions 7, : {0,1} —
{0,1}* and 75 : {0,1} — {0,1}" defined by
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T]_(O) B 001, TQ(O) = 100,
1"1(1) = (1, '7'2(1) = 10.

Let ¢: {0,1} — {(0,i) |0 <i<a—1}T U{(1,4}|0< i £b—1}T be the
map defined by

¢(0) = (0,0)(0,1)...(0,a—1), (1) = (1,0)(1,1)... (1,6 - 1).
Let z € Xy and y € Xy. We see that the subshift (¥7,0) (resp. (Y2, 0)) gen-
erated by ¢(z) (resp. ¢(y)) is isomorphic to (X, Vg, ) (resp. (X5, Vs, )).
But we can prove that X; = X3 (the proof is left to the reader), hence
using the minimality of (X;1,0) and (X2, 0) and the fact that ¢(X;) C ¥z,
i € {1,2}, it follows that ¥; = ¥, and that (Xg,,Vp,) is isomorphic to
(XB,,Va,, ). This completes the proof. m

Appendix A: Proof of Proposition 3.1. The results of this section
are closely related to the ones found in [S]. We write down whole proofs here
for the sake of completeness.

LEMMA 3.7. If M € GL(2,Z)\{I,} is an automorphism of (Z*, P,) such
that M () > 0 for some () >0 in Z2, then either M >0 or M~ >0,

Proof. Since M = [* Z} is an element of GL(2,Z), it is invertible,

det M = +1 and M~! = det M[_‘ic ~*]. Let us make a couple of remarks:

By Lemma 3.5, neither M nor M~ {since M ! is also an automorphism
of (Z?, P,)) can have a column < 0.

The matrix M cannot have a row < (: if for instance its first row were
non-positive, M would send (:) > 0 into a vector with first coordinate
would be au + by < 0, which is not possible by the hypothesis on the
automorphism A,

It follows from the above remarks about the impossibility for M to have
non-positive columns and rows that M has at most two non-positive entries.
If it has two, they must be either ¢ and d, or b and ¢ (and the other two
entries must be > 0). But in view of the computation of M, in that case
all entries of this inverse have the same sign, which must be positive in view

of a previous remark. If M has only one strictly negative entry there are
only four cases possible:

S g I i (i

The inverse of each of these matrices is non-negative. This completes the
proof. m

Let M be an automorphism of (Z?, P,) satisfying the hypothesis of
Lemma 3.7. Then either M or its inverse must be positive. Without loss
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of generality we will assume that M > 0. Let Ko(M) = (Z%, K (M)) be
the ordered dimension group of M, that is to say,

KT (M) = {veZ?| M*v > 0 for some k ¢ N}.

LemMMA 3.8. Let o be an irrational number. If M > 0 is an outo-
morphism of (Z?,P,) with M # I, then M is a primitive matriz and
Ko(M) = (Z*, Pa).

Proof. Set KT = K™ (M). The proof consists in showing that K¥ =
P,.

Notice first that it follows easily from Lemma 3.5 that M can have at
most one 0 entry, and it would be on the diagonal, which implies that in
any case M? > 0 and M is primitive.

Thus, by the Perron—Frobenius theorem, M has an eigenvalue A; > 1
with a strictly positive eigenvector vy > 0. On the other hand, since M -FPy =
P, ve = (_2) must be an eigenvector of M, and since |det M| = 1, the
corresponding eigenvalue Az = (det M)/A; satisfies |Ag| < L.

Therefore any v € Z? can be written in a unique way as v = &1V +Z2V2
with z;,22 € R. Notice that for such a v, v € Py < 1 > 0. For any
k € N we get M*v = Arayvy + Mzyvy, and since vi > 0, if z3 # 0,
M*v will eventually become positive if and only if 3 > 0. If zo = 0, the
condition becomes z; > 0, and noticing that the only point v with integer
coordinates on the line of equation z; = 0 is the origin, we conclude that
veKte e, >0 Thus KFT =P, »

Consider now a positive matrix M € GL(2,Z). From [ES, Lemma 4.1],
M=Ng, -Ng_,+...-Ng withe; 20,i=0,..., {. The following lemma tells
us exactly what the dimension group for M is (not just a characterization
up to isomorphism).

LeMMA 3.9, Let M = Ng,-Ney_y oo Ney 2 0, with ¢; > 0,i=0,...,1, be
a non-negative invertible primitive 2 X2 matriz, and let § = [Go~en el
Then M is an automorphism of (22, Pg) and Ko(M) = (Z%, Pp).

Proof. Since Ny - Ng - No = Napq for all d,d’, we can suppose that
in the decomposition M = N, + Ng_, - ... - Ne, all numbers c; are strictly

positive, except perhaps co and/or ¢;. Thus we have four cases, a.nd in each
of them we can compute the simple continued fraction expansion for the

associated irrational number §:
Be=1, 21, M=Ngy-...o Ny Neg and
B= [m]r 120.
(ii) o =0, @ > 1, M =N ..~ Ny, - Np and
B=1[0: e1 ¢, a-natal, 122
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(i) co>1, cg=0, M=Ng-Ng_ ...  Ngy - Ny, and
B=lec:cL,..-,Ci-2,C0F+c-1), 1=>2
(iv)ep=e=0, M=Ny-Ng_,+...- Ng, - Npand
B=[0:ea-1], 122
Notice that in cases (ii), (iii) and (iv), M fails to be primitive if { = 1.
. 1;:2 us prove the lemma in Case (); the other three cases will follow from

For 19,71,...,7m > 0, the notation v = [rg : r1,...,7m] will stand for
the positive mumber

1
r=19+ i

T ra+

Pm—1 1t —
Tm

As in the theory of continued fractions presented in [HW], recursive matrix
equations can be written for computing r. Namely, if we write

Fy= N, F. = Di qk
0 02 k [pk—l Qo1 1
and set the recursion Fy = N, - Fi—1 for 1 < k < m, we easily get F), =
Npp  Nppi oy v oo+ Ny, and 7 = ppn /g, Now, since 8= [egTer,...,61 ), We
have
g=co+ -
=co+ o
1
o+ =

¢
In other words, S =[cp: c1,... ¢, 3]
Therefore 5 will be of the form 8 = z/y, with the matrix

£y
Flaq =
e {Pz qz:|
satisfying

33 & y]:[ﬁ 1}_[13; @
33 [Pz o 1 0] |1 @
and Fy = [ " ] coming from the finite (rational) continued fraction

r=cp ey, .., 1] = pr/gi, which, incidentally, implies that
Fi=Ng Ny_ ... Ny =M.
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From the matrix equation (3.3),
g=%- nB8+p-1

vy ab+aq-’
that is,
(3’4) ﬁ2 + a1 —Plﬁ _ Di-1 = 0.
q a

Notice that (3.4) defines the irreducible polynomial for 8 in Q[X], and since
the constant term is strictly negative, 7 is the only positive root of this
equation.

Using the fact that M > 0 is primitive and following a similar argument;
t0 the one in the proof of Lemma 3.8, we show that M has an associated
ordered dimension group Ko(M) = (Z?,P,), p € R* \ Q. Moreover P, can
be computed as P, = {v € Z* | M*v > 0 for some k & N}, and therefore
M - P, = P, (that is, M is an automorphism of (Z?, P,.}). Since

M= -Fl = [ 24 q } ,
Pi-1 Q-1
it, follows from Lemma 3.5 that p satisfies
g, @i-1— P bi—1
+ —
# a # a

Since p > 0 is a root for (3.4), we get u = 3, and Case (i) is proved.

Let us deduce Case (ii) from what we just proved. Since § = [0 :
€1,Cg, -3 €11, €1 T €1 ], we can write

1 __#
a+i  aptl

= 0,

B=0+ with ,UJ=[(22:...,C1_1,C1+011.

Let
Mp‘ =Ncl+cl .Ncl—l ‘. .."Nc; = NCl 'NO 'ch .Nc!—l ."'-Ncﬂ
be the matrix having g as its associated irrational number. Then
M=Ny-...- Ny » No= (Noy - No) ™1+ My, + (N, - No).
We know from Case (i) that M, - (—1#) is parallel to (j“) Therefore

M- (Ney - No) ™t (_lu) = (Ney - No)™" - M- (ju)

is parallel to
1 1
N ~1; = 4= 1 ( ) )
(Ncl 0) ( _M) (C1,LL ) | ____61“£"_+1

which means that M - (_13) is parallel to (_lﬁ ) Since M is positive, Case
(if) is established. The remaining two cases are proved in a similar fashion. =
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We are now ready to prove Proposition 3.1. If M # I is a positive
automorphism of (Z2, P,), then by Lemma 3.8, M is primitive and M- P, =
P,. It follows from Lemma 3.9 that M - Ps = Pg, with 3 the irrational
number associated with M. But then it is clear that 5 = «. Recall that

= [do:dl,...,d'r,_]_] and M, = Nagp., - .. Ny, - Ng, with d; > 0
forall i = 0,...,T — 1, and T is the minimal length of a period in the
simple continued fraction expansion of a.. Thus the simple continued fraction
expansion for 3 is periodic and must be of the form of Case (i) in the proof
of Lemma 3.9, that is to say, § =[G 7Te1,--, ¢ | and M = Ny, -...-Ng, - N,
with all ¢; > 0. Finally, from the minimality of the period of o, l + l=Fk.-T
for some k € N, and M = M¥%.

Appendix B: Proof of Proposition 3.4. We will make use of the
following lemma whose proof can be found in [H].

LeMMA 3.10. Let (X,T) be a minimal Cantor system and f € C(X,Z).

(i) There exists g € C(X,Z) such that f+goT — g > 0 if and only if
Jor every ® € X the sequence (f(T"z)}+ ...+ f{Tx) + f())nen is bounded
Jrom below.

(i) f is @ coboundary if and only if the sequence (3 oo F(T
bounded for oll x € X.

{@)))nen is

Let us also state a technical lemma:

LeMMa 3.11. Let (2y,0, ) be a Sturmian subshift,

(1) K] For all clopen subsets U of 2, and all elements © € £2,, the
sequence (3 r o (1y (0%(z)) — w(U)))nen 45 bounded.
(ii) [HM] {u(U) | U is a clopen set in 124} C {ma+n|m,n € Z}.

(For example we have u(f0]) = 1 — o and u([1]) = o)

We start the proof of Proposition 3.4 with some notations. For all n € N
let

L, = {-731' e Bl | i€ Z, (mm)mez € ch}

(this set is usually called the language of (2,) and Q,, = {U(u) | v & Lapts1}
where for all u = ug ... ug, € Lapy,
U(u) = [0, tn1.UnUnt1 - - Ugn)
= {(Im)mez € P | Yimn = ui, 051 < 20}

It is classical that this last set is clopen, that @, is a partition and that
Unen @n is a basis for the topology of £2,.
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Let f € C(f24,Z). There exists an integer n such that f is constant on
each set of Q. Hence there exists {f, | u € Lpny1} € Z such that

Z Fulv(u).
wELznta

From Lemma 3.11 there exist p,¢ € Z such that YoueLyo Jup({UW)}) =
pa+g. Hence there exist two integers gg and g1 (uniquely determined) such
that

pa+g = go(l — &) + g1 = gou([0]) + g1p([1])-

‘We remark that gg and g4 do not depend on ,, in the sense that if f is con-
stant on each clopen set of Q,, for some m €N, then EHELzm-{-:L Fup({U () })
= pix + ¢.

We define g € C(£24,Z) by

9(z) = golyg(z) + qulyy(z) for all z € 02,

We now show that (Ez—o (f — 9)(e*(=)))nex is bounded for all z € 2.
Let z € (2. Then

N-1 N-1
SU-0EEN = ( X flvwei) - gono]) — g(1])
i=0 i=0 uELlan41
Nl ]
+ 3" (gon([0]) + (1)) - 9(o(2))).
i=0

Using Lemma 3.11 we clearly see that the second sum is bounded indepen-
dently of N, and using the definition of gy and gy together with the same
lemma it is not difficult to see that so is the first sum. It follows from Lemnma
3.10 that f — g is a coboundary.

We set ¢(f) = (g0, g1). It is not difficult to see that this defines a group
horomorphism 1 : C(£2q,Z) — Z2.

If () = 0 then using 3.11 one can prove that f is bounded aud hence
Ker 1y = 8,C(Q4a, Z), consequently K%(f2,,) is isomorphic to 72, Moreover
if f is positive then we obtain go(1 — @) + gicx > 0, that is to say, (g90,91)
P(1-0)/a- And conversely, if (a, b) belongs to P(l_a) /o then Lemmas 3.10 and
3.11 show that the function h = a1[0] + bl[l} is cohomologous to a positive
function. Finally (K°(f2q,), K°(24,0)%) is isomorphic to (Z?, P(1—a)/a)
as an ordered group.
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