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Long-time asymptotics for the nonlinear heat equaiion
with a fractional Laplacian in a ball

by

VLADIMIR VARLAMOV (Austin, TX)

Abstract. The nonlinear heat equation with a fractional Laplacian
U + (—A)“/z'u =u?, O<a<?,

is considered in a unit ball B. Homogeneous boundary conditions and small initial condi-
tions are examined. For 3/2 + €1 € a < 2, where &) > 0 is small, the global-in-time mild
solution from the space CP([0,00), HF(B)) with & < @ — 1/2 is constructed in the form
of an eigenfunction expansion series. The uniqueness is proved for 0 < x < a— 1/2, and
the higher-crder long-time asymptotics is calculated.

1. Introduction. The aim of the present paper is to study the nonlinear
heat equation with a fractional Laplacian

(1.1) wp + (-4 u=v?, O<a<2

The case & = 2 corresponds to the standard (Gaussian) diffusion, and 0 <
a < 2 accounts for the anomalous diffusion (see [4]). The nonlinear heat
equation with o = 2 and the power nonlinearity

(1.2) w = Au+v?, zeRY, £>0,

was studied in [5, 6, 8, 10, 12, 13, 15, 16, 20], where the questions of
well-posedness and asymptotic behavior of its solutions were investigated.
An overview of these results can be found in [3, 31]. We point out that
the authors of the above-mentioned papers considered mainly initial-value
problems imposing some restrictions on the intial data and discussing the
long-time behavior of solutions in terms of the parameters N, p, and the
exponents of decay of the initial data. In [9] the long-time asymptotics for
the equation of type (1.2) with the nonlinearity dz, 22|97~ + Bg, |ulP~" was
studied for a certain range of exponents. C. E. Wayne [34] examined the
Cauchy problem for (1.2) with a sufficiently smooth nonlinear term F(u)
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72 V. Varlamov

from the point of view of finite-dimensional invariant manifolds. He con-
structed these manifolds and showed how they could be used for obtaining
long-time asymptotics.

For parabolic partial differential equations on bounded domains the the-
ory of invariant manifolds permits one to establish stability and even calcu-
late the lower-order long-time asymptotics (see [1, 11, 32] and the references
therein). Since the linear operator of the equation has a point spectrum,
one can separate the phase space of the linear preblem into stable, unstable,
and central manifolds. In this case the solutions enjoy exponential decay in
time, while the power-law decay is typical for solutions of Cauchy problems.

Fractional derivatives dissipative equations were considered in the papers
(2,3, 4,7, 17, 19]. Nonlocal Burgers-type equations appeared as model equa-
tions simplifying the multidimensional Navier—Stokes system with modified
dissipativity [2], governing hereditary effects for nonlinear acoustic waves
[21], and modeling interfacial growth mechanisms including trapping effects
[17]. The linear equation

N
up = —Z%(—ﬂ)“imu, v =const > 0, 0 < ; €2,
i=1

appears in the problems of identification of images [7]. The paper [21] con-
tains varions examples of fractional differential equations with applications
to hydrodynamics, statistical physics, and molecular biology.

We point out that we do not use any of the methods mentioned above in
the present note. The basic ideas of our approach were developed in [26-31],
and in a certain sense they represent a further development of the methods
of [19]. We apply the spectral and perturbation theories in order to con-
struct sohztions and then find the long-time asymptotics. We shall consider
below the first initial-boundary value problem for (1.1) in a unit ball and
construct its small solutions in the form of an eigenfunction expansion series.
'The well-posedness follows from the construction. The Laplace operator in
a ball has a point spectrum, therefore the exponential decay in time is well
expected. However, our purpose is not just to establish exponential stabi-
lization. The series representation allows us to calculate the higher-order
long-time asymptotics. The function sin{nr}/(7r) present in its major term
describes the space evolution, and the coefficient in this term is calculated
by means of nonlinear iterations. Therefore, the asymptotics is nonlinear.
In the case of anomalous diffusion, 3/2 + &; < & < @, where qq, ~ 1.937,
the second-order asymptotics is obtained (the calculation of the coefficient
in the second term is also based on nonlinear approximations). The second
term contains the spherical harmonic Y; (6, ) and shows the dependence
on the angles. We must point out that the success of constructing solutions
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depends greatly on the convergence of the spatial eigenfunction series, and
this convergence is rather poor. This factor plays a crucial role in determin-
ing the eigenfunction expansion coefficients of the nonlinearity. That is why
the restriction 3/2 4 g1 € @ £ 2 appears, where £; > 0 is gmall.

2. Preliminaries. Denote by B a ball of unit radius and introduce
the coordinate system with the origin at the center of the ball, so that in
spherical coordinates B = {(r,8,¢) : jr| < 1,0<8<m 0L p < 27}. In
our study of the first initial-boundary value problem for the nonlinear heat
equation in B we shall use the expansion in the eigenfunctions of the Laplace
operator in this ball. We denote by Lo(B) the space of real functions square
integrable over B with the norm

123w

171% =S S S |F(r, 8, @)|*r? sin 8 df dip dr.
000 ‘

Then for a function f(r,8,¢) € L2(B) we have the expansion
f('ra 8, QO) = Z J?mnan(Ta o, (P):
m>0,nz1

where Xmn (7,8, ) are the eigenfunctions of the Laplace operator in the ball
B, ie.,
AX = _AX7 (’r,B, (P) & B:
X‘S =10, |X(0361 (P)l < 00, x(r,9,<p+27r) :X(Ts 9! ‘P)a
where A = (1/r2)8,(r?8,) + (1/r%) As,, and Ap,, = (1/sin 0)0p(sin0s) +
(1/sin” 8)52.

The angular eigenfunctions Y (9, ) are nontrivial solutions of the prob-
lem

(2.1)

Ao Y +uY =0, (0,¢)€S,
[¥|pmom < 00,  Y(0,00+2m) =Y (8,%)
The eigenvalues of the Laplace operator on the unit sphere are
b = m(m+1), m=0,1,2,...,

and the corresponding real eigenfunctions are the spherical harmonics of
mth order. Further separation of variables leads to

m
Y (8, ) = ZI ,(71,3 cosly + 01(721'2 sin lip] P! (cos 8),
1==0

where P! (cosf) are the associated Legendre functions [18, 22, 35] Thus,
Yin(8, ¢) is represented by a linear combination of tesseral harmonics.
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For the radial functions we have the problem

Fa(g) (1 e
R(1)=0, [R(0)} < oo,

whose nontrivial solutions and the corresponding eigenvalues are

Rpu(r) = jm(Amnr) = A/ ';':j Jm+1/2()‘mn"')> Amn = Ao,y

where Amn are the positive zeros of the Bessel function Jm+1/2(2) numbered
in increasing order, m = 0,1,2,...;» = 1,2,...; nis the number of the zero.
Note that Ag, = 7n. Our radial functions differ from the spherical Bessel
functions }m()‘mnr) = \/E)T}:.F"TMH /2(Amn7) by the factor VAmn (see [35,
p. 357]).

Introducing the real space Ly »(0,1) with the norm ||f||Z = So rf2(r)dr
we can write

1

= {2 Ownr)rdr = SO,
0
For sufficiently large X > 0 the following inequality holds [25, p. 219]:
C1 2 Ca
=< < -,
;\ — ”JU(’\T)”-r — )\
We also use the real space Lp,2(0,1) (L2(0,1) with weight r?) with the

||Jv()\vn7‘)i|,2» v>0n=12...

scalar product (f,g) = S(I) r2f(r)g{r) dr and the norm ||f||? = S; r2 f2(r) dr.
Then we can write

1 1

; ) w
Hjm”%n) = Sﬁ'rzn()\'mnr)'rz dr = 0l §J31+1/2()‘mn"')7' dr

0 0
and for sufficiently large A > 0,
(2.2) Ci/A < [lgm(Ar)|1* < O/

Note that large positive zeros of J,,(2z) with 0 < m < mg < oo have the

following asymptotics uniform in m (McMahon’s expansion, see [14, p. 153)):

(2.3) dinn = timn + O/ tbmn)y  bimn = (M 4+ 20— 1/2)7w/2,

For 0 <n < ng < oo and m — oo the asymptotié formula is
Amn = m + c(m)m’® + O(m~73),

where the coefficient c(n) and the constant in the estimate of the remainder
depend on n, but are bounded fer bounded .

Having described the radial eigenfunctions, we return to the angular
ones Y,{0,p) (sometimes also called surface harmonics [35, p. 298]). Let P

n —r 00,
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and @ be two variable points on the unit sphere § and let v(P, Q) be the
angle (between 0 and ) formed by the two vector radii OP and 0@, where
O is the center of the unit sphere. Then for P fixed and @ varying over
S, Pnlcos+y(P, Q)], where P,(z) is a Legendre polynomial, is a spherical
harmonic of the mth order of the spherical coordinates of @, and for fixed @
and variable P this function is also a spherical harmonic with respect to P.

Introducing the scalar product in the real space L;(S) by the formula
(f,9)s = {5 f9dS and denoting by !| - ||s the corresponding norm we can
write (see [22, p. 266])

(Vm, Yie)s = | Ym(Q )Pk[cosfy(P Q)dSq =0, m#k,
5
4z
4 I¥nlt = o,
2711;— 1 SYm(Q)Pm[COS (P, Q)]dSq = Y (P).
s

The spherical harmonic expressed as a symmetric function of the two points
P and Q is called a Laplace coefficient [22, p. 272], the name coming from
the expansion of a function f(P) into the Laplace series

F(P)~ Z Y (P),

2m+1
4

Y (P) = Sf(Q)P [cos (P, Q)] d5q,

m=20,1,...

Considered as a function of @, Py[cosy(P, Q) contains two arbitrary pa-
rameters, the coordinates (6',¢’) of the point P, which can be chosen by
the choice of the coordinate system. If we direct the z-axis of the coordinate
system through P, the spherical harmonics will turn out to be zonal and
the constants will be determined. Then the last formula in (2.4) will yield

2

"
2m—|—1 SS a(cosY)? sinydydy = Yin(P) = 1,
00

where (7, %) are the spherical coordinates in the system with the north pole
at the point P. Another consequence of (2.4) is the formula

2m+ 1

- = Pm[COS'}'(P: Q)l

S Prlcos¥(P, Q") Prlcosv(Q, Q)] dSq:
3 .

If P ={(#,¢) and Q = (6,4), then by the addition theorem for spherical
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harmonics we can represent them in terms of the tesseral ones:
Pplcos (P, Q)] = Pp[cosf cosd + sinfsin 8’ cos(p — ¢')]
= P (cos8) P (cosd’)
= (m D)
9 !
+ ; (m + !

P! (cos8) P, (cos 8} cos[l( — ¢')].

If we combine the north pole of the coordinate system with the point P,
then # =0, ¥;,(P) = Pn(1) = 1, and Pp[cosy(P, Q)] = P (cosf).

Next, we shall find the coefficients of the eigenfunction expansion of the
function f{r, @) € L1(B), Q € S. Following [35, p. 357] we can write

f(Ta Q) = Z ﬁcnjk()‘knr)yk(Q)-
E>0,n>1
Taking a fixed point P € S we multiply both sides of this formula by
Pp[cosy(P,Q)], integrate over S and use (2.4) to get

[ £(r,@)Pralcos (P, Q)45 = 5 Ym(P) Y FonndmAranr).

5 n=1

Substituting the expansion

fng) =3 L@@,

2
e (VY
into the last equation and equating the coefficients of jm (Amnr) we find

1

1 y
= e \ T i (AgnT) A7
AR it

x | £(r,Q)Pm[cos (P, Q)] dSq.
8
If we combine the north pole of our coordinate system with the point P,
then Y,,(P) = 1, Ppcosy(P, Q)] = P, (cos 8), and we deduce the expression
for the eigenfunction expansion coefficients
f - ((fajm)(n)(Q):Ym(Q))S
[l Yl
Now we shall give some facts concerning Legendre polynomials P, (),
—1 <z < 1 (see [22, pp. 176-200]). These functions satisfy the equation

Fran¥m(P)

(2.5) ?1% [(1 - m)ﬂd%pm(m)] tmlm+1)Pnla) =0, =€ (~1,1).

The following properties will be essentially used in our analysis:

Nonlinear heat equation 77

1Pu(@)] <1, z€(~L1), Pa(l)=1, Pn(-1)=(-1)",
(2.6)
2

1
2 —
| Pi(z)dz = T

-1

FIRST THEOREM OF STIBLTIES. Forf € (0, 1), m=1,2,...,

W2 o1
2.7 P, (cosf)| € e —.
20 Pr(eos)| < T s
SECOND THEOREM OF STIELTJES. For z € [-1,1}, m=0,1,...,
4 1
. - < . .
(2.8) |Prt2(z) — Pm(z)| < 7 o

The relation

(2.9) Pra(@) = Ppy(@) = 2m +1)Pn(z), m21,

implies that

T

(2.10) S P (£) dt = Prni1(z) — Pm_1()
-1

m > 1.
2m+1

¥

It follows from (2.8) and (2.10) that
{ 4 1
Pn(&)df| < —- .
Ul m(€) 5" VT m+1(2m+1)
Finally, since Py(z) = 1 and Pi(z) = =z the orthogonality relation
S%_] Pi{2) P (z) dz = 0, k # m, implies that

1 1
(212) | Pn(®)d¢=0, m21, and | ePa(6)dé =0, mz2.
1

-l -

(2.11)

We introduce the Sobolev space H"(B) with the equivalent norm
IFIE= 3 Nalfmnl*xmal3s

mz0,n2l
the space Hy(B) = H*(B) N {ulsp = 0}, and the Banach space C™([0, 00),
H*(B)) equipped with the norm

™

fullon = sup )iIGfU(t)IIk-

.7=0 t£]0,00
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3. Main results. We study the first initial-boundary value problem for
the nonlinear heat equation with a fractional Laplacian

wp + (—AY2u=u?,  (r,8,9)€B, t>0,

u(r, 8,9,0) = EZQS(r:Ga‘P): (r,6,¢) € B,
(31) u|BB = 0: > Ou
[w(0, 6, ¢,1)] < o0,
periodicity conditions in ¢ with period 2,
where 0 < & < 2, € = const > 0; ¢(r, 8, ¢} is a real-valued function.

We set A = (—A)%/2, where A is defined on sufficiently smooth functions
satisfying the conditions (2.1).

DEFINITION. The function u(t) is called a mild solution of the problem
(3.1) if it satisfies the integral equation

i
u(t) = e exp(—tA)p + Sexp(—(t — ) Ayl (rydr, t>0,
h)
in some Banach space C°([0, c0), X).

Set IT = {(#,¢) : 8 € [0,7], v € [0,27]}. We fix some small § > 0
and define B = {(r,8,¢) : r € [0,8), (6,¢) € I} and B; = B\ B{",
so that Bs is a closed domain. In what follows we shall use the notation
Dy = —(1/5in )8, and denote by Vi (f(r,8,¢)) the total variation of the

function f(r,d, ) in r € [0, 1}. Next, we formulate some assumptions on a
sufficiently smooth function f{r,Q),r € (0,1), @ € S.

ASSUMPTIONS A.

£(0,Q) = f(1,Q) = DFf(0,Q) = D3 f(1,Q) = 0;
Vo (r8- £ (r, Q) = V1,0(Q) € Ly (S),
Jim 70 f(r, Q) = F1,0(Q) € L1(S);

Vi (rén D3 £ (r, Q) = V1,2(Q) € L1(8),
rl_ifél+ r8- D5 f(r, Q) = F1 2(Q) € L1(S).

THEOREM 1. If 3/2+ &) < ¢ < 2 with some small €1 > 0 and the
function ¢{r,0,p) satisfies Assumptions A, then there is g9 > 0 such that
for & € [0,e0] there exists a mild solution of the problem (2.1) in the space
CO([0, o0}, HE(B)), k < oo — 1/2. It can be represented as

[eo]

(3.2) w(r e t) = Y Tnn(t)im(Amar) Y, ),

m>0,n>1

icm

Nonlinear heot equation 79

where the coefficients Up,n (t) are defined below (see (3.5), (3.6)). If 0 <k <
a —1/2, the solution is unique.

COROLLARY 3.1. Under the hypotheses of Theorem 1, u(r, 8, p,t) is con-
tinuous and bounded in B§2) x [0,00) and can be represented there as

=)
(3.3) u(r, 8,t) = Z eN 1M (r 8, ,1),
N=0

where the functions u™) (r, 8, ¢, t) are defined in the proof (see (6.1)), and the
series converges absolutely and uniformly with respect to (r,8,¢) € Bs, t €
[0, 00), and € € [0,&).

REMARK 3.1. We give an example of an initial function satisfying
Assumptions A. Using separation of variables we set ¢(r,0,9) =
R1(r)©1(8)$1(p) and impose the following restrictions:

R1(0) = Ry(1) =0, 1i%1+ rRy(r} = e3 < o0,
Vo (rBi(r) =ca <007 P1(p) € L1 (0,2m);

. d 1 d
D591 (0) exists for 8 € [0, 'JT] and a—e (51—1—5 a—9> 91 (9) S Ll(D,ﬂ').

We briefly sketch the proof of Theorem 1. We seek solutions of (3.1) in
the form of an expansion in eigenfunctions of the Laplace operator in a disk

'Ul(’f‘, g, P, t) = Z Z amn(t)an(r: 9: ‘P)

m=—0a n=]

The coefficients of the corresponding expansion of the nonlinearity (u?)},,(t)
are calculated via multiplying two series, namely

1 ~ ~
(34) (@)t = Tl—“"u‘i' Z Upq(t)Xpq - Z Uks (t)stsan)B
XmnllB 550,421 k20, 821
= Z: a(m: n.pq k: S)ﬁpq(t)ﬁka(t),

P,k20;q,521

where o
(Jkalgm)(q?s!n) (YPY,‘” Ym)S
T2 [¥ral15

Substituting these series into (3.1) we obtain the Cauchy problem ‘for
B (t) With (u2)0,(t) on the right-hand side of the equation. Integrating
this problem with respect to t we reduce it to a nonlinear integral equation
for @imn(t). For solving it we apply perturbation theory, i.e., we represent

C@('mﬂ 7,0, 4, K, 3) =
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Umn(t) as a formal series in ¢,

(3.5) Tmn () = D £V FHRI(B),

N=0

substitute it into the integral equation and obtain the following recurrence
formulas for integers m > 0, n > 1 (it is convenient to keep & in the coeffi-
cients in order to simplify some estimates):

Y, 0) (t) = éirrm eXP(_Aﬁmt)a Emn = Eamn:

"'(N) It = S exp[—A% . (t — 7)) Z

G.-(m, 'n’)p) q} k? S)
(3.6) 0 pk20; g,621

N
x 3 oV N ()dn, N2 1L
i=1
Then some time estimates of 7, 'Umn (t) are deduced which permit us to estab-

lish that the formally constructed function (3.2), (3.5), (3.6) really represents
the mild solution of {3.1) from the required function space.

TrEOREM 2. Under the hypotheses of Theorem 1, there exists a constant
C' such that the following asymptotics holds for all t > 0 uniformly in spoce:

texp(—27°t), a= o,
(3.7) |l — ol < C{ exp(~2m%), O < 0 < 2

lu— T — Tl < Cexp(—2r*t), 3/2+e1 < a< an,

where
To(r, 0, ¢,t) = Ao(e )Sm( ") exp(—n*t),
— - 1 A
T (r, 0,0, t) = A1(e) [M — cos{A11r) | Y1(0, ¢) exp(—Afit),
)\11’!‘ )\11?"
In2
Qo = —of 1037, Ay o 4.493;
C: ln(A]_]_/W) L1
2% > A for3/24+ 81 € o< oy,

and the constant coefficients Ag 1 (£) ~ ce® are defined in the proof (see (7.5)).

4. Auxiliary results. In this section we prove several propositions
which will permit us to obtain the estimates of the eigenfunction expan-
sion coeflicients of the solution. Let the function f(r, Q) be defined on the
unit ball B, @ being a point on the unit sphere S. For integers m > 0
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consider the integral

1

S (A, M) = {1372 (0, M)y )2 (Or) di,
Q

LeMMA 1. Let f(r, M) have o partial derivative 8, f(r, M) for r € (0,1),
M e I, and f(O,M) = f(1L,M) = 0 (in case m = 0 only f(1,M) = 0).
Moreover, assume that for each fixed M € II the function r8,f(r, M) has
e bounded total variation in r € [0, 1] which is absolutely integrable over IT,
ie.,

A>0, Mell

Vit (r0r f(r, M)} = V;1(M) € L, (IT),
Tlilgl_}_ ré‘rf(r, M) = Fl,()(M) S Ll(ﬂ)

Then there exists Car € L1(T) such that form 20, A >0, M € 1T,

OM(m+1),

Proof. See [31, Lemma 2).

Next, consider the integral

H(m‘)nap:kz )\mm ’\J)
1

= { Jons1/2Omnt) o172 (M) a2 (Aar) V7 dr,
0

j=1725

where m,p, k > 0, n > 1 are integers, A1, Az > 0, and Ap,, is one of the pos-
itive zeros of the function Ji,41/2(z). Our purpose is to obtain an estimate
of this integral as Ay, Ag — oo tracing the dependence on Am, as well. First,
we present a few auxiliary results concerning the Fresnel integrals [14, p. 28]

1 | cost

They have the following properties:
C(0) = §(0) =0,

1 sinz 1
Cla)=3+ o™ O(ms/z)’

1

2

COBZ 1
- 8] as & — 00.
27T * ($3/2)

dt, Sz)=

O(o0) = S(o0) = 1/2,

LEMMA 2. For any fired n = 1, any m,p, k > 0, and positive Ay, Aa — 00
there ezists a constant C independent of m,n, p, k,j such that the following
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estimates hold:

C
(41) |H(m7 T, P, k’ Amn)A_’iN < W, A1 > )\2,

c
4.2 H m,n, D, k:Amns’\' ﬂ 75 . 175 A]_ < Az;
( ) ! ( J)l )\}y{g)\i/2A21

C
(43) |H(m,n,p,k, A-rrurv.:)‘j)l < NV Al =g = A
Amn A

Proof We consider A\; > Ag since the case A; < Ag can be studied anal-
ogously. It follows from the theory of Bessel functions [33, p. 479] that for
any fixed n the function Jy,1/2(Amnr) has n + 1 intervals of monotonicity
in the interval [0,1]. We shall denote them by [0,71], [r1, 2]y - s [Pny Pasal)
Then Jr41/2(Amnt) is increasing on [0, 1], decreasing on fr1,72], etc. Omit-

ting the arguments of H and denoting by H () the integral over {r;, Tiy1] we

can write H = 3 00 HO),
Since Jpp1/2(Amar) = 0 for r € [0,71] we can apply Bonnet’s mean
value theorem (see [23, p. 328]) to the corresponding integral to obtain
™1
H® = I o AmaTe) S Tpr1/2{0r) Trs1)2(Rar)v/T dr,
%

where 17 € [0,71]. In order to reveal the decay of H (%) with respect to A; and
Xz we make the change of variable £ = A;r to get

1y _ Jm—{—l/?,()\mn'rl) M Az
(4.4) H --—“;é—/—g-—— S Jp+1/2(8) ey1/2 ")'\If \/Edé
1 Am

Note that for v > 0 and integer I > 0 (see [25, p. 226], [33, p. 199])

| <
(4.5) @S 2

2 1
(4.6) Jiya/2(x) = \/‘:EEC— sin(x —In/2) + O (;3—575), T — oo,

The convergence of the integral in (4.4) as A; — oo follows from (4.6).

If n = 0, then we choose A > 0 sufficiently large and represent the
integral in (4.4) as Sgl + Si\l‘”. From the uniform boundedness of the Bessel
functions it follows that | Sé | < C, and the asymptotics (4.6) yields | Sf” 1<

C+/A1/22. Hence

(4.7) |7M] <

z > 0,

__C
AMZAL2 N,

icm

Nonlinear heat equation 83

If n > 0, then a better estimate can be obtained. Indeed, we can write

1

2 = 1
J Ar)d, A dr—= ———|H + SRR
S p+1j2( 17') k+1/2( 27‘)\/; T i [ O(Al)\z)},

n
i

. S sin(Ayr — prr/2) sin(Agr — kw/2} ir.
n VT

Setting A = A1 — A = )\1(1 —-)\2/)\1) >0 (IlOte that A_ — oo as Ay — OO)
and Ay = Ay + Az we get

1

~ cos[A-r = (p—-K)n/2] Psl cos[Arr — (p+ k)w/2] dr

H= i g dr ) 7
= cos{(p - k) /2] §] ) o 4 snlfp — /2 i ) or
~ cos{(p+ k)r/2] S %ﬂ dr —sin[(p + k)r/2] 157 ——Sinijl;’") dr.

Consider, for example, the first of these integrals. Making the change of
variable ¢ = A_r we obtain

A_ry

Teos(Aur) .| 1 cos(() .| _ |27 ) —
sl | 0 - [F -
C C
<=2 <2
— A T M

as Ay — oo. The other integrals can be treated analogously. Therefore,
taking into account (4.5) we get
.C
4.8 |HW| < ——7s-
() < S

Next, we estimate the integrals H®) with ¢ > 2. Assume, for example,
that on [r;, r441] the function Jiy1/2{Amnr) is decreasing. Then, by Bonnet’s
theorern and (4.8), there exists 7; € [ri,7:41] such that

m

HO = Jm+1/2()\mn7"i) S JP+1/2(AlT)Jk"'l/Z(AZT)\/FdT

ri
Tidl
+ Jp1j2(mnrig) | Tp+1/2(Ar) Teasa(Aar)y/r dr
kal4 ’
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_ _2_{ Tt 1/2{AmnTi)
¥ LY )\1A2
n . s
sin(Ayr — pr/2) sin(Agr — km/2) ( 1 )]
dr + O ——
[jErmnny o
Jm+l/2()\mn7'i+1)

Vv A1Az

T gin(Ayr — pr/2) sin(gr — kx/2) 1

T
Reducing these integrals to the Fresnel integrals we can show that as A1, Az
— 00, A1 > )\23
C

AL2N\3/2)\ M2

Now (4.1) follows from (4.7)-(4.9). The estimate (4.2) is established in an
analogous way.

Let A; = A3 == A. Applying the first mean value theorem for integrals we
deduce that there exists £; € (0, 1) such that

(4.9) 1HY)| <

1

C
| Wit/ § s g0 VigaaQr)ividr £ 22,

The estimate (4.3) is established. =

Now we should study the integral
Tokm = (YYe, Ym)s = | Vo (@Q)Ya(Q)Ym(Q) dSe
g

from the point of view of obtaining the decay estimate in m tracing the
dependence on p and k at the same time. The following two propositions
provide two different estimates of this integral.

LeMMA 3. For all integers p, k,m > 0 there exists ¢ constant C indepen-
dent of p,k,m such that

C
Vim+Dp+DE+LD

Proof. In the chosen coordinate system with the north pole at the point
P we have

(4.10) Lpim = | Polcosv(P, @)1 Pi[cos (P, @) Pmlcos (P, Q)] dSg
)

IkaM| <
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2 ™
= S dyp S Pp(cos §) Pr(cos 8) P, (cos 6) sin 6 df
0 o]

1
=2r S Py(x) Py(z) P (z) de.
-1
If p=k = m = 0, then the required estimate follows from the equality
Py(z) = 1. If p,k,m = 1, then, by the first theorem of Stieltjes (see (2.7)),
we have

or (4/2\* L dz C
Hpim | < @Eﬁ( ﬁ) _51(1—x2)3/4 s JmiDGt kD

LEMMA 4. For all integers p,k, m > 0,

16
| Lpern| < Gm i 1)\/(m{\/p+lln(p+ 1) + vk +1In{k + 1)

In2
+ p+1+\/k+1)+2\/5r"}.

Proof. Integrating by parts in the representation (4.10) and applying
(2.10), (2.12) we get

1 ]

Lim = =2 | (| Pml®) ¢} [By(2) Pa(a) + Pyp(a) Ph(o)] d
-1 -1
2n

1
= =57 | Prta(8) = Paa@)][Py (@) Pelw) + P () Pi() -

First, we consider the integral containing Pp{x). This derivative can be
represented as

P:;;(m) — —p(p+ 1)8-—11‘?(:53 dé - -__P(P;* 1) [G;l)(ﬂﬁ) - GI(?)(.’IJ)],
= 1
G}(Jl)(m) = S_ilT_}ﬁ.)_flé, Gﬁ)Z)(w) — &.?Lﬁm.).flﬁ’ d<z<l.

By I'Hospital’s rule and (2.12),
. . _ 21\ =
ml_lg_llGE)(m) = (-1, GM(1)=0, lm G (@) =-1, GP(-1)=0.

Using Lagrange’s mean value theorem for the intervals [~1,z] and [z,1] we
deduce that

G(pl)(‘n) = Pp(m? ne (-—1,:6); Gi(bg)(m) = Pp(ﬁ)a i€ (ma 1)'
Therefore, fGI(;m)(m)l <lforze[-1,1 andallp>0.
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Next, we estimate the integral

1

Tyian = BT [ Pra(e) = Prs (G ) — G ()l u()

To this end we take some positive d1(p) < 1, divide the interval [—1, 1] into
three parts [~1,—1 + &1}, [~1 + 61,1 — &1], and [1 — dy, 1], and denote by
I, I, and I3 the corresponding integrals. Then Ipkm = It + I2 + I5. By the
second theorem of Stieltjes (see (2.8)), we obtain

16v/7 p(p + 1)81(p)
< .
(411) sl < = e T o+ 1)
It remains to estimate the integral
1-48, T
plp+ 1w §-, Pp(6)de
I = o+ 1 S [Pm+1($) - F _1(59)]Pk(m)——-—1 ) dz

—1+81

Using the inequality (2.11) for §*, P,(£) d€ and (2.8) for the difference in
square brackets we get

— _51
8\/1‘)“}—11(51) ~ t dx ’2-‘-‘(51
12) Ll < . T = =2 = .
(41) |2{—\/m(2m+1) (1) __12_511'_372 n 61

Choosing 81(p} = 1/(p + 1)? and combining (4.11) and (4.12) we obtain

16 In2
vep-+lln(p41)+ —+/p+1+2 71']
{2m+1)\/m+1[ P (p+1) g VP v
Using symmetry we replace p by &k and deduce an analogous estimate for
the integral containing P} (z) in the representation of Ipem. Adding these
inequalities we establish the required estimate.

|fpkm| <

REMARK 4.1. In the special case m = 0 we have

1

0, p#k,
4.13 Loro =2 \ Fp(z)Pe(z)dx = T
(4.13) k0 _Sl (2)Pi(z) {41r/(2p+1), p=k

Analogous results hold if p=0o0r k= 0. If p =k = m > 1, then by the first
theorem of Stieltjes (see (2.7)) we get
| (%)

VT

LEMMA 5. If f{r,Q) satisfies Assumptions A, then for all integers m >0,
n>1,

— 3 .
| Tpkem | = 21'r! § [Prn(cos8)] sin @ d0| < 4 75
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=~ C

4.14 | Fn| € —s————.

(414 m A?r{rzn\/m“}- 1

Proof. First, we consider m = 0, 1. By Lemma 1, we have

2w by 1 o

|fmﬂ| < Chmn S d(,oS | Py (cos B) | sin @ Srzjm()\mn'r)f(r,ﬁ, w)dr| < FER
0 0 0 mn

Next, we examine m > 2. Setting z = cos§ we introduce the function

z £ z
Do) = [ de | Pu(mydn= | (2~ )Pm(€)dt
-1 -1 -1
and observe that gas,%)(l) = 0. It follows from (2.10) that
1 2 Z
(2)(5) = - (&) d
o) = gy | | Prea@0 = § Fna(® 3
— 1 .Pm+2(Z)'“‘“Pm(Z) _ PM(Z) —Pm—z(z):l m > 2.
T 2m+1 2m+3 2m — 1 ’ =
Hence o
PP )| < 5, m22

Introduce the integral

27
(1)r,6) = o= | $(r. 6,0} dp = Flr,cos6) = F(r.2).
0

It is the mean value of the function f(r,6,) along the parallc_al_, all of whose
points have colatitude 8. Each plane characterized by the condition § = const
has a distance z = cos 8 from the center of the unit sphere 5.

Now we study the integral

" 1
I (1) = SF('P, 08 0) Py (cos 8) sinf df = S F(r,2)Pp(z) dz.
0 -1

Integrating two times by parts we get

1 w .
Ln(r) = | o2 (2)02F(r,2) de = | o2 (cos 6) D3 F (r, cos 6) sin. 6 dé.
-1 0

Then, by Lemma 1, we obtain
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2m

| Fran] < CAmn(2m +1) |
0

di | o (cos )| 48
0

bt

1
§ im0 (500 ) 070,
0

&S ngc—,—-— "
Ammvm +1
Lemma 6. For the functions t’)‘r(n]i)(t) defined by (3.6) the following esti-
mate holds for integersm >0, n > 1, N > 0, and real £ > 0:
(4.15)  [BEI®)] < N (V1T (m 4 1) 2 exp(— A, t).
Proof. Since the function ¢(r, 6, ¢) satisfies Assumptions A, its eigen-

function expansion coefficients ¢, satisfy (4.10). We use induction on N.
For N = ( and sufficiently small £ we have

BV (8] < £lmn| exp(—A%,8) < An2/3(m 4+ 1)1 exp(—AZ £).

We assume that (4.11) is valid for v’”(frjf,)z(t) with 0 < k& < N — 1 and prove
that it holds for k = N. To this end we shall need the inequality (see [19,
p. 181])

FAN+1- TSN+ )G+ (N +1~5)72),
By (3.6), for N > 1 we have

(416)  [BE2 ()] < {exp[~
0

I<j=< N

Manlt=T] Y

p.k20;¢,821

la(m.n,p, g, k, 5)l

N
x| O ) ar
=1
<eliB ™ 3
pk20iq,8>1
x Aps AT 1) M2 (k1) 712,
i

) exp[(Ag, — 208, )7] ar,
0

la(m,n,p, g, k, s)

L (8) = exp(-Ag,t

N
v ZCJ 1 N—-g 2(N+1—j) -2 ScN‘l(N+1)_2,
i=1
and the coefficients a(m,n, p, ¢, k, s) are defined by (3.4). By means of Lem-
mas 2 and 4 we seethatforn>1andmp,k>0,q>q0>0 §2 8 >0

icm

Nonlinear heat eguation 89

(90, 80 being sufficiently large),

1/2

e
T+ VETT) 2+ 207

A Ny > ke
X AN Apg < Akss
qu:l: p= kv g =S

la(m,n,p,q,k,8)| < C

[\/:n+ In(p+ 1) + vk + 1In{k + 1)

Taking the major terms with respect to p and k in square brackets in the
last estimate we get

50 ()] < L (1)) { v ;1«/ 2 12(11 + 1) + vE T Tln(k +12
D,k s: Apg VP + IVE + 1 Apg Ay,

pg>Aks

+ Y vP¥F1ln(p+1)+vk~+1 1nk—|—1)+z vp+ Iln(p+1) }
,q,k,8: qu 1/2’\a 1/2Vp+ Vk"' Aks)\l/z q Aiga_l/z)(p"]'l))‘ﬂ]

qu <Alna
< L (00N [o1 (o) + 2(e) + o3(@)] < L) (B,
where

In(p+1
01(06) = Z r;%)ﬂ/z) Z )\;fax/m’

P.q
In(k+1)
UZ(Q) Z o Z a+12 !
et X2y \/;o+ M AR T
vp+1 1np+1)

Here we have used the inequalities )\; (at1/2) )\““,\*1’1 2 for Apg > Aks

and Ay, (°’+l/2) < A qc")\“l/z for Apg < Aks. By Fublm—Tone]ll s theorem (see
[23)), 1f the iterated series Yom 2o |@mn| converges, then the double series
Yomn |Gmn| converges and ¥, Gmn = Y om 5on mn. The convergence of
the iterated series

Y in(p+1) Z;\'.;:,T/g and ZMZAQ

P20 g>1 *pe k20 a21

is established by means of the asymptotics (2.3} and comparison with the
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integrals
< H T ds

‘iln(p_i-l)dpx (P+2 )a+1/2’ S S (k+23)a

with sufficiently large A, B > 0. It holds for 3/2 4 ¢; € a £ 2 with some
small £; > 0.

Next, we prove that

(4.17) 1@ @) < ce’"ﬂ—:"gﬁ.

mn

(@) m=0,n=1, then

L (1) = exp(-259) {e 5 xp(~2gyr) dr < ZRLEMGE),

A
(ii) For m = 0,n > 2 we have Ag, — 22§ = n%*(n* —2) > 0 for
3/2+¢e1 € @ < @ with g1 > 0. Therefore,
i
LiZ(6) = exp(=7gat) [ expl(AG, — 22G)7) dr
0
exp[(Ag, — 2X81)1]
= — g
XD — g,
xp(—2A8:1) exp(—2A§; 1) < CEXP( —A§ )t
T OAG T2 T AR = 2(R01/A0n)?] fn
(iii) f m = 1, n = 1, then A;; ~ 4.493. Consequently, \§; — 228, =

Af — 2m% = w*[(Ay/m)* — 2] < 0 for 3/2 + &1 € @ < e, where qe =
In 2/In(A11/7) ~ 1.937; Afy — 22§ = 0 for a = ag; and A§y — 228, > 0 for
Uy < @ < 2.

Therefore, for 3/2 + &1 < o < e,

t

L () = exp(=A5t) | exp[—(208, — Agy)7] dr
0
1

— exp[—(2A5, — M)Y]

= eXx A8
p(~ 205, — A%, =Y

If o = ag, then

(Q)(t) = texp(—A$yt) = texp(—22§t) < Oexp( ’\Dlt)
Afy
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Finally, for aey < @ < 2 we can repeat the arguments of item (i) to get
t
Lg‘f) (t) = exp(~A$qt) S exp[(ATy — 27§ )7 dr
0
exp(—2XA§,¢) < Cexp(u)\glt)
TR —2X8, A

(iv) If m > 1, n > 2, then A%, — 228 = 7[(A12/7)* — 2] > 0 for all
3241 fa < 2 since Aqp == 7. 725 Therefore, the same arguments as in
(ii) yield

< Ep(=22G1) OexP(")\ﬁ‘l)t
AR 22 T Ag,
Combining (4.16) and (4.17) we establish (4.15).

L) <

COROLLARY 4.1. For N 2 0,t > 0, m =0, n > 2 the following inequali-
ties hold:

(418)  [FEN] < NN+ )ALV (4 1) exp(—2219),
and form > 1, n > 1,
B @) < e (N+ 12 A e 12 (g 4 1)1/2
xp(—Aft),  8/2+e So <o
b texp(—2)\8‘1t), & = Qicr,
exp(—-2A81t), oaax<a<s
Proof. First, we consider the case m = 0, n > 2. We use induction on
N as before. For N = 0 and sufficiently small & we have

|U"(OS&) @®)| < A_S/?' exp(—Agat) < )\On/ exp(—2A%1t).

Next, we assume that (4.18) holds for all ¥ 54 (t) with0 £ j < N~1 and
prove it for j = N. According to (4.15), (4.16) the time decay of 'Uén)(f)) is
determined by that term in the integrand that has the weakest decay in ¢,
Le., by 2;: =1 ﬁé’q -3 (T)ﬁ)‘éf”j )(T). Therefore, it is determined by the factor

t o o exp(—~2AG 1)
Lo (t) = Sexp[~)\0n(t ~ 7)][exp(~2AG )] dr < ¢ 5 :
1] 1

Thus, we obtain the estimate of item (ii) with the exponential multiplier
exp(~2AG;t). Since A%, — 2Af > 0 as m = 1, n > 2, analogous considera-
tions yield (4.18) for m > Ln > 2.

In order to prove (4.19) we again apply induction on N. For a,(n;(t) the
estimate is evident. Assuming that it holds for vmn(t) with0<j< N -1,
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for the time factor in Dy (t) we have

Limn(t) < exp(=A7,t)
1
x | exp(Af)[er exp(=2281) 7 + cor exp[—(AGy + Afy)7] dr.
0
Since A%, — 2A3; > AYy — 2)§;, we can repeat the considerations of item
(iti) and arrive at the inequalities (4.19). m

5. Proof of Theorem 1

5.1. Construction of solutions. We seek mild solutions of (3.1} in the
form of an eigenfunction expansion

(5'1) u’(rv 97 !107 t) = Z ﬁm'n (t)x'mn (T: 9: ‘;D))
m>0,n>1
where
- U, Xmn t .
umn(t) = M‘; Xmﬂ(’ra 9: (P) = Jm(AmnT)Ym(91 (P)

”an“%
Expanding the nonlinearity 42 in a series of type (5.1} with (u?)4,,(t) defined
by (3.4) we substitute this expansion and (5.1) into (3.1) to obtain

ﬁlmn(t) + Ag‘lnﬂmﬂ(t) = ﬁ(uz),’,}m(t), t> 0!
amn(o) = Ezgmn,

where éb\mn are the coeflicients of the eigenfunction expansion of the initial
function, namely:

(}5(7‘, 2, tp) = Z $m'n.an (7-’ 8, ‘P), &Emn _ (¢1 X'mn)B

5
m>0,n>1 Han”B

(5.2)

Setting Prmn = Edmn We integrate the Cauchy problem (5.2) in £ to .get
t
(5:3)  Trnn(t) = eBpmn exp(—A%nt) + | exp[—A%, (6 — T)](uD) o (7) dr
0
To solve this nonlinear integral equation we employ perturbation theory.
Representing %, (t) as a formal series in £ (see (3.5)) we substitute it into
(5.3) and obtain the formula (3.6) for the series coefficients Ty (t). By
Lemma 6, the estimates (4.15) are valid for T4v (t) with m > 0, n > 1 and,

by Corcllary 4.1, the inequalities (4.18) hold for these functions with m > 1,
n22and (419) form>1,n> 1.

Next, we prove that the formally constructed function (5.1), (5.3), (3.5),
(8.6) is really a mild solution of (3.1) (i.e., solution of {3.2)) from the space

icm
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C([0, 00), H*(B)), k < a — 1/2, Choosing ¢ so that ¢ < gy < 1/¢, where ¢
is the constant in the estimates (4.15), and using (3.5) we deduce that for
mz0,nz21,

(5.4) fn ()] < eAZSTD (4 1) exp(—2G18).

By means of (2.2), (2.4), and the last estimate we can establish that the
series

@z = > NG )P Yl E ]Iy
m20,n21

converges absolutely and uniformly with respect to ¢ > 0 for k < o — 1/2.
Indeed, applying the Fubini—Tonelli theorem we can prove the convergence
of the iterated series . > via comparing with the integral

[2,=] [= =]

dm dn

; (m + 1)(2m + 1) ‘5,3 (m - 2n)2a—2x

with sufficiently large A, B > 0. The restriction k¥ < & — 1/2 secures the
convergence of the inner integral.

5.2. Unigqueness of solutions. Assume that there exist two mild solutions
) and u® of the problem (3.1) from the class stated in the theorem.
Then each of therm can be expanded into a series (5.1), where the coefficients

T (8), i = 1, 2, satisfy (5.3) and (5.4). Setting w = u(V— u(® we expand
it in a series of type (5.1) and get

?.U(T‘,B,(p, t) = Z ﬁmn(t)an(ra 9: (P):

(55) Wan (t) = § exp[—)\,fm (t - T)]ﬁmn (T) dr,
0

By (3.4), we can write
Fon(®) = Y alm,n,p,q,k, )85 Dus(t) + By Tpa(2)].
72k, 8

Using Lemmas 2 and 3 we can estimate these terms as follows:

N 2m + 1) Anin
I Z a(m, mpq, k: S)ﬁ‘%)(t)wka(t)‘ S G(—’rn—"r‘n\/-—-—“z—-_l—‘(sl -+ 32 + 83),

Pk,
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where .
si= 3 G520 |k (t)] |
oot VOFDEFTL) Mn2?
Apg>Ars
SH= ¥ B Bl
D,a.k,85: (p + l)(k -+ 1) Ag-?éz/\k,g
Apg>Ake

_ B0 @)
Si=2. % 1 A
k.o
We shall estimate only the sum 57 since S3 3 can be treated analogously. By
means of the Cauchy—Schwarz inequality and (5.4}, we have, for any = > 0,

%+l 1 AR — [
Si < c = ’ = -
kzs kO VR 1A ; vptl

1 1 2|~ 2 21012 1/2
<o(Timm) (S0P I)
ks P

k,s
1
XD =mim T
P P Yo+ 1)
, < Cllw@)]]
Thus, we get

i
|@n(t)] € C {expl—A%, (£ — 7)][lew(r)]| dr.
0
Squaring both sides of the last inequality, multiplying the result by
/\ﬁfnl[Ym”%Hjm[Ifn), and summing it over m,n we deduce that for A > 0
and ¢ € [0, ], '

_ . _ 1 - Y- 2
W@l < O sup [w@ID30) wih S =3 LoEREMm AL
t€[0,h) o Afnn
The series Z(f) converges absolutely and uniformly with respect to ¢t € [0, A]
if & < e—1. It is a nondecreasing function on [0, h] and 5(0) = 0. Therefore,
for 0 <k <a~1/2,
(sup lw(®)|lx)® < CEE) sup |wit)]l«)® < C(A){ sup [Jw(t)][.)?
o )(tE[D’h] [w(#)lle)® < € )(tE[OI,Jh] o) ll<)*,
where C{h) = C'Z(h). The constant C(h) can be made less than one by

the appropriate choice of k. This contradiction allows one to establish the
uniqueness for ¢ € [0, A].
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Finally, we consider the sequence of intervals {[T%, Tx41]}5e; with T =
kh. Since
t

S expl—A% .t — 7)}dr =
T

we deduce that for ¢ € [Tk, Teta),
( sup [w(®)})? < CE(@-T)( sup ] o ()13

tE[Th, Tht] 1€ [T Ths1
Setting t = T +n, n € [0, h], we have Z(t —T}) = Z(n). Since the inequality
CE(n) < CE(h) < 1 bas already been proved, we have established the
uniqueness of solutions for all t > 0 and 0 < k¥ < a — 1/2. The proof of
Theorem 1 is complete. u

1 — exp[—A%, (t — Tp)]

2]
Amn

6. Proof of Corollary 3.1: regular perturbation series. We study
the series {5.1) representing the solution in the domain B; x [0,00). Note
that the coefficients 2y, (t) satisfy the inequalities (5.4) and |jm(Amn?)| <
Cc(8)/ A2 for » > & > 0. In the chosen coordinate system with the north
pole at the point P we have |V, (8, 9)| = |Pm(cosy(P,@))| <1forallm > 0.
Hence

) ke 1
Tran (8)d M) Y (8,0)| S CE) Y o= < 00
m2§121 \ m>0,n>1 Amn m+1

Thus, the series (5.1) converges absolutely and uniformly with respect to
(r,8,¢,t) € Bs x [0,00), € € [0,&p], and its sum is a continuous function in
this domain, Changing the order of summation we get

o0 o0
wrbet)= 3 [ SR i ) ¥ 0, 0)
m>0,n21  N=0
o0
(6.1) = > eNTuM(r 6, p,1),

N=0

oo = +)
'U’(N)(T: 6: &, t) = Z 61(711\53 (t)jm(’\m“"")ym (91 (P)- "
m>0,n21 N=0

7. Proof of Theorem 2: long-time asymptotics. If oo < a < 2, we
represent the solution as

(71) u(r: 9) 2 t) = a.01 (t)jﬂ(/\(]lr) + R (T: t) + R2(Ta 9; ¥, t):

where
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R1 (’f‘, t) = i ﬁﬂn(t)jﬁ ()\On'rl):

n=2

R2(T1 9: P, t) = z 'ﬁmn(t)jm(AmnT)Ym(g, (P)i

mynzl

and we have taken into account that ¥5(f,¢) =1. For 3/2+¢e; € a0 < 0y
we single out two terms in the series {5.1), namely:

ulr, 8,0, t) = o1 (€)7o (Aorr) + Uz (€) j1{ A1) Y2 (6, )

(72) )
+ Rl (T: t) + Ra (Ta 37 ¥, t)!
where ~
Ry (?“, 93 20 t) = Z aln(t)jl ()\1717')1}3-(07 ‘P)
n=2
+ Z tmn (£)4m (Amn?)Ym (9, 0)
m>2,n>1

and Rp(r,t) is the same as above. Thanks to (3.15) the estimates of the
type of (4.15), (4.18), (4,19) (without the factor ¢ (N + 1)~%) also hold for
Umn(£) if € < 1/e. If oy < @ < 2, we obtain a subtle asymptotic estimate
of @p1 (2) and estimate the residual terms Ry and Ra. £ 3/2+&; € & < oy,
apart from using the asymptotics of %y (), we also deduce a sophisticated
estimate of Uy1(t), while Ry and Ry contribute to the residual term of the
asymptotics.
According to (3.5), we have

Z e (0),

Adding and subtracting 1ntegrals from ¢ to oo in the representations of

Um1 (t) = m=0,1.

A(N)(t), m = 0,1, we can write
Tmh () = AL (e) exp(~25,11),
*f,i‘i)(t = exp(-2510)IA0 (e) + RS (1),
A Y edot, A S exp(AZ,7) Q( (U(1), &) dr,
0
(7.3) R(N (t) = S exp(AZ, 17')@ 1 (?J(T),s) dr,
t
Q'l('nl\;.) (ﬁ(t)i E) = Z a’(m: lypa QJ 5)
p,k>D;q,s>1

XZ"(“ g (), N>1,
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where 'u( )( ), m=010<j <N~ 1 are defined by (3.6), and Qsﬁ)
“1(t) and "(N D).

Next, we estimate the residual terms R,(nl (), m = 0, 1. By means of
Lemmas 3 and Corollary 4.1 we obtain

depends on ¢ through its dependence on v

(N) S exp{Ag17) exp(—2A517) < cexp(—Af L),
¢
(7.4) (N) S exp(Af 7){c1 exp(—2A8; 7)
+62T exp[—(Ag; + Afy)T]}dr

< exp[—a=(a}t],
where 2(a) = 203 — AY > 0for 3/24+¢; < @ < ag. ¥ & = @, then
|R(111V) (t)] < et, and for e < @ £ 2, lRﬁv) (t)| < cexplx(a)t]. Therefore, the
term containing %11 (%) must be included in the remainder of the asymptotics
for agr < x < 2.
Thus, for all t > 0 and m =0,1,

| B () — A (e) exp(— A1 8)| < cexp(—2XG;t),
(7.5) N N1 4(N)
Am(e) =Y " AN (),
N=0

where the series converges absolutely and uniformly with respect to ¢ €

[0,€9]. It follows from the estimates (4.18), (4.19) that
(7.6)  I|Re2(®)lls < cexp(~2051t),  [Ea(t)llx < cexp(=2X51t)-

Combining (7.1)—(7.6), recalling that

. _{m __ sin(mr)

Jo(horr) = 4/ 2TJ1/2(7TT) =T

, [ 1 [sin(Apr)

A (ur) = §?J3/2(7rr) = o ar — cos()\ll'r):l

VTAg(€), A1(e) = VA1 A1(e) we obtain (3.7). w
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and setting Ao(e) =
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