Contents of Volume 142, Number 2

G. Z. Lu and R. L. WHEEREN, High order representation formulas and embed-

ding theorems on stratified groups and generalizations .. .......... 101-133
A. A. ALBANESE and V. B. MOSCATELLI, Representations of the spaces C’G"(]RN)

AEEPRN Y 135-148
5. T. MELO, Smooth operators for the regular representation on homogeneous

Y 7 1+ - 149-157
V. MULLER, Axiomatic theory of spectrum III: semiregularities . . .. .. ... . 159169
P. WoJyraszozyk, Non-similarity of Walsh and trigonometric systems , . . . . . 171-185

P. DOMANSKT and D. VoaT, The space of real-analytic functions has no basis . 187200

STUDIA MATHEMATICA
Ezecutive Bditors: Z. Ciesielski, A. Petczynhski, W. Zelazko

The journal publishes original papers in English, French, German and Russian, mainly
in functional analysis, abstract methods of mathematical analysis and probability theory.
Usually 3 igsues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and
correspondence concerning editorial work should be addressed to

i STUDIA MATHEMATICA
Sniadeckich 8, P.Q. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997
E-mail: studia@impan.gov.pl

Subscription information (2000): Vols. 138-143 (18 issues); $33.50 per issue.

Correspondence concerning subscription, exchange and back numbers should
be addressed to

Institute of Mathematics, Polish Academy of Sciences
i Publications Department
Sniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6203997
E-mail: publ@impan.gov.pl

© Copyright by Instytut Matematyczny PAN, Warszawa 2000

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset using TEX at the Institute
Printed and bound by

il - wa N ot aw. Ewm
Tacom & Mmeu

APHRIA STWILIA
2240 WAkkzawh Uk, JAEONMDN 23
bal. (0-22) BOANBTH, 28, EB; Lalriw; (0-ZZ) MAR-DE-0

PRINTED IN POLAND

158N 0039-3223

icm

STUDIA MATHEMATICA 142 (2) (2000)

High order representation formulas
and embedding theorems
on stratified groups and generalizations

by

GUOZHEN LU (Detroit, MI)
and RICHARD L. WHEEDEN (New Brunswick, NJ)

Abstract. We derive various integral representation formulas for a function minus
a polynomial in terms of vector field gradients of the function of appropriately high or-
der. Our results hold in the general setting of metric spaces, including those associated
with Carnot—Carathéodory vector flelds, under the assumption that a suitable L to I*
Poincaré inequality holds. Of particular interest are the representation formulas in Eu-
clidean space and stratified groups, where polynomials exist and I} to L' Poincaré in-
equalities involving high order derivatives are known to hold. We apply the formulas to
derive embedding theorems and potential type inequalities involving high order deriva-
tives.

1. Introduction. The main goal of this article is to prove the existence
of representation formulas for functions as (fractional) integral transforms
of their high order vector field gradients. We prove the formulas assuming
there is a suitable L! to L! Poincaré inequality for two doubling measures, As
special examples, we obtain the existence of such formulas in both Euclidean
spaces and stratified groups, where Poincaré inequalities are known to hold
for several choices of polynomials. We also give some applications of the
representation formulas to various estimates of potential type.

It is well known that the following pointwise estimate holds for a smooth,
real-valued function f(z) defined on a ball B in N-dimensional Euclidean

space RV :
: V£

|f(z) — fs] < Gg“‘]x_ywq dy,

T € B,
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102 G. Z. Lu and R. L. Wheeden

where V f denotes the gradient of f, fp is the average |B|™* {5 f(v) dy, | B|is
Lebesgue measure of B, and C is a constant which is independent of f,z, B.
A proof of this estimate can be found for example in [GT, Lerama 7.16].

In recent years, various analogues of this formula for more general sys-
tems of first order vector flelds X f = (X1f, ..., Xif) have been derived in
the form

o(z,y)

z, o(z, y))] &

(1L.1) |f() - fel < C | [Xf(y )‘|B(
B

for x € B and 7 > 1, where B is a ball with respect to a metric ¢ which
is naturally associated with the vector fields, B(x,r) is the ball with center
x and radius r, and 7B is the ball concentric with B of radius 7 times
that of B, As is customary, we shall refer to such estimates as firsé order
representation formulas.

Formula (1.1) on a stratified group G was proved in [L1] for the left
invariant vector fields X,..., X which generate the Lie algebra of G. In
RY, (1.1) was first derived for general Hérmander vector fields in [FLW1].
In this case, o(x,y) denotes the associated metric (see e.g. [FP]). Alternate
proofs of (1.1) for Hormander vector fields are given in [CDG] and [FLW2].
Such formulas were derived in [F] and [FGW)] for nonsmooth Grushin vector
fields of the types in [FL], [F] and [FGW]. In [FLW2] and [FW], it was shown
that an L! to L! Poincaré inequality implies (1.1) in fairly general spaces of
homogeneous type; the reverse doubling condition required in [FLW2] was
relaxed in [FW] for spaces in which geodesics exist. A first order represen-
tation formula has also been obtained in [LW1] for the product of multiple
spaces when each component space i3 assoclated with a family of vector
fields of the types above. More recently, in [LW2], it was shown that (1.1)
holds with 7 = 1 for Carnot—Carathéodory vector fields, again assuming an
L' to L' Poincaré estimate, and it was also shown that the ball B can be
replaced by any Boman chain domain (2. Similar first order estimates have
also been derived recently in [HK].

In this paper, we study formulas involving high order vector field gra-
dients (see Theorems A, B and C). As particular examples, we obtain ana-
logues of (1.1) in Euclidean spaces and stratified groups with fg replaced
by appropriate polynomials and with the first order derivatives replaced by
higher order derivatives (see Corollary E). More precisely, on a stratified
group G with generators X3,. .., Xi, we will show that for any positive in-
teger m, any smooth function f and any ball B, there exists a polynomial
Pp(B, f) of degree less than m such that
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(1.2} |f(=) — Pu(B, f)(=z)|
o1 e py 2@ )™ B ¢ m
< il ) B s ¥ OB }ng f@)ldy

for ¢ € B, where r(B) is the radius of B and |X™ f] = (Zial-m [ X f|2)1/2
with X® = X ...X%’“ for ponnegative integers o, 1 < i; < kforl <
j <k, and |ozl = @y + ...+ ap. We will show that such a formula holds
for various choices of polynomla.ls in Euclidean spaces and stratified groups.
Moreover, if @ is the homogeneous dimension of G (see the definition below)
and 0 < m < @, then we have the more refined formula

oz, y)™

1.3 x B z)| < xXm — .
(19) 11~ Pa(B. @I < O] X" G2y we B

In Corollary F, we will show that (1.3) remains valid when m < Qif B
is replaced by a Boman chain domain 2 (or even a “weak Boman chain
domain”) in G.

If X; = 0/8z;, 1 <14 < N, then RV is identical to the corresponding
group G and has homogeneous dimension Q = N. Thus RY can be regarded
as a special case of the group setting. In this special case, by a result of S.
L. Sobolev (see [AH], p. 215-217), inequality (1.3) holds for all m, i.e., (1.2)
holds without the second term on the right for all m, provided P, (B, f)
is a particular polynomial related to the Taylor expansion of f. A similar
formula as well as some others are derived in [BH] (initially for cubes instead
of balls, but also for sets that are starlike with respect to a ball), and (1.3)
is even shown to hold everywhere, without an exceptional set of measure
zero, for suitable Sobolev functions. On the other hand, as we shall see even
in the usual Euclidean case, formula (1.2) has some flexibility in regard to
the choice of a polynomial since it is valid for any polynomial for which
there is an L' to L! Poincaré inequality for f. There are different possible
choices of such polynomials in Euclidean spaces and stratified groups. It
is the presence of the second term on the right side of (1.2) which allows
our method to work for arbitrarily large m, and we do not know if (1.2) is
generally valid without this term when m is large. The extra term causes
ne problem in the applications we consider.

Adding the second term on the right side in (1.2) also allows us to derive
analogous formulas in any metric space of homogeneous type without as-
suming that the underlying measure satisfies the reverse doubling condition
of order m (see the definition below). We only need to assume that a suitable
L' to I Poincaré inequality holds and that geodesics exist. Removing the
assumption of reverse doubling of order m is important when we deal with
representation formulag involving higher order vector field gradients because
even Lebesgue measure in RY fails to satisfy reverse doubling of order m
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when m > N. Another advantage of dropping the reverse doubling hypothe-
sis (H2) is that we can then define high order Sobolev spaces in metric spaces
by only assuming that the underlying measure p is doubling. This has been
recently shown in {LLW] and generalizes some of the results in [H], [FLW2]
and [FHK] for first order Sobolev spaces. It is fairly natural to assume the
reverse doubling condition of order 1, since, by [FW], in those metric spaces
that correspond to Lipschitz continuous Carnot~Carathéodory vector fields,
Lebesgue measure auntomatically satisfies the reverse doubling condition of
order 1. However, even when m = 1, the formula holds in a metric space of
homeogeneous type without assuming the reverse deubling condition of any
specific order (see Theorem A*).

A basic ingredient in proving the representation formulas is the existence
of an appropriate chain of balls. If the space has geodesics, a suitable chain
was coustructed in [FW)] and used to relax the reverse doubling assumption
made in [FLW2] from order 1+ ¢ to order 1. No geodesic property was as-
sumed in [FLW2]. The chain we will use below again requires the geodesic
(segment) property, but it has extra properties compared to the chain in
[FW7; in particular, it lies entirely in the particular ball B under consider-
ation, rather than lying in an enlarged ball 7B, 7 > 1. This allows proving
the representation formula without having to integrate over an emlarged
ball on the right side there. A chain of balls with largely the same proper-
ties was discovered independently in [HK] and used to derive the improved
version (i.e., the version without an enlarged ball) of the formula in [F'W],
as in [LW2]. The extra properties of the chain also lead to improvements
of some of the results in {LW2], namely, to relaxation of the Boman chain
restriction to a weaker one. We state the weaker restrictions in §2 after re-
calling the definition of the usual Boman chain condition (see Definition 2.3
in §2).

As one application of {1.2) and (1.3), we will derive weighted Poincaré
inequalities of high order by combining with the results in [SW] and as-
suming a balance condition similar to the one in [CW]. We will also derive
Moser—Trudinger exponential estimates, Lipschitz estimates and embedding
theorems on Campanato-Morrey spaces in terms of higher order derivatives.
Ag an application of the representation formula for weak Boman domains,
we can derive exponential and Lipschitz estimates for such domains directly,
rather than deducing them from ones for balls,

The organization of the paper is as follows. In Section 2, we give some
preliminaries, including a discussion of the necessary properties of polyno-
mials, and state the representation theorems. In Section 3, we construct
the chain of balls used to prove the representation formulas. Section 4 con-
tains the proofs of the representation theorems. Some applications of these
formulas are given in §5.
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2. Preliminaries and statements of representation formulas in
metric spaces. Let (S, ) be a metric space with metric p, so that for all
z,y,2 € S, ¢ satisfies o(z,y) < o(z,2) + o(z, ). A measure u is called a
doubling measure if there is a constant A such that

w(B(x,2r)) < Au(B(z,r)), z€S8, r>0,

where by definition B(z,7) = {y € §: o(z,y) < r}, and pu(B(z,7)) denotes
the y~-measure of B(z, r). As usual, we refer to B(z,r) as the ball with center
o and radius r, and if B is a ball, we write zg for its center, r{B) for its
radius and ¢B for the ball of radius c¢r(B) having the same center as B. We
always assume that (S, p) is locally compact.

Before we proceed, we need to define the notion of polynomial functions.
Let m be a positive integer, 2 be a domain in (S, @), and », 4 be doubling
measures. The two main properties that we require of a polynomial function
Pz}, x € {2, are:

(P1)  There is a constant C; > 0 such that for every metric ball D C £2,

C
oo @) < S § 1P vt

where the essential supremum is taken with respect to v.

{P2) If Disametricballin {? and E is a subball of D with v(E) > yu(D),
v > 0, then

|1 Pllzeo ) = ColvMI Pl 2o ()-

If P(z) is an ordinary polynomial of degree m — 1 in Euclidean space,
with the usual Buclidean distance, and if v, u are both Lebesgue measure,
then (P1) and (P2) of course hold with constants Cy, Cy(7) depending ad-
ditionally only on m. For general (S, g), the role of the degree will be played
by the order of the L' to L' Poincaré inequality that we assume is valid.
More precisely, given m and 2, let f be a function on {2 for which there are
functions g and P (B, f) such that the L' to L Poincaré inequality

1 r(B)™
S TB) g #(@) = Pu(B, 1) @) dv(a) < O ; lo()| du(z)

holds for every ball B ¢ {2, with C and g independent of B. The functions
P (B, f) may depend on v, u and g in addition to m, B and f.

DEFINITION 2.1. Given m, f and {2, we say that functions P, (f, B) are
polynomial functions associated with m, balls B C 2, f,g,v and u if the
Poincaré inequality above holds and if (P1), (P2} hold with P = P,(B, f)
and also with P = Pp,(By, f) — P (B, f) for every B C £ and B; C By C
2, with constants C, C1,Ca(y) that are uniform in B, By, Bs.
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We denote such polynomials by P, (B, f, g, v, u) but usually write them
simply as P, (B, f). In practice, the constants C1,Cy(~) are also indepen-
dent of f, but we do not need to make this assumption.

REMARK 2.2. For a stratified group & = G, polynomials Py, (B, f) with
these properties exist, and in fact we have several choices of them: see the
comments made before the statements of Corollaries D and F in this section.

DEFINITION 2.3. A domain (i.e., an open connected set) 2 in & is said
to satisfy the Boman chain condition of type o, M, or to be a member of
F(o, M), if there exist constants ¢ > 1, M > 0, and a family F of metric
balls B ¢ {2 such that

(i) 2 =UpesrB.

(i) X operxoB(x) S Mx,(z) forall z € 8.

(iii) There is a “central ball” By € F such that for each ball B € F,
there is a positive integer k = k(B) and a chain {B;}5_, of balls for which
By = B and each B; N Bj4 contains a ball D; with B; U Bj1, € MD;.

(iv) BC MB; forall j =0,...,k(B).

If we replace the hypothesis that o > 1 by o = 1, we say that 12 satisfies
the weak Boman choén condition.

In fact, we will only need to assume that the weak Boman chain condition
holds in order to prove representation formulas on domains other than balls.
This weakens the requirements made in [LW2] in case m = L.

The following four hypotheses will enter the results below, but not all
four are needed in every theorem. As always, (S, ) is a metric space. Let
u and v be doubling measures with respect to metric balls, and let 2 be a
domain in S.

(H1)  fis a function as in Definition 2.1.

(H2)  The measure y in Definition 2.1 satisfies a reverse doubling condition
of order m, i.e., there is a constant C' 3> 0 such that if B and B are

balls with centers in 2 and with B ¢ B, then
- r(B)\™
B> C| ==+ B).
w(B) 2 (T(B)) u(B)
(H3) (S8, 0) has the segment (or geodesic) property, i.e., for all T,y €
&, there is a continuous curve v connecting z and y such that

o(v(8),¥(s)) = [t~ 5.
It is easy to see that if the segment property holds, then for every ball
B C 2 and all 3 € B, there is a continuous curve y = y,,.(¢), 0 <t < 1, in
B with ¥(0) = x5, Y(1) = = and o(%p, 2) = o(z5,9) + oy, 2) forall y, z €
with y = ¥(s), z = (#), 0 < s < ¢ < 1. The fact that the curve v = Vepa
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lies in B is a corollary of the assumed additivity of g along ~. To see this,

we choose 2 = = in the additivity statement; then any y € -y also lies in B
since

T(B) > Q(:BB’:E) = Q(-TB,'H) + g(y,m) 2 Q(-Z'B,y)-
(H4) 2 is a weak Boman chain domain.
Let us now state our main results.

THEOREM A. Let v, u be doubling measures on a metric space (S, 0).
Let By be o ball and suppose that (H1) and (H3) hold with 12 = By. Then
forv-a.e. x € By,

|f(z) = Pm(Bo, £}(z)|

o elwy)™ r(Bo)™
<0 ) 0l sy #0) | loln

where C' depends only on v, u and the constants in (H1).

In the special case m = 1, the polynomial functions are just constants,
and then Theorem A improves the results in [FLW2] and [FW] by dropping
the reverse doubling assumption made there, although we need to have the
second term on the right and geodesics. We state this result separately.

THEOREM A*. Let v, u be doubling measures on a metric space {8, p).
Let By be a ball and suppose that the Poincaré inequality
1 r{B)
—— \|f = fpldv < C——< | lgldp
75 ;) W@ )
holds for every ball B C By, with fg = {5 f dv. Suppose also that (H3)
holds in By. Then for v-a.e. € By,

_emy)
[f(x) = faol < an 19(y)lu(3(m,g(w,y)))

7(Bo)
duly) + GW%T BSU lgl dps

where C' depends only on v, ik and the constant in the Poincaré inequality.

Other versions of this result (some more refined than others) are given
in [FLW1,2], [CDG], [FW], LW2] and [HK]. The version in [HK], which is
very similar to Theorem A* and was derived independently, does not have
the second term on the right side, but the average fg, on the left is replaced
by the average over a smaller ball of size comparable to Bg.

By also imposing the reverse doubling condition (H2) in Theorem A, we
get

THEOREM B. Let v, u be doubling measures on a metric spece (8, p).
If By is @ boll and (H1), (H2) end (H3) hold with 12 = By, then for v-a.e.
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z € By,

2B omm)) L)

where C' depends only on v, p and the constants in (H1), (H2).

oz, y)™
(=) = Pr(Bo, )){2)] < Oén o)l gy

The next result extends Theorem B to any weak Boman chain domain £2.

THEOREM C. Suppose that v and p are doubling mensures on a melric
space (S, g) and that hypotheses (H1)~(H4) hold for a domain 2 C 8. Then
forv-a.e. ¢ € £2,

7(2) = Pu(Bo, (&) € § o) =22 )
2 p(B(z, o(z, v)))
where By is the central ball in 2, Py (By, f) is the polynomial associated
with m, By, f, g, v and u of (H1), and C depends only on v, u and the
constants of (H1}, (H2) and (H4).

Under the segment hypothesis (H3), any metric ball is a Boman domain
(see [FGW], [L2]), and thus Theorem B is a special case of Theorem C.

The proof of Theorem A relies on the construction of a chain of metric
balls, assuming the segment hypothesis (H3). We state this construction
separately as

THEOREM D. Let (8, g) be « metric space in which the segment property
(H3) holds. Let By be a ball in S. For given & € By, there emists a chain
{By}u>1 of balls with the following properties:

(1) By C By and o(By,z) — 0 as k — oo.

(2) r(B1) = r{Bp) and r(Bg) — 0 as k — oo.

(3) If y € By, then p(y, z) = r(By).

(4) Bx N By—1 contains a ball Sy with r(Sk) = r(Bx) = r(Be1).
(6) If j <k, then By C cB;.

{6) {Br}ix1 has bounded overlaps, i.e., 3, xB,(y) < ¢ for all y.

The constants of equivalence in (2), (3) and (4) and the constants ¢ in
(8) and (8) are independent of z, k, j and By, but the chain {By)} depends
on .

REMARKS. (i) As the proof of Theorem D will show, By, can be chosen
with r(By) = 27%r(B;) and constants of equivalence that are independent
of k, z and By.

(i) A chain of balls with similar properties is constructed in [HK], al-
though there are some differences. In [HK], the chain corresponding to z
contains only a finite number of balls, ending with a ball which is arbitrarily
close to «.
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The hypotheses in the theorems above are valid when p and v are
Lebesgue measure on a stratified group G, such as the Heisenberg group.
To state our results in this context, we need to briefly recall some notions
about stratified groups.

Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume

G= @ Vl'.a
=1

and [V;,V;] C Vig fori+ 7 <s [V;,V;] =0 for i+ j > s Let Xy,..., X
be a basis for V; and suppose that X1,..., Xy generate G as a Lie algebra.
Thus we can choose a basis {X;}, 1 <7 < 5,1 <i < k;y, for V; consisting of
commutators of length 4. In particular, X3 =X, ¢ =1,...,kand k= k.

Let G be the simply connected Lie group associated with §. Since the
exponential mapping is a global diffeomorphism from G to G, for each g € G,
there is z = (z5) €RY,1<i<k;, 1<j<s, N= > j=1 %4, such that

g = exp (Zmin,;j) .

The homogeneous norm function |- | on G is defined by

4 1/(2s1)
IQI=(Z|xz‘j125UJ)1 2 .

Algo, the integer @ = E;=1 Fk; is called the homogeneous dimension of (x,
and ( is usually greater than dimG = N.

We now define polynomials on G by following Folland—Stein (see [FS1).
Let Xi,...,Xx be the generators of the Lie algebra G, and X3,...,X,...
...,Xn be a basis of §. We define d(X;) = d; as the length of X; as a
commutator, and arrange the order so that 1 < d; <... < dy. Thus it is
easy tosee d; = 1for j=1,...,k. Let £,...,£{n be the dual basis for G*,

and let n; = &oexp™t. Thus m,. .., 7w are a system of global coordinates on
G. A function P on G is called a polynomial on G if Poexp is a polynomial
on ¢. By this definition, ny,...,7~ are polynomials on G and generate the

algebra of polynomials on G. Thus every polynomial on G can be written
uniquely as
P=Y"am', n'=ni..n¥ areR
I

where all but finitely many of the coefficients a; vanish. Clearly, n’ is ho-
mogeneous of degree d(I) = Z‘?;l i;d(4;). f P = Y ;am’, then we define
the homogeneous degree (or order) of P to be max{d(I) : a; # 0}. If we
consider I = (41,...,%), 1 £ i; <k, then d(I) = |I|.

It is shown in [F'S] that any polynomial on G satisfies (P1) and (P2)
in Definition 2.1 when v is Lebesgue measure. Moreover, if 2 ¢ G and



110 G. Z. Lu and R. L. Wheeden

f € C™(R2), then for any ball B C {2 the Poincaré inequality for Lebesgue
measure, i.e.,

(2.4) If — Pra(B, )l 21(B,a2) < Cr(B)™(|X™ | 125 ,02),

holds for several choices of polynomials Pn, (B, f) with homogenecus degree
less than m by the results in [L3], [L4]. Here the constant C is independent
of f as well as B. One choice is to take P, (B, f) such that

(2.5) [ X7 — Pu(B, f))dz=0
B

for all |of < m, where X* = X7 ... X, 1 < i; <k, a;’s are nonnegative
integers and |o| = @1 +... + ag. We can also take P,(B, f) to be a poly-
nomial 7, (B, f) which is defined by a projection operator. More precisely,
let P, be the collection of polynomials on G of degree less than m. Then
there is a linear operator m,(B,) : C™(£2) — Py, for 2 C G satisfying
Tm(B,P) =P for all P € P,,, and

25) p (B, (o) < 17 § @)y
and B
(2.7) | X %t (B, F)| 225 dz) < C(Q DX £l po(3,am)

forall 1 £ ¢ < 00,0 < |af =1 < 0o, where |X'f| = (34 [X*F|2)Y/2. The
existence of such polynomials is proved in [L3], [L4]. When G = H", the
Heisenberg group, polynomials P, (B, f) satisfying {2.5) were found earlier
in [N].

In [FS], Taylor polynomials are introduced and used to prove a stratified
Taylor estimate. More precisely, there exist positive constants € and b such

that ‘
|f(zy) — Pa(y)| < Cly|™ sup | X% f ()],
|| <bR+1y|, |o|=m

where Py (y) is the Taylor polynomial of f of degree m — 1 based at . Since
the right-hand side involves the supremum of mth order derivatives, this
formula does not appear to imply the Poincaré inequality we have assumed
in (H1).

It is clear that polynomials for which (2.5) holds satisfy (2.4) by us-
ing repeatedly the known case m = 1 of (2.4). To see that the projection
polynomials also satisfy (2.4), we use the following fact with p = 1.

LEMMA 2.8. If P is any polynomial of degree less thanm and 1 < p < oo,
then

(§19@) = (B, D@ ) < O ( [ 15(0) - PP as)
where CBonly depends on Q, m 7
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The proof is a simple corollary of (2.6) and the fact that 7., (B, f) ~ P =
Tm (B, f — P) if the degree of P is less than m.

We mention in passing that the existence of polynomials satisfying either
(2.5} or (2.6) and (2.7) for general Carnot-Carathéodory vector fields is an
open question. We are now ready to state the representation theorems on a
stratified group.

COROLLARY E. Let By be a ball in G, f € C™(By), and m be a positive
integer. Then there is o polynomial P (By, f) of order less than m such
that for © € By,

|f(2) = Prm(Bo, £){=)]

m g ()]~ 28T r(Bo)™ ¢ o
<0 L IOl g gl ¥ TR S siay

with C independent of f, # and By. Moreover, if m < Q then

[f(m) _Pm(BOaf)(w)l <

Ty )
¢} X0l gy

For a weak Boman chain domain, we have

CoRrROLLARY F, Let (2 be a weak Boman chain domain in G with o central
ball By, and let f € C(2). Then for any m < Q there is e polynomial
P(By, f) of order less than m such that for = € 12,

|f(z) Pm(Bo,f)(m)ISC!SJX TN 5, o, y))l

The methods used in this paper are extensions of several techniques
from [FW] and [LW2], together with the use of properties of polynomials.
The presence of polynomials P, (B, f) of positive order causes some tech-
nical difficulties which do not occur in the case of order zero, i.e., when
Pp{B, f) = fg. If we instead prove Theorem B by adapting the technique
used in [FLW2], we will have to assume the reverse doubling condition of

order m + ¢, i.e.,

m—+e -

£(B) c(t(—.é-)—) if B BcCeB
w(B) ~ \r(B)

for some £ > 0, but then the segment property (H3) is not needed.

In passing, we note that the Poincaré assumption in Definition 2.1 can
be weakened by allowing an enlarged ball on the right, namely by assuming
that there is a constant a1 > 1 such that for all balls B with a) B C {2, there
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is a polynomial Pm (B, f) such that

[1f = Pr(B, Pdv < cZE

u(B)

{ lold,
(B) alB
and by also assuming that the measures v, u are related by the following

balance condition: if B and B are balls with amBCBcC {2, then

(12" 8 ui2)

r(B)/ wB)~  wB)

This balance condition clearly holds automatically if v = p; moreover, for
any two doubling measures, it is necessary for the L' Poincaré estimate if
m =1, g = |Xf| and X is a differential operator (see [CW], p. 1194). For
m > 1 and g = |X™ f|, this balance condition is also necessary. To see why
we can allow an enlarged ball ;B for a; > 1 on the right of the Poincaré
inequality, we need the following lemmas.

LEmMA 2.9. Let 2 € Fo, M), p and v be measures and v be doubling.
Suppose that f is a function so that for each ball B with ¢ B C 12,

VIf = Pu(B, ldv < A |gldu
B oB

with A independent of B. Then

§If — Pr(Bo, )l dv < cA | |gl dps,
2 2
where By is a central ball for 2 and ¢ depends only on o, M and v.

This sort of lemma is well known for m = 1, even for quasimetrics; see,
e.g., the comments following Theorem 5.2 of [FGW]. For m > 1, it can be
found in [B] in the Euclidean case and in [L4] for stratified groups. The main
ingredient needed in the proof is those properties of polynomials we listed
in (P1) and (P2).

LeMMA 2.10. Let (S, 0) be a metric space equipped with o doubling mea-
sure u. If the segment hypothesis (H3) holds for a domain 0, then every

ball B C §2 is a Boman chain domain of type o, M for any given ¢ with M
depending only on o and p.

This is Theorem 5.4 of [FGW].
If (H3) holds, we can use Lemmas (2.9) and (2.10) to show that if the
Poincaré hypothes1s (H1) holds for some a1 > 1, then it also holds for ay = 1.

In fact, fix any ball B C £2.If B is a ball with a; B C B, condition (H1) and
then the balance condltlon give

r(B)" r(B)"
}Sglf FnlB, 1) dv < OV{B)” Slgld.u»<C'(B) i MSBlgw
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By Lemma 2.10, B is a Boman chain domain of type 0, M with 0 = gy for
some M. Thus, by Lemma 2.9 with 2, ¢ and A there chosen to be B ay
and OV(B)T(B)m /u(B) respectively, we obtain

~ ~ r(B)™
§17 = BB, )l < Oo(B) "L |l
B p{B) B

for some polynomia:} P, (Eo, F), where ED is the central ball in the Boman
chain condition of B. In this case we can take P, (B, f) as P (B, f). Thus

we can assume without loss of generality that @; = 1 in the Poincaré part
of hypothesis (H1), provided that (H3) and the balance condition hold.

3. Proof of Theorem D. We consider two cases: ¢ € By and z €
By\eBy for ) < £ < 1/5. Parts of the argument are similar to the construc-
tion in [FW], but there is a difference now since the chain of balls will lie
inside Bo.

CASE 1: x € €Bg. Let By = Bg(zg,ry) and fix x € eBy. We first show
that there is a point zj, depending on z, with g(zo,20) = ((1 — 3¢}/2)ro
such that if z is any point on the geodesic segment containing zp and z,
then B(z, o(z,2)) € Bp. In fact, pick any point zy with o(we,20) = (1 —
3e)/2)ro and let z be a point on the geodesic y connecting zp and z. If
¢ € B(z, o(z, 2)), first note that

o(&,z0) < o€, 2)+o(2,z)+olz mo) < o(z, 2)+o(x, ) +ery = 20(x, 2) +ero.

Algo, since z € v,

£
To-

05, 2) = o(s,20) — olen, 2) < o(a,20) < o(z, 7o) + (s, 20) <~

Combining estimates shows that £ € By as desired.
Now fix zy as above and let p(x, zp) = r1. The fact that £ < 1/5 implies
that @ 5 zq, i.e., vy > 0. Let v = v(¢),0 < ¢ < 7y, be the geodesic connecting
zg and z with v(0) = 2o, v(r1) = = and o((t),¥(s)) = |t — s|. Define £, = 0
and ty41 = (r1 +£5)/2 for k > 1. Then ry — ¢y = 71/2%~! for &k > 1, and
tx /" ri. For 0 < 8 < 1 to be chosen and k> 1, let
zk = 7(ty) and By = B(zx,0(r1 - tx))-
Note that o{z, 2k} = o(v(r1),¥(tx)) = r1 — tx, and then
By C B(zg,m = tx) = Blax, o(z,2x)) C Bo
by what we showed earlier, since = & . Thus property (1) follows. Clearly,
7{By) —+ 0 and
1-5¢
2

r(B1) = 0(r1 —t1) = 01 = Bz, 20) = B[o(%0, 20) — o(,T0)] >0 To-



114 G, Z. Lu and R. L. Wheeden

Thus, r(B;) =~ r(By) and property (2) holds. To show (3), fix k > 1 and

y € By. Then

1+8
¢

o(z,y) < oz, zx) + 0(zx, y) < (r1—te) + 0(r1 ~ L) = 7(Bg),

and similarly

o(z,y) 2 olz, zk) — olzk, ¥) > L 7 GT(Bk)-

To prove (4), note first that for each k > 1, »(By) = 2r(By41) and

1
ok, Tra1) = tpy1 — bg = %T(Bk)-

Pick zr on v halfway between ) and zgq:

t -1 Tpy T
o2k, 2) = k+12 k_ ol k2k+1)‘
Then also g{zk+1,2:) = o(Tk, 21). Let

Sk = B(z,r(By)/8).
To show that Sy C Bpii, note that if £ € Sy then

7(Bg) | teer —tk
g T3

= (% + Z%)’”(Bk) = (‘ll + 515)’”(3:&1)
< r{Bgy1) if 6> 2/3.

Thus S; C Byyq if 8 > 2/3. Similarly, o(¢, 2z} < 7(Bg) if £ € Si and
8 > 2/3, so that S; © By N Byy1 if § > 2/3.
To prove (5), fix 7 < k and let £ € By. Then

-Q(é.’ 'TJ) < Q(gnmk) + Q(mhmj) < T(Bk) + Itk - t.'fJ'
Since k > j, tx > t; and r(By) < r(B;). Also,

ltr — t;] =T1<2j1_1 - Zkl._l) < 2;11 = %”(Bj)v
Thus, o(§,z;) < (14 1/6)r(B;), so that By, C (1 + 1/8)B; as desired.
It remains to show (6). If B; N By # @ then by the triangle inequality,
e(zjr) <r(Bj)+r{Bi), ie, [t; —ts| <r(By)+r(By).
Since t; = r1(1 — 1/27-1) and 7(B;) = 0r1 /291, we easily obtain

1 1 1 1

21 k-1 < 923-_1 + 62k—1'

o€, zr1) < o€, ze) + o(2, Tipr) <
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Therefore,
1+6
k-3l <lo .
[k~ j] <logy T—

Property (6) follows immediately, and the proof of Theorem D is complete
in Case 1.

Case 2: z € By\eBy. The argument is similar to the one for Case 1.
Recall that By = B(zg, 7). Fix € By\eBp and let g(z,x0) = r1. Then
erg < ry <rp. Let v = «(¢), 0 < t < r{, be a geodesic connecting zy and
z with ¥(0) = zg, v(r1) = = and g(y(t),7(s)) = |t — s|. We first show that
if z € v then B(z, o(x,z)) C By. In fact, if z = y(s) and £ € B(z, o(z, 2)),
then £ € By since

(&m0} < o€, 2) + o(2, z0)
<oz, 2)+o(z,m) = (r1 — 8) + 5 =11 < ro.

Define a sequence {Bj}x>1 of balls as follows. Let t; = erg/2, tpy1 =
(Tl -+ ﬂk)/2 for k > 1, = = '}f(tk) and By = B(mk,G(rl — tk)) for k > 1,
with 0 < 6 < 1 to be chosen. Then ry — it} = (ry ~ ¢1)/2% 7 for k > 1, and
ty /" r1. Also, since 0 < 8 < 1 and rp — ¢y = p(z,21), We get Bx C By as
before since xy € . Thus (1) is satisfied by {Byx}r»>1. Property (2) holds
since r(By) — 0 and r(By) = #(ry —erg/2) > Berg/2. The arguments for the
remaining properties are like those for Case 1. The only difference occurs
for (5) and (8). For (5), if j < k, we now have

?"1—151 Tl—tl ’!’1-—‘61 1

and the rest of the proof of (5) is then as before. For (6), the estimate
[t; — tr| < r(B;) + r(Bk) now yields

1 1 1 1
< B(Tl—tl){—ﬁ—_‘fﬁ" '2,3—__1}:
1 1

01 1
7w <\FTtTE)

Fi1  9k~1
and the rest is the same. This completes the proof of Theorem D.

(r1—t1)

so that we again obtain

4. Proofs of Theorems A, Band C

Proof of Theorem A. We will use Theorem D. Let By be a ball in § and
suppose that (H1) and the segment property (H3) hold for Bp. Given 2 € By,
let {Bp}x>1 be a sequence of balls with the properties in Theorem D. Then

(41 |f(z) — Pn(Bo, f)(x)]
< |£(@) = Pm(By, £)(@) + |Pm(By, £)(=) ~ Pm{Bo, f)(=)!-
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For the second term on the right in (4.1), we get, for v~a.e. z € By,
| P (By, £){&) ~ Pr(Bo, £){(@}| £ |1 P Bu, ) (@) = P Bo, FY{(@)|| Lo (Bo)
S NP (B, £) (@) — Pr(Bo, F){(@)|| 250 (5,)
by (P2) since By C Bg and v(By) = v(Byp) by property (1) of Theorem D
(v is doubling). In view of {P1) this is bounded by
”Pm(Bl: f) .....

< c
e BSllf—Pm(Bl, Pl + 55 | g |f = Pon(Bo, )] dv

B P (Bo, Flizysy)

<

c C
< By BSL \f = Pr(By, f)| dv + STE gu |f = P(Bo, f)| dv
r{B)"™ m{Bo)™
<C iy él |g| dps -+ O BT E gl du
by the Poincaré inequality (H1)
o ~T(Bo)™
<C I-"‘(BO) éoiﬂ dp

since B; C By, 'r‘(B]_) ~ ?‘(Bo) and u Bl) Rs [.L(Bo)
Assuming as we may that « is a Lebesgue point for both | f — P, (81, f)|

and |g| with respect to v and using properties (1}~(3) from Theorem D, we
deduce for the first term on the right in (4.1} that

|7 (2) — Pm{Bu, [){z)]
= lim § |f(y) — Pr(B1, /) (v)] dv(y)

< liﬂsup S’ [f(y) - Pm(Bka f)(y)‘ dv(y)

mBk

+limsup § |Pn(By, /)(y) ~ Pa(Br, )W)l dv(y) = I + I,
—+00 By

where I; and 'Ig are defined by the last equality. To show that Iy = 0 for
every Lebesgue point x of |g|, we use the Poincaré inequality:

5 < Climenp 2§ 19)] du(y) = 0- g(a)] = 0
By
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Thus we only need to estimate Iy, We have

k-1
L< 11msupz S [P (Bjt1, f) — Prn( By, £)l dv
k—oo j—l ( k) Bk
k~1
<hmsupZ||P (Bj+1, f) = Pn(By, o 80)
k— o0 j=1
k-1
< hmsupZHPm (Bj+1, f) = Pm(By, f)llres (eB)

k—roo

by property (5) of Theorem D. The last expression equals

o0

Z H-Pm(Bj—{-la .f) - Pm(Bj: f) HLE“(CB;')
j=1
Z (Bjr1, F) — Pm(BJ,f)“Lw(SJ) by property (4) and (P2)

J=1

s OZ (S | Pm(Bj+1, £} = Pm(By, FYllzy(s;y by (P1).
i
J=
Using the triangle inequality, we see this is bounded by

CS" Y |1Pn(Bysr, f) = Fldv+C Y § |Pa(By, f) = fldv

4=18; j=18;

<CS" § IPa(Bign, /) = fldv+C Y § 1P(By, f) — fldv

3=1 B_,'+1 F=1 Bj

since S; C B; N Bj+y and »(S;) =~ v(B;} ~ v(Bj41) by Theorem D. Com-
bining estimates and applying (H1) to the terms of each of the last two
sums, we obtain

I < C'ZT(B ™ § Lo (W)l duy).
=1 B;
If y € By, then
r(B)™ ., emy)™ o olzy)”
u(B;) ~ u(Byelz,y)  w(B(=,elzv)
by part (3) of Theorem D and the fact that s is a doubling measure. Thus,

oz, )™
= O; A 1ol B oy
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o(z,y)™
<C — s dpu(y)
MW, o)
by (6) and (1) of Theorem D. Theorem A now follows by combining esti-
mates.

Proof of Theorem B. Theorem B is a simple corollary of Theorem A and
the reverse doubling hypothesis (H2). In fact, if z,y € By, then o(z,y) £
2r(Bg) and consequently by (H2), we bave

r(Bg)™ o(z,y)™
u(Bo) T w(B(z,o(z,y))}

Thus, the second term on the right in the conclusion of Theorem A is ma-
jorized by the first term. This completes the proof.

if T,y & .Bg.

Proof of Theorem C. Let z € £2. By the definition of weak Boman chain
domain, we may select B* with z € B* and a chain {B;}}_, connecting
B* = B;. to the central ball By. Then

(4.2)  [f{z) = Pn(Bo, f)(=)]
< |#(@) — Pm(B*, F)()| + | Pm(B*, f) (&) — Pr(Bo, f}{z)|-
By Theorem B, the first term on the right side of (4.2) is at most

olz,y)™
¢ | 90 m s oy #

for v-a.e. point of B*, and we may assume this holds for our fixed z by
initially excluding from {2 the set of measure zero formed by the union of
the exceptional sets in each Boman ball. Since B* C {2, we obtain the desired
estimate

o) . oz, y)™

For the second term on the right in (4.2), by using the chain {B;} con-
necting By to By = B* and by noticing that B* ¢ MB; and » € B, we
have

|Pm(B*1f)(m) - Pm(Bﬂs f)(m)l
k

< 3" 1P(By, £)(&) = Prn(Bjea, )(@)

j=1

k
< ZHPM(Bj,f)'—Pm(Bj—lif)“LS"(MB.‘r‘)'

j=1
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If D; is a ball with D; € B; N B,y C MB; and r(D;) s r(B;) = r(Bj-1),
then by (P1) and (P2), the last sum is in turn bounded by a constant times
k

Z |1 P (Bjs F) = Pra{Bj1, )| o0,

g=1

k
C
< Z V(.Dj) ”Pm(Bj: f) - Pm(Bj_l?f)”L,’;(Dj)

|Pm(Bj, f) — fldv

IA
1=
<

S| Q

i) 5.

3

2o

-i—E y(%j) 1; |Pr(Bj—1, ) — fldv

[

| P (By, £) — flav

IA
-Ma‘
=
Q
W e

= v(By) g,

k

C
+ng-v(-8——15 -S—l|Pm(Bj—l:f)_f|dV
k
C
< |Pm(Bj, ) — fldv =1,

jg[]VBj)BSj I

where we have used the doubling property of v. By Poincaré’s inequality,
k
r(B;)™
1<c)y =2\ gl dely)
; #{(B;) éj

k m
- 0§ {32 0l )

§=0

The proof will be complete if we show that the sum above in curly brackets is
bounded by a fixed multiple of o(z,y)™/u(B(z, o, y))) for each y € 2. Fix
y € £2. By the definition of weak Boman chain domain, ¥ belongs to at most
M balls B; in the chain, and for each such Bj, the fact that B* C M B;
implies that 2,y € MB;, and consequently that Bz, o(z,y)) C 3MB;.
Thus, for such j, by (H2),

r(3MB)™ _ oz, y)™
u(BMB;) ~  p(B(z,e(x,y)))
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and so by doubling,

r(B)™ oz, y)"
fJ,(Bj) - [,L(B(.’E,Q(ﬂ?,’y)))

Therefore, for any y € {2, the sum above is at most M times the last
expression, and therefore the proof is complete.

5. Applications to embedding theorems involving high order
derivatives. Embedding theorems for first order vector fields have been
studied extensively. Our purpose in this section is to show that many anal-
ogous results for higher order derivatives can be derived by using the rep-
resentation formulas given earlier. For simplicity, we sometimes state the
results only for smooth functions, but they remain valid for functions in
appropriate Sobolev spaces of order m without assuming any extra smooth-
ness. This can be seen by showing that the associated polynomials exist
for general Sobolev functions {see [LLW]). We also note that Theorem 5.11
in §5.3 proves some particular smoothness for certain Sobolev functions.

5.1. Weighied Poincaré inequalities. We begin by using the represen-
tation formulas to derive weighted I? to L? Poincaré inequalities for high
order vector fleld gradients on a stratified group G. We consider only the
range l <p<g<oo,butthecases l=p<g<ocandl <p<g < oocan
also be treated by adapting the results in [FGW] and [PW].

¥ w e Li, (G) and w(z) > 0, we say that w is a weight and use the
notation w(E) = |, w(z) dx for any measurable set E. If w is a weight, we
say that w € Ay, 1 < p < oo, if there is a constant C' such that

1/p'

(1 S Ve y

— \w(z)dx wwe N qp{z) TP /P dy <C
EI ) (|B|§5” ) s
for all metric balls B.

TuroReM 5.1. Let (G, p) be a stratified Lie group with metric o, and
let m be any positive integer less than the homogeneous dimension Q. Let
1 <p<g<oo, By be a metric ball, and wy, wy be two weights satisfying
the balance condition

(52) (r(B) )m( ws(B) )”q < C,( wi(B) )”f’
7(Bo)/ \w2(Bo)/ ~  \wi(By)
for all metric balls B with B C cBy. Suppose also that w, € Ay and wa

is doubling with respect to Lebesgue measure. If f € C™(By), there is a
polynomial P (By, f) of degree less than m such that
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1/q
(53) ('LUg(lBg) So |.f - P‘m(BOi f)&qu@ sz‘)

1
UM (BD)

1/p
§1x™ flPun d:c) .

< or(Bo |

The nonweighted case of (5.3) was given in [L3], [L4]. In the usual Eu-
clidean case, Poincaré inequalities involving high order derivatives have been
studied by Sobolev [Sol], [So2] (see also [AH] and [Z]).

Proof of Theorem 5.1. First observe by Corollary E that there is a poly-
nomial Pp,{By, f) such that

m a(z,y)™ -
(54) If(m)“Pm(BU)f)(w)l < CBSU IX f(y)llB(.’L‘, Q(m;y))l dya € Byg.

Define the integral operator

To(z) = | 9() B oz )™ g,
G

(z, oz, 9))]
for ¢ > 0. Then we may rewrite (5.4) as

|£(z) — Pr(Bo, £)(@)|x5, (2) £ CT(X™ flx5,) (),
and consequently (5.3) will follow by verifying the norm estimate

' /
69 (| @ruE ) < o | g
Bn BU
with weights w, v chosen to be
_r(Bg™
'LU(.’L') = mw2(m) and Jv(w) - wl(-BD) 1(17)

Since both w and v—F'/? are then doubling measures, Theorem 3B of [SW]
guarantees that (5.5) holds for 1 < p < g < oo if for all balls B C By, we
have ,

r(B)™ i/q ! /p
5.6 w(z)do v(z) dx <C
oo S (jume)(fue )
(In fact, by combining Theorem 1.4 of [SWZ] with the sort of localizat‘ion
argument in [SW, p. 833], (5.6) suffices for (5.5) if w,v™* /P just satisfy
a reverse doubling condition of some positive order.) Howevejr, a simple
computation shows that (5.6) follows from (5.2) since v € Ap. This completes
the proof of Theorem 5.1.

5.2. Exponential type inequalities. Let (S, o) be a metric space. A mea-~
sure u is said to be doubling of order N if there is a constant € > 0 such
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that for any balls By and Bz with By C Ba,
(5.7) p(Ba) < C(T(Bz))N#(Bl)
' ~ " \r(B1)
We now fix a ball B C & and let

I O <5 L
Tg(m) = TBQ('T) - lsgg(y)li(B(-’E) g(m,y))) d,w(y).

THEOREM 5.8. Let (S, o) be a metric space and p be a doubling measure
of order N. Let Tgq be defined as above for a fized ball B C 8. Suppose that
pm = N and p > 1. Then there exists a constant C > 0 independent of B
and g such that

M%Fi xp{( r(B)™  |Tgg(x)| )f’/@“”}du(ﬂga

Cu{B)Y? | gllLe(B ap)

Proof. The proof uses ideas of Hedberg [He] and is included for com-
pleteness. We may assume without loss of generality that g is supported in
B and also that ||g|z»(8,du) = 1. For z € B and 0 < § < R=2r(B),

] __emy)™
Tl | B0y

a(z, y)™
+ @) du(y) = I+ D,
s<eomsn | PE@ o)
It is easy to see that

=Y 1 gt )

k=0 2—’“16<Q(a: y)<2-kE B(=, o(z,v)))

< CZ ,u(gw g) ) Vo la@)du()

a(z,y) 2746
< CZ(Q“kJ)mM(Q)(:G) < C8™M(g)(x)
k=0
where M(g) is the Hardy-Littlewood maximal function of g with respect to
w. For I, we use Holder’s inequality to get

/
BV lordu)
§<o(xy)SR
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By dividing the integral domain into annuli g(x,y} ~ 27*R and using (5.7),
we find that the second factor on the right above is at most

Clog{R/6)

(2—-kR)mp" 1/’
e X ((2"°R/R)NM(B))P'"1}

k=0
Clog{R/3) i/p
Cﬂ{ )3 gk(N(p'~1)—mp'>}

7

LB
< s oa(R /o)

since N{p' —1)—myp' = 0. Thus, using the fact that ||g||z»(a. = 1, we obtain

Rm

I g C(log(R/é))l/p’W.

Combining estimates gives

ITg(z)| < CO™M(g)(z) +C—rmgyy (B)l/p (log(R/8))*/¥'.

With C as above, let A = CR™™u(B)Y? and choose § such that
6™ = min{2 A7 *M(g)(z)"", R™}.

Hence,

R™ R™ +( pol/m gl/myy 1/my1l/e

and then for those z such that [Tg(z)| > B™/u(B)*?, we deduce by sub-
tracting and rewriting that

(HEE2 o)) < gt (R 42/ 2150/

Exponentiating and integrating over the set
E={z € B:|Tg(a)| > R™/u(B)/*},

we obtain
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1 pB)V? )}
e |T" d
i oo (B T pauto
¢
< R2M™ AM™ M () ()Y ™ du(z)
<u ) )
c
u(B)
by Hélder’s inequality with exponents prn and (pm)’

1/(pm) _

<o {gF@aua) " =c

u( By emY

IA

W(BY (| () ey dulz))
B

by the boundedness of the Hardy--Littlewood maximal function and the fact
that ¢ is supported in B. Clearly,

5(%57 BEEexp { (l;(cB l)zlf IT(g) (m)l)p’ } dy(z)

< o5 Jexp { (%)p’}d”(m) e

The theorem now follows by combining the estimates above.

CoROLLARY 5.9. Let B be a metric ball in o stratified group G of ho-
mogeneous dimension @, end let p > 1 and m be a positive integer with
pm = Q. If f € C™(B), then there is a polynomial Pn, (B, f) of order less
than m such thai

1 (@) ~ Pu(B, ()7
|B|§;"P{( Ol X™ F 1o (5,d0) ) }d”’s"’

with C independent of f and B. Moreover, for the same p and m, a similar
result holds for any week Boman domain {2 in Gt if By 48 a central ball for

12, then
1 |f(z) - Pm(Bo,f)(mﬂ)P"*"”}
2] §f"" {( CIX™ £l e (2, <0

Proof. The first statement follows immediately from the representa-
tion Ccrollary E and Theorem 5.8. Note that on a stratified group G,
|B] = Cgr(B)<. The second statement can be obtained from Corollary F
by modifying the proof used for Theorem 5.8, now applied to the integral
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operator
2) = olz,y)™
79(2) =} 90 5, oy ¥

The main change needed is a different way to choose the number R in the
proof of Theorem 5.8. Given z, pick R so that |B(z, R)| = |£2|. The choice
of R is independent of z. For § to be chosen with 0 < & < R/2,

To(z)| L L+ = S S S
olz,y) <4 o(z,y)>6 2
We estimate I as before. Again by Hélder’s inequality, as (m — Q)p'=—@,

i/’
I < C||9||Lr(n,dy)( | olzy)® d'y)
o(=.y)>d; 2

1/p
SCHQHLP(.O,dy)( | e(m,y)‘Qdy) ’

§<o{zy)<R
since
| olz,9)"%dy < R9|2| = R™9|B(z, R)|
e(my) 2 R; 2
<e S Q(‘Ta 'y)_Q dy
b<p{z,y)<R

by the choice of R and since § < R/2. Dividing into annuli gives o =

cllgll e 2,y Log(R/6)] ?' | We then proceed as before but with p replaced

by Lebesgue measure and B replaced by §2. To ensure § < R/2, define é by
§ = min{2 LA~ M (g)(z) ", (R/2)™}

with A as before. Now if we choose E = {z € 2 : |Tg(z)| > c} for a suit-
ably large geometric constant ¢ and note that r™|B(z, r)|~1/? is a constant
independent of z and r, the remainder of the estimation is largely as before
with B replaced by (2. This completes the proof of Corollary 5.9.

We now list exponential estimates for f itself instead of for | f— P (B, f)I-

COROLLARY 5.10. Let B be a metric ball in o stratified group G of h_o-
mogeneous dimension Q, and let p > 1 and m be a positive integer with
pm=@Q. If f € C™(B) ond || X™f||re(8,d0) 7 O, then

1 | ()] ')P/(p—x)} )
ER ""‘p{(c||xmf||m3,dm) e

B -
< Cexp{(ﬁ%%)w(p 1)}’
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with C independent of f and B. Moreover, for the same p and m, a
similar result holds for any weak Boman domain 2 in G and any f with
1 X™ fllze(2,a0) 7 0, we have

= {(oiem) 1

C(@) IfIdH:)P/(P‘”}
< Cexp { (uxmf“nm—“m,dm) !

where By is a central bell for 2 and C(£2) is independent of f.

Proof Let C be the constant in Corollary 5.9 and pick ¢’ > 2C. Fix
a ball B and select a polynomial P,(B, f) with (see (2.6))

1"

C
1P (B, )l 2 (B,4a) < 18] S |fidz.
B

Then the result for B follows from Corollary 5.9:

Joxp { (C’i|X'|“fJ£ﬁL(B,dm) )w_l)} ar

< exp { (2||Pm(B,f)llnm(a,dw))pf@"”}
- C'| X™ f|| (B, dw)

X 2| f(z) ~ P (B, f)(z)| p/(p—1)
X ge P{( CNIX™ Fll o (5.02) ) }dg:

207§, | f| dz )zﬂ/(;o—l)}
<e B C|B|.
P { (CI”me“LP(B,da:) Bl

The second part of the corollary is proved similarly using the fact that

| P (Bo, )| ee(2,d) < C(2)| Prm(Bo, £)ll 00 (Boyaz) < C(2) § |f] da.
By

5.3, L™ estimates and Hélder continuity. We now prove some estimates
on stratified groups in case either p=1and m > Q or p > 1 and mp > @;
these complement the results in §5.2 where p > 1 and pm = Q.

THEOREM 5.11. Let B be a metric ball in o stratified group G of homo-
geneous dimension Q. Let p> 1, mp>Q if p>land m>Q if p=1.

Then if f € C™(B), there exzists a polynomial Py (B, f) of order less than
m such that

(5.12) If = Prn(B, Fllzoe (B,day < CT(BY™ 2P| X™ f|| Lo 5,d0)

icm
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with C independent of f and B. In particulor,
C
(6.13)  [fllzeo(maa) < B VIF@) dy+Cr(BY™ V2| X™ f|| o5 d0) -
B

Moreover, if p > 1, m < Q and mp > Q, a similar result holds for any
weak Boman domain 2 in G: if By is o central ball, then

(5.14) I = Pr(Bos FHllzoo(a,any < CIRA™ I PIX™ |l 1o (02,d0) -
In particular, for the same ball By,
C('Q) m/Q—1/p|| vm
(5.18) || Fllzee(a,az) < Bl V 17wldy +Cl0 X7 Fllze(e2,az)-
Bo

Proof By Theorem A there is a polynomial Pr(B, f) of degree less
than m so that

|f(z) — Pm(B, f)(=)
< ¢ | oz, w)™ X" f(y)| dy + Cr(B)™ | IX™ ()| dy
B B

for z € B. If p=1and m > @, then the right side is at most Or(B)m_Q
x {5 1X™ f(y)| dy and (5.12) follows. If p > 1 and mp > @, then by Holder's
inequality both terms on the right are easily seen to be bounded by
Cr(B)™~Q/P)|| X f|| Lo (5,dz), Which proves (5.12). If we choose Pn (B, f)
to satisfy

C
(5.16) P (By llLee(B,dz) < 15y

711 1F6ia,

B

then (5.13) follows from (5.12) by the triangle inequality.
If m < @ and By is a central ball for 2, by Theorem C and then Halder’s
inequality, there is a polynomial Pr, (By, f) such that for all z € £2,

(517)  11(@) = Pm(Bo, £)(@)
‘ iy’
<0(§ otz u)™ V¥ dy) T IX™ lrca ey
2

By selecting R with |B(z, R)| = |£2| and using —@ < (m— Q)2 <0, we see

that the first factor on the right in (5.17) is bounded by

: 1y
S Q(m,y)(m—Q)p’ dy + S Rim—@)p d’y) ¥ < Clﬂt"‘“/@’l/”.
B(z,R) oz, y) >R 17
This completes the proof of (5.14). To prove (5.15), note that if Pr,(Bo, f)
satisfies (5.16) for Bo then
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| Fllzoog2,as) < |1 Pm(Bo, Fllzoe(2,dm) + ClRI™@YPX™ | po( 02,40
CUD) 1B (Bo, oo (o ,am) + C1A™ 2P| X | 1o (2,0)

c(n
) V1l dy+ Ol 21X™

<

We emphasize that C(12) is independent of f. This ends the proof of (5.15).

5.4, Embedding theorems in Campanato—Morrey spaces. Embedding the-
orems on Campanato-Morrey spaces are useful for studying regularity of
solutions of partial differential equations. In the classical case, the spaces
and some of their applications have been studied for example in {C1], [C2],
[C3] and in [S1], [S2]. For degenerate vector fields of first order, embedding
theorems on non-isotropic Campanato-Morrey spaces were studled in [L5],
[L6]. In this section, we prove an embedding theorem for analogous spaces
involving high order vector field gradients on a stratified group G. This sort
of embedding theorem allows the larger gap 1/p — 1/¢ than the gap in the
L? to L9 Poincaré inequalities,

Let 2 ¢ G, f € C™(12) and m,,(B, f) be the projection polynomial
of degree less than m associated with f and a ball B € 2 (see §2). Let
P be the collection of polynomials in G of degree less than m. We define
the following two types of Campanato~Morrey norms: first, for A > 0 and
1 < p < oo, let LE}(12) be the space of all f € LE _(12) with

1/p
A r ey = BYu(B)~* i - PP .
ez = g (r(BY w(BY™ ping §1f = Plrdu) " < oo
Hereafter, by using Lemma 2.8, we redefine

_ 1/p
#1282y = sup (r(BYu(B) ™ § 1f — mm(B, )P du) .
B
We also define the space M?*(£2) of all f € L%, (£2) with
1/p
7, - B A B -1 P .
£ st = sup (r(B)u(B) I du) " < oo

Note that if ¢ > p, u/g < A/p and £ is bounded, then L2 Lu()
L2A(£2); in fact,

(B {11 = mn(B AP i) 7 = BP0 ({1 = (B, P )
B B

<r(BYP(§1f = mulB, 1)) " < C(r(BY §1f ~ mn(B, Pl as)
B B

since r{B)*P=1/2 < (' (all balls are in 2 and thus 7(B) < C). Taking the
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sup over B gives || f|| o>y < CIlF{ c3(a)- The same remark applies to the
spaces M#P>

In the deﬂnitions of ME? and £2;, the role played by balls could instead
be played by any family {E} of sets which are comparable to balls in the
sense that there is a constant ¢ so that for each set E, there are balls B’
and B” with B' C E ¢ B” and u(B") < cu(B’).

We now state the main theorem of this section. In case m = 1, it was

proved in [L5], [L6] for any vector fields for which a representation formula
holds.

THEOREM 5.18, Let G be ¢ stratified Lie group with homogeneous dimen-
sion @, and define the Campanato~Morrey spaces as above with p taken to
be Lebesgue measure. If 1 <p < A/m < Q and p* = Ap/(X — pm), then

£l gy < CIX™ Fllasenay
with C independent of f.

Given a real-valued function f on {2, a doubling measure p, and v > 0,
define the fractional maximal function of f with respect to p by

) = ogp S5 00| o)

where the sup is taken over all metric balls B C {2 with center z. The
analogous function when ~ = 0 is the Hardy—Littlewood maximal function

|f ()l dp(y),

Mf(m)msup B )S

with the supremum taken as above. Also, for any ball B C {2, let

_ _ oz, )™
Tg(z) = Trg(z) = é, Blo 2@ y)))g(y) du(y).

To prove Theorem 5.18, we need a lemma relating these operators.

LEMMA 5.19. Let G be a stratified Lie group with homogeneous dimension
Q, let p be a doubling measure and 1 <p < A/m < Q. There is a constant
C such that for any metric ball B C 2, eny x € G and any fzmction g,
Teg(®)| < CMa/p(lglxn)(@)P™ - M(lgixa) (@) ">,

In particular, if f € C®(2) and M, and M are the mazimal functions
above with du = dz, there is a constant C' such that for any metric ball
B cC 2 and any = € B,

1£(0) = 5n(B, £)(&)] < OMi X7 Fca) (@)™ - MOX™ fxp) ()P

+Or(B™ 9§ X" f ()| dy,
B
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where T (B, F) is any polynomial satisfying the I} to L* Poincaré inequality
of order m for f, B.

For the first statement, the proof when m = 1 and du = dz is given
in [L5], [L6] by adapting ideas from [He], and the general case is similar.
We omit the details. The second statement follows from the first one and
Theorem A. We are now ready to prove the main theorem.

Proof of Theoremn 5.18. Fix any ball By. By the second part of 5.19,

|f(z) = 7m (Bo, f) (@) |x8, ()
< O M| X™ Flacs, Y@) P A M (IX™ f s, ) ()] P/
1

+ OB gy

VIX™ ()l dy = I+ Ia.
By
Clearly,

Bi I de < C|| My (| X™ Flxmo) 550
aQ

x LMK Flxse ) (@)} PP de
By
< | Myp(1X™ flxmo )ity § 1X™ f1P d,
By
where for the second factor we have used the fact that p*(1 ~pm/\) = p

and the IP boundedness of the Hardy—Littlewood operator for p > 1. By
the definition of M)y,

16575 (1X™ £l 30 22 80) < O sp r(B)MP|BI7 | [X™f|dy,
B

where the sup is taken over all balls B. By Hélder's inequality, this is
bounded by

_ m 1/p
Caup (r(B)IBI™ § X" 11F dy) " = CIX™ g o
B

and consequently,

[ 1"de < clxm 200 | 1X™FIP de.

A
2 M {n)BD
Alsa,
. Bo)m*" /o
2 de < _T_gﬂ___ P
| B a < ClBop e ([ 1Xm s do)” .

Ba B
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Hence,

(T‘(Bo))‘

| Bo! By

. 1/p*
1F = (B, )P dw)

m ¢ || P r(B )A m M
<o)X inﬂf;‘(m(ngl— é X FIP dm)

+ Cr(Bo)MP MNP X £l ).
and since pm/X 4 p/p* = 1, the right side of the inequality is bounded by
A ]
O™ FIEEL oy IX™ FIBLE gy + CIX™ Fllagrxy = CIX™ Flas -
Since By is any ball in §2, we get the desired conclusion.

REMARK. By extending the techniques of this paper, the authors of [LP]
have weakened the assumption in our main theorems that an I to L!
Poincaré inequality holds, showing that it is enough to assume an LP to !
Poincaré inequality for some p with 0 < p < 1.
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