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Representations of the spaces C*(RY)n H*P(RY)
by

A A ALBANESE and V. B. MOSCATELLI (Lecce)

Abstract. We give a representation of the spaces C°(RY )N H k.2 (RY ) as spaces of
vector-valued sequences and use it to investigate their topological properties and isomor-
phic classification. In particular, it is proved that C*°(RY) N H k2(RN) is isomorphic to
the sequence space PARYL (Ez), thereby showing that the isomorphy class does not depend
on the dimension NV if p =2,

1. Introduction. The present paper has its motivation in the articles
[B, BT, MT, T2] and continues the study undertaken in [AMMI, AMM2].
In the latter papers it was proved that the Fréchet—Sobolev space C™(§2) N
H*P(), with £2 an open subset of RY, 1 < p < ooand mk € Ny (for
2 a proper subset of RV, k depends on N), k < m, has a representation
as a space of vector-valued sequences. Isomorphic classifications, topolog-
ical properties and existence of bases were derived quite easily from such
a representation, improving some results in [BT, MT]. The natural ques-
tion arises, then, if a similar representation is valid also for the spaces
C°(RY )N H**(RV), by which a satisfactory study of their structure could
be done in a rather direct way.

In this direction, we give here a representation for the Fréchet-Sobolev
spaces C°°(RN) N H™*?(RY) (83} in the same spirit as in [AMM?2], thereby
covering the case m = oco. We then derive some comsequences in 83, 4,
including the existence of bases for 1 < p < co. In particular, in §3 we show
that the space C™°(RY) N H*2(RY) is isomorphic to the sequence space
s™ M £2(£%). This result reveals the surprising fact that the isomorphy class
does not depend on the dimension N if p = 2. In §4 we study the topological
properties of these spaces and we characterize their Montel subspaces.

2. Notation. We assume that 1 € p < 00, k € Ny and N € N. We also
denote by I the closed interval [0,1] and by Qn = [ N the N-dimensional,
closed, unit cube.
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gy = (1;;) for | = LN, we let {Iﬁ cd = 1,...,q.n} be the

collection of all subsets of {1,...,N} containing exactly [ elements such
that IN = IN L for j= L...,qnv-1and I =1,..., N — 1. Now for every

1=0,. N 'and j=1,...,qn5 we denote by C77(Qn) (resp. C’kl(QN))
the closed subspace of the usual nuclear Fréchet space C°(Qn) (resp of
the nsual Banach space C*(Qn)) of all functions f such that, for every
multi-index o € NJ (resp. with |a| = a1 +... + ax < k),

D= f(xy,...,an) =0 ifz; € {0,1} for some i € Ij’ﬁ.

Note that, if [ = 0, then go.v = = 1 and I{; = §, so that C7%(Qn) =
C={(QnN) (C{‘"’O(QN) = C*(Qn)). Next, if 1 < p < oo we denote, for [ =
0,...,Nandj=1,...,q,n, by Hk’p(QN) the completion of C’;“,l(QN) with
respect to the Sobolev norm f — E|f||k,p, (Cjaicr §g D f ()P dz)l/P,
where S = Q, while for p = oo we set H,; ™ (Qn) = H**(Qn).

We recall that C=(RY) N HEHP(RN), k € Ny, 1 < p < 00, is a Fréchet
space with its natural intersection topology given by the sequence of norms
(2.1) pr() = | llrcodn + 11 Ik p s

where || - ||,  pwv is the Sobolev norm defined as above with § = RY if p < co
and by

| Fllg, 00, = sup sup |D*f(z)| ifp=o0,
o<k BY

and

| Fllro0,7, = lmllp sup |D® f()|

<r wEJ,

(for any subset S of RY, we use || f||r,c0,5 = SUDP|q(<r SUPgeg | D f(z)]). Here

(Jr)- is a sequence of compact subsets of RY such that J, = jr - jr+1 and
U,,., J-r = RN .

We also recall that, if (X, - ||) is a Banach space, the space £P(X) is
defined as follows (with the usual change for p = oo):

20 = {a)n € XN [oaally = (L llanl?) <0},

which is Banach with the obvious norm.

H Y is a Fréchet space with a fundamental system of continuous semi-

norms ||« |ly <{|-|lz <...onY,and f: ¥ — X is a linear continuous map,
we define the Fréchet space YN N 7(X), 1 < p < o0, as the space

YREALX) = {(yn)n € Y™ 1 (f(¥a)n € ££(X)}
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endowed with the intersection topology defined by the sequence of semi-
norms

0D allw) =l + (S 17GIP) H1<p <
or B "=
(2.2)’ 9((yn)n) = 5Up [nllr +sup | £(yn)] i p = co.

Clearly, the Fréchet space YN N ¢7(X) is canonically topologically iso-
morphic to the projective limit of the projective sequence E, = [[,.,. Y &
£P((X)ns>r) (with the corresponding product topology) and linking maps
By = En (Yndn + ((Wn)n<r, F(¥r)) Un)n>r). Moreover, the Fréchet
spaces Y™ N P{X) are isomorphic to their squares, an isomorphism map
being given by (yn)n — ((H2n)ns (Y2n-1)n).

Such spaces are a particular case of a general construction introduced in
[M] and studied systematically in [BD] (see also [AM] and [DK]).

We find it convenient to introduce the spaces

N a.n N @~
op =TI I1cm@m. By =T] 11 @& @)
1=0 =1 l==0 j=1
{each endowed with the corresponding product topology) where m € Np or
m=o0,keNgand 1 <p < x

We write E ~ F and F < F when the space F is topologically isomorphic
to F or to a topologically complemented subspace of F' respectively.

Finally, we recall that a Fréchet space F is distinguished if its strong
dual E" is barrelled. A Fréchet space E satisfies the density condition of
Hemnch if every bounded subset of the strong dual E,B is metrizable (see
[BB] for more details).

3. Representation theorems and isomorphic classifications. The
aim of this section is to represent the spaces C°(RV )N H*2(RY) as spaces
of vector-valued sequences and then to study their isomorphic classification.

The first result, which is the proper extension of Theorem 1 of [AMM?2]
to the case m = oo, is:

TuporeM 3.1. Let k e Ny and 1 < p < co. Then
C=(RY) N HMP(RY) = (CP(Qu)N N & (HM(Qw))-
Its proof rests on the following result, which is interesting in itself:

THEOREM 3.2. There evists an isomorphism Ty from C®(R¥) onto OF
which extends to an isomorphism from C*(RY) onto Ck and to an isomor-
phism from H*?(RNY) onto HK}" for all k €N and 1 < p € 0.



138 A. A. Albanese and V. B. Moscatelli

Proof. It is by induction and is similar to the one of Theorem 3 of
[AMM?2], with the exception of the construction of a total and simultaneous
extension operator on RY, Here we give such a construction.

Suppose that the assertion is true for N — 1 and put, for any k € Ny or
k= o0,

Ff = ] C*®Y~* x [2n,2n+ 1)),
nez
CERN=' x[2n—1,2n]) = {f e C*(RY "' x [2n - 1,2n]) : D*f(=) = 0
for all |a| < k (for all & € NY if k = o0) if zx € {2n — 1,2n}},
and
FY =] CE@¥ x [2n — 1,20)).
nEL

The restriction map B : C*(RY) — Ff is linear, continuous and ker B =
F¥ for every k € Np or k = co. Also, R has a continuous right-inverse L for
every k € Ny or k = oo, which is defined as follows.

Let (an)hen, be a sequence of real numbers such that, for every j € Np,

foa] oo
Z?.jhah =(=1) and Z 29 apl < 0o
pyr he=0

(see [S, Lemma] or [A, Lemma 4.27]).

Let ¢ be a C°-function on [0, 00| satisfying (t) = 1 if 0 < ¢ < 1/2,
wt) =0if t > 1.

Now, following Seeley [S, Theorem| (cf. [A, Theorem 4.28}), if f =
(fn)n € FF we define

(3.1)  Lif(z1)
Yoheoane(2M(t — 2n+ 1)) faoi(z, 2n — 1 = 2Pt — 2n 4+ 1))
= if (z,%) e RV~ x [2n — 1, 2n),
Fr—1{z,t) if (z,t) e RY"L x [2n —2,2n — 1],
E:;O ahﬂa(2h(2n - t))fn(ma 21 - 2h(2n - t))
if (z,t) € RN=! x [2n ~ 1,2n],
falz,t) if (z,t) € RV-1 x [2n,2n + 1],

(3.2) L, f(z,t)=

for every n € Z.

By [S, Theorem] we see that, for every k € Ny or k = oo, the functions
Ltf and L7 f are C*-extensions onto RV ™! x [2n — 2,2n] and RV~ x
[2n — 1,2n 4+ 1] of f,—; and f, respectively, the extensions being linear.
Moreover, by a direct computation, we obtain
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(3.3) L Filbpme— xizn—1,2n] < G&lif l|kprY -1 x[2(n~1),2n—1;

WLy g pmyv-1 xene1,2n] < |l f [k, p kN =1 x[2n,20n41]>
where dy depends only on k, N, p and ¢.

Next, let g be a non-negative C*-function on R satisfying supp g C i0,1]
and {g g(t)dt = Ség(t) dt =1 and consider g,(t) = St__gnwl) g(s)ds, t € R,
n € Z.

If f= (fu)n € FF we define

fulz,t) if (x,t) € R¥ 7! x [2n,2n + 1],

(3.4) Lf(z,t)= { L:f(x:t) + gn(W)[Ly fl=,t) — L} f(z,1)]
if (z,t) € RY 7 x [2n — 1,2n].

Tt is easy to verify that, for every k € Ny or k = oo, Lf is a C*-extension
on BY of f, the extension being linear. Moreover, by (3.3), it follows that

HL.f”k,p,]RN < Ck“f”k,p,uﬂez RN—1t x{2n,2n+1]:
where ¢y, depends only on k, N, p and ¢, g.
At this point, it suffices to proceed exactly as in [AMM2, Theorem 3] to
complete the proof.

Proof of Theorem 3.1. This follows from Theorem 3.2, by repeating the
proof of Theorem 1 of [AMM2].

REMARK 3.3. Theorem 3.1 yields that the spaces C°(RY )N H kp (R
are isomorphic to their squares, being isomorphic to vector-valued sequence
spaces of the type introduced in Section 2.

Moreover, by Theorem 3.1 we have

THEOREM 3.4. Let k € Ny and 1 < p < oo. The space CW(RN) )
H*P(RY) has a basis.

Proof. By Theorem 3.1 it suffices to prove that the space [ce(@n )N
#[H*P(Qn)] has a basis. By Lemma 4 of JAMM]1] this is done by finding a
common basis for C®(Qy) and H*?(Qn).

Let N = 1. For 1 < p < oo the trigonometric system (en)r = (1,cos27mz,
sin 27z, cosdnz, sin 4wz, .. .) (in the indicated order) is a common basis for
¢ (I) and H#?(I). For p = 1 the system of Chebyshev polynomials (en)n =
(1, z, cos(2 arccos ), . . ., cos(n — 1) arccoszl, . ..) is a basis for C°° (I and
for H®(T).

Let N > 1. For each g = (q1,...,qn) € NV and z = (#1,...,28) € QN
put €,(z) = Hjil eq;{z;). Then the elements (€,)4 form a basis of O (Qn)
and of H*?(Qy), as is easy to verify.

THEOREM 3.5. Let F be the family of all subsets of B which are uniona
of subsets of the following types: (a) an unbounded interval; (b) the union of
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o sequence of disjoint intervals J,, with sup,, length(J,) < oo; (c) the union
of a sequence of disjoint bounded intervals J,, with sup, length(Jn) = oo.
Then, for every k € Ng, 1 <p < co and £2 € F,

C®(12) N HA»(02) = [C= (DN N £[LP(T)].

This result is the proper analogue of Theorem 5 of [AMM]] for m = oo
and its proof is the same as for Theorems 4 and 5 of [AMMI] with C-
extension operators as in (3.4).

By combining Theorems 3.1 and 3.5 we obtain the following isomorphic
classification result:

COROLLARY 3.6. Let ke N, 1 <p<oo and 2 € F. Then
O (2) N HP»(02) = C=(R) N L (R).

Thus, for 2 € F, the isomorphy class depends only on p.
Now, we introduce the space

Py = {f € C®°(RY): f is 2m-periodic with respect to each variable},

which is a Fréchet space when endowed with the topology given by the
sequence of norms

|flr = sup sup [D*f(z})| (f€ Py),
|a|<r €8N
a€N§

where Sy = {z e RN : -7 < z; <, i=1,...,N}. Then, for all k € Ny
and 1 < p < oo, the restriction map R : Py — HPP(Sx), £ — Flsy, is
linear, continuous and one-to-one. So, as in Section 2, we can define the
Fréchet space

P e = [Pul’ N EPHPF(Sy)],

whose topology is given by the sequence of norms

&) =suplfale+ (3 Malllys,) (= (o € Prans).
nar n=1

Note that PF  , =~ Pk
We can now represent the spaces C®°(RY) N H*?(RY) in the following
way:
THEOREM 3.7, Let k € Ny and L < p < oo, Then
C=EV)NHEP(RY) = Py .

Proof. By Theorem 3.1, C°°(RY)NH*P(RY) is isomorphic to the space
[C=(Qn)IN N £P[H*P(Q )] and hence, by a simple change of variables, to
[C= (¥ nP[H*P(S)], with § = {z € RY : 27 < z; < 2m,4i=1,...,N}.
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Now, Py k,p is clearly isomorphic to the closed subspace E={f= (Ffr)n:
there exist g == (gn)n € Pnkp 50 that fr = gn|s for alln € N} of the space
[C(8)|N n P{H*»(S)]. We show that E is complemented in the latter.

Following [V1, Ch. 3, 1.11], we comsider, for all ¢ € ZY , the map g4 :
RY — RY given by gq(z) = (21 + (201 +2)7, ..., @n + (2gn + 2)7) (whence
each gq maps S onto S, = {z € RV : 2q;m S 2 < Qg+ 4)m, i = 1,...,N}
and we fix a map ¥ € C3°(S) such that ¢ > 0 in §. We define ¢ =
Y/ Ygeav Yogyt € C§°(S) for f = (faln € [C (SN ner[HEP(S)], we set

Tf= ( > (Fap) ogq‘l)n-

qeZN
Then, by [V1, Ch. 3, 1.11.1-1.11.2}, Tf € [Px}" and, for all n and r € N,
(3.5) |(ff)n}r < el falrs

where ¢, depends only on ¢, r and N. Moreover, by observing that g;‘l(S n
S # 0 if, and only if, g € {~2,—1,0}¥" and supp(fap) C S foralln €N, it
follows that

1@ Aalens=( 5 22

loj<k & qe{~2,— 1,0}

D(fup)lay @) a) "

<e ) ( > SID“(fnw)(g;'l(m))tpdm)l/“’

q€{~-2,~-10}" [af<kS

e ¥ (S iptnera)”

qe{—z,—l,o}N |a|£ks
< 3N‘3’“fn”k,p,33

where ¢’ depends only on ¢, k and N. Hence

s i o~ 1/p N1 ki 1/p N
1581 = (N TNl ps) <35 (2 nlps) =371l
n=1 n=1

Put Tf = (T F)ns); the above inequality together with (3.5) implies that
T is a continuous linear map from [C°°(S)N N £P[H®P(S)] into E. By [V1,
Ch. 3, 1.11.3], T = f for all f € E. Therefore, T'is & projection onto F.

Next, we show that Py kp contains a complemented copy of the space
Coo(RY) N HRP(RY).

Let

E= {(f'n)n €PNkyp:TRE N, falasy = 0}

and
F =[x n e[ (Ix)],
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with Jy = {z € RY : 1< 2, < 2,i=1,...,N}. Then B is a closed subspace
of Pn,xp and hence a Fréchet space with the induced topology, and F is a
Fréchet space with its intersection topology.

Now, by using suitable reflections as in the proof of Theorem 3.2 (see
(3.1) and (3.2)), we can construct a continuous linear extension operator V' :
F —» E C Pykp. It follows that, if B : Py i, — F is the restriction map,
i.e. R(fu)n = (fulsy In, the composition map VR : Py gp — B C Prgypisa
projection from Py p into itself such that V(R(Py kp)) = V(F). Therefore,
the subspace V' (F) of Py i,y is complemented in Pz, and isomorphic to
F. But F ~ [0=(Qn)|¥ N£P[H*P(Qy)] and hence, by Theorem 3.1, we get
o= (RN) N Hk’p(RN) < PnNkp-

Finally, from Py, < C°(R¥ )N H®?(RY) < Py,i,p and from the fact
that the spaces considered are isomorphic to their squares (see Remark 3.3
and Section 2), we deduce that C**(RY) N H*P(RY) o~ Py 1 . The proof
of Theorem 3.7 is complete.

We can now study isomorphisms of the spaces C*°(RY) n H»2(RY) to
the Fréchet space

sTNE(E7) = (€= (En)n € 6" ¢ ([lénll2)n € £%}

(s denotes, as usual, the nuclear Fréchet space of rapidly decreasing se-
quences), whose topology is defined by the following sequence of norms:

[€lr =5 1(€n3d")slls + IEnll2)nllz (€= (Endns &n = (€ns)s)-
REMARK 3.8. If we consider the spaces

BEN) = {€= (&)t 612 = sup 3 1% & < o0}
Léﬁb g€z

and

s(ZN) = {5 = (€g)g: 1(6ea gl = D 1q7| - &) < oo for all r € NQ}

gez

(here and below, for all g € Z¥ and 3 ¢ N{;“r, r € Ny, we use ¢° := Hf\_r_l q'?‘

and ¢" Hfil i), with their natural topologies, then the inclusion map
s(ZN) — L 2 2(ZN) is continuous and hence we can define the Fréchet space

[s (ZN)]N mngg%(zN)] = {€=({n)n € [S(ZN)]N t{[16nllx,2)n € 32}:
whose topology is given by the sequence of norms

€l = Sup [[{€aq")alix + I(lénl.2)nll2

(compare with (2.2)).
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Clearly, for all k € N,
(s(ZV )N N 2N )] = N N 2287,
Now, we can state and prove
THEOREM 3.9. Let k € Ny, Then
C=(RYY N HR2(RY) ~ N 0 £2(£2).
Proof. By Theorem 3.7 and Remark 3.8 it suffices to prove that P x,2
= [$(ZV)N N 2 (ZN)).
For a given f € Py and ¢ € ZV, let }; be the gth Fourier coefficient

of f. Since
i - /2
(3 10%7Bs) " = @™ (2 X e PIRP)

| <k fee| <k g€ZN
and for all o € Ny,

I fllx,2,8% =

(@*F)alles < sup |D*f(z)],
xESN

the map

F:Pypa— BENCERENL  (fo)n = (F)do)n
is well-defined, linear, continuous and clearly one-to-one. We show that F

is onto.
Let & € [s(ZV)N N £2[62(ZN)]. Then, for all n € N, the series

fn(m) == Z &'ngem'i(qzm)
q€Zy
converges in Py so that f, € Py and, foralln e Nand o € NY,
/2
10 fullzs = m) "2 (3 la*?lénal?)
geZN

and hence

oo

Z ”fn”%,z,S’N = ZW)NZ Z Z lg”| ‘gnqlz < 00.

ne=l n=l|a|<k qgeZN

This implies that f = (fn)n € Pnk2. Since Ff = §, we bave Py 2
s(ZM)N N £2[£3(ZV )] and the result follows by Remark 3.8.

Finally, Theorem 3.9 yields
TrEOREM 3.10. For each k € Ny and N € N,
Co(RY )N HE2(RY) = C=(R) n I*(R).
This result is quite surprising because it shows that the isomorphy class
does not depend on the dimension N if p = 2.
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4. Topological properties and Montel subspaces. In this final sec-
tion we study some topological properties and Montel subspaces of the
spaces C®(RY) N H*?(RY). To do this we shall use the representation
obtained in Theorem 3.1.

ProposiTION 4.1, Let k € Ny and 1 < p < oo. Then the spaces
Co(RY) N H*?(RN) are totally reflezive, hence distinguished.

Proof. By Theorem 3.1 it suffices to show that the space [C™(Qn )] N
£IH*?(Q)] is totally reflexive for 1 < p < o0,

The latter space is canonically topologically isomorphic to the projective
limit of the sequence E, = [C®(Qn)]""! @ P[(H*P(QN))n>r] with linking
maps Ery1 « B, (fa)n — {fn)n (see Section 2). Then, E, being reflexive
for all r € N if 1 < p < oo, the result follows from [V2, Theorem 4].

In a similar simple way and using results from [DK] cne can see that:

¢ The spaces C°(RY YN H*L(RN) are not distinguished (k € Np).
e The spaces C(RN) N H*?(RN) do not satisfy the density condition,
hence they are not guasinormable (k € Np, 1 < p < 00).

The latter facts were proved in a different way in [BT, Theorems 2 and 4].

Finally, we state and prove the following general results which, by The-
orem 3.1, immediately apply to the spaces C°°(RY) N H*#(RY). The first
one should be compared with [A4, Theorem 2].

PrOPOSITION 4.2. Let 1 < p < 00. Let (Y, (|- ir)r) be & nuclear Fréchet
space continuously included in o Banach space (X, | - |). If E is a Montel
subspace of YN N #P(X), then E is nuclear.

Proof. The proof is carried out for 1 < p < oo, the case p = oo being
similar.

First, we show that there exist g € N and d > 0 such that for all
y = (yn)n € B,

= 1/p
(4.) lwle = (3 lunl?) ™ < d sup [jynl-
ne=l nsro

Suppose, by contradiction, that {4.1) is false. Then we can find a sequence
(yr)r of B, 4 = (Ynr)n, such that, for each r € N,

> 1/»
42 el =(Xlvel?) T =1 and  supliyn). <27
ngr

n==]

It follows that, for all n € N, (ynr)»r is a sequence in Y converging to { and
hence bounded in Y. This jointly with (4.2} implies that (), is a bounded

icm

Representations of spaces 145

sequence in E with limit point 0 in YN, Since E is Montel, (), contains a
subsequence converging to 0 in Y™ N £7(X); this is a contradiction to (4.2).
Now, by (4.1) the topology induced on E by YN N £/(X) coincides with the
one induced by YV and hence E is nuclear.

PROPOSITION 4.3. Let 1 < p < oo. Let (Y, (|| - |l»)») be a nuclear Fréchet
space continuously included in o Banach space (X, |- |). Let E be a closed
subspace of YNMWP(X). If E is not Montel, then E contains o complemented
copy of £P.

Proof We first observe that, by the above proof,

A subspace F' of YN N ¢P(X) is Montel if, and only if, condition (4.1)
is satisfied.

Since F is not Montel, it then contains a sequence (¥ )r, ¥r == (Ynnrin,
satisfying condition (4.2) and hence, for all n € N, (ynr)r is convergent to 0 in
Y. Using this together with the fact that, foralln € N, limp o0 2 pnp [[¥nr||?
= 0, we can find an increasing subsequence (r;); of positive integers such
that, for each j € N,

(48) 3 Il llP <27, S iy || < 27P0F),
nar; nZ?‘JuH

and hence, by (4.2),

Ti1

(4.4) % <( X

n=r;

1
1/p
”ynrj Hp) <L

Put, for all § € N,

gj = ((0)?1{1‘3'! (’ynm- )r55n<'rj+1= (0)7121'54.1)-

Then, by (4.4), for every sequence (a;); of scalars which are eventually 0,
3 /= VP =
@8 3(Xlal) <[ Dasm|
j=1 J=1
> 1/p

= (Slepite) < (X lesl)
e =

So, (¥;); is equivalent to the unit vector basis of £F in £2(X) and its basis
constant with respect to the norm || - |, is 1. Moreover, it is easy to verify
that the topology induced on the linear span of (%;); by YN #P(X) coincides
with that induced by #£(X) and hence [3; : 7 € N] is a closed subspace of
YN £(X) isomorphic to £
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By (4.3), we also have

(4.6) ZnyJ U llp < 22 G2 = -

i=1

This and (4 2) imply that the map T : [§j; :
by 3 ;0575 — 3_; @5Yr;, is an isomorphism onto, so that Ur; :jENisa
subspace of B 1somorph1c to 7. Indeed, from (4.5) and (4.8) it follows that,

for every sequence of scalars (a;);

wn  3(Gen)" s S
i= j=1

JEN = [y, 1§ EN given

which are eventually 0,

<33

Moreover, by (4.5) we get, for a given r € N and for every sequence of scalars
(a;); which are eventually 0,

(4.8)

oo
< Z |aj| sup ”ym*j |7
i=1 nsr

— /P e 1/q
S(EWP) [;(ilégllymjllr)q]

4
S "‘,'B"C'r'

o0
S o
j=1 F

where cl = 2, (sup,v<, [y )9 < 00 because of (4.2) (1/p + 1/g = 1).
Now, (4.7) and (4.8) imply that T is an isomerphism onto. This completes
the first part of our proof.

For all j € Nand r; <n <41, let y;; € X' so that

ri+1—1

> Ul

=T

Put, for all j € N, y; =

for all y € YN NLPX), y = (Yn)n, let

Then, by (4.4), the map

Tit1—1

n=ri

=1 and Z y;j(ynw) = ”gjup‘

({0)rcrss Wng)rs<nariens Onzriy,) € £4{X") and,

ri+1—1

(y,y_;')= Z y’:‘l-j(y‘n?"j)'

n="rj

Pyz

(yl yj
(yj ) yJ

icm

satisfies
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4
| Pyllp < slole and Py =7 for all j €N,

Therefore, P: YN N #P(X) — [§; : § € N is a continuous projection onto.
Finally, (4.6) implies that the composition map
§=T(Plyen) w5 J €N S [F:5eN L[y €N

is invertible on [y; : € N] and S~*TP is a projection from YN £7(X) onto
[y; : 7 € N, and hence the result follows.
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Smooth operators for the regular
representation on homogeneous spaces

by

SEVERINO T. MELO (Sao Paulo)

Abstract. A necessary and sufficient condition for a boundad operator on LZ(M), M
a Riemannian compact homogeneous space, to be smooth under conjugation by the regular
representation is given. It is shown that, if all formal “Fourier multipliers with variable
coefficients” are bounded, then they are also smooth. In particular, they are smooth if M
is a rank-one symmetric space.

1. Introduction. Consider the two unitary representations of R on
LA(R): (Tpu)(z) = ulz — 2) and (B¢)u(z) = *ufz). A bounded opera-
tor A on L?(R} is such that both mappings z — T AT; " and ¢ = E AB; t
are smooth in the norm topology if and only if it is a pseudodifferential
operator with symbol having bounded derivatives of all orders in R?. This
remarkable result was proven by Cordes ([3], Theorem 1.2; see also 4], The-
orem VIII.2.1) and was closely related to a previous abstract characteriza-
tion (involving boundedness of commutators) of pseudodifferential opera-
tors due to Beals [2]. Other descriptions of pseudodifferential operators as
bounded operators which give rise to smooth mappings when conjugated by
Lie-group unitary representations have been called Beals—Cordes-type char-
acterizations [15]. A class of operators characterized by such a smoothness
condition naturally becomes ([4], Theorem VIIL.6.6) a ¥*-algebra, in the
sense of Gramsch [8]. As observed further by Payne [13], it also becomes a
smooth tame Fréchet algebra.

A Beals—Cordes-type characterization for operators on the circle §* was
given in [12], Theorem 2: a bounded operator A on L2(S') defines a smooth
function when conjugated by the regular representation of §? if and only if
it is given by
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