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Smooth operators for the regular
representation on homogeneous spaces

by

SEVERINO T. MELO (Sao Paulo)

Abstract. A necessary and sufficient condition for a boundad operator on LZ(M), M
a Riemannian compact homogeneous space, to be smooth under conjugation by the regular
representation is given. It is shown that, if all formal “Fourier multipliers with variable
coefficients” are bounded, then they are also smooth. In particular, they are smooth if M
is a rank-one symmetric space.

1. Introduction. Consider the two unitary representations of R on
LA(R): (Tpu)(z) = ulz — 2) and (B¢)u(z) = *ufz). A bounded opera-
tor A on L?(R} is such that both mappings z — T AT; " and ¢ = E AB; t
are smooth in the norm topology if and only if it is a pseudodifferential
operator with symbol having bounded derivatives of all orders in R?. This
remarkable result was proven by Cordes ([3], Theorem 1.2; see also 4], The-
orem VIII.2.1) and was closely related to a previous abstract characteriza-
tion (involving boundedness of commutators) of pseudodifferential opera-
tors due to Beals [2]. Other descriptions of pseudodifferential operators as
bounded operators which give rise to smooth mappings when conjugated by
Lie-group unitary representations have been called Beals—Cordes-type char-
acterizations [15]. A class of operators characterized by such a smoothness
condition naturally becomes ([4], Theorem VIIL.6.6) a ¥*-algebra, in the
sense of Gramsch [8]. As observed further by Payne [13], it also becomes a
smooth tame Fréchet algebra.

A Beals—Cordes-type characterization for operators on the circle §* was
given in [12], Theorem 2: a bounded operator A on L2(S') defines a smooth
function when conjugated by the regular representation of §? if and only if
it is given by

1 LT ¢ —ijy
@ Au@) = 5= Y ea0) | e Puly)ay,
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2000 Mathematics Subject Classification: Primary 47G30; Secondary 43A85.

240]



150 5. T. Melo

for some bounded sequence a; € C°°(S') (bounded meaning that the se-
quence of derivatives of arbitrary order of a; is bounded in SUp-norm).
Operators as in (1) not only are the formal discrete analogue of pseudo-
differential operators, they are locally pseudodifferential operators as well
(1, 11, 12].

On L*($?), one can analogously define, given a bounded sequence a; €
C>(§?), a formal “Fourier multiplier with variable coefficients” by

(2) Au = E 0; Pru,
=0

with P, dencting the orthogonal projection of L?(S?) onto the Ith eigenspace
of the Laplace operator on the sphere §2. Theorem 2 of [5] states that
equation (2) indeed defines a bounded operator on L*(S?), which is “SO(3)-
smooth”, that is, such that g € SO(3) — T, AT, ! is smooth, where T,
denotes the unitary operator T,u(z) = u{g~'z), u € L*(§?). In [5], we also
defined the signafure of a bounded operator with respect to a choice of a
basis of spherical harmonics, and gave a necessary and sufficient condition for
bounded operators on L?(S?) to be SO(3)-smooth, involving their signature.

In this paper, the results of [5] are generalized to compact homogeneous
or symmetric spaces. More precisely, the situation considered here is that
of a Lie group G acting isometrically and transitively on a compact Rie-
mannian manifold M. With g € G — T, € L(L*(M)) denoting the regular
representation, a necessary and sufficient condition for a bounded operator
to be “G-smooth” is given, involving the signature of the operator, defined
with respect to a choice of a basis of £L{L%(M)) consisting of eigenfunctions
of the Laplace operator on M. It is shown in Theorem 1 that a bounded
operator A € £{L*(M)) is G-smooth if and only if successive applications of
certain differential operators (which are the images of a representation of the
Lie algebra of G} to its signature yield the signatures of bounded operators,
which turn out to be the directional derivatives of T, AT, *. In Section 3, as
an application of Theorem 1, it is shown (Lemma 4) that the G-smoothness
of the formal “Fourier multipliers with variable coefficients” follows if they
are bounded. Their boundedness is proven for rank-one symmetric spaces,
using a version of Schur’s test for matrix blocks instead of scalars. It would
be interesting to prove it with less strong assumptions on the growth of the
eigenvalues of the Laplace operator, One available tool to estimate the norm
of the corresponding matrix blocks is the integration-by-parts argument of
Lemma 5, which is a slight improvement of Lemma 2 of [5]. ‘

As remarked in [5], the SO(3)-smooth operators do not necessarily have
the pseudo-local property. That was already observed for the “Heisenberg-
smooth” operators described in the first paragraph of this Introduction
(boundedness of the derivatives of the symbol is not enough for a pseudodif-
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ferential operator to have Schwartz kernel smooth away from the diagonal).
Already in [3], however, Cordes showed that, if smoothness is required for a
larger group (containing rotations and dilations), pseudo-locality is achieved.
Also for the SO(3) case, it is true that, if the group is enlarged, one obtains
pseudo-local operators. That was proven by Taylor [15] in a much broader
context. His result implies that a bounded operator A € £{L*(§?)) is smooth
under conjugation by the representation of the conformal group if and only
if it is a pseudodifferential operator with symbol in Hérmander’s class of
type ¢ = 1 and § = 0. More generally, Theorem 2.5 of [15] is a powerful tool
to deal with the question: when is G big enough, or how can it be enlarged,
so that the G-smooth operators are pseudo-local?

3. A smoothness criterion. Throughout this paper, M denotes an
m-~dimensional compact Riemannian manifold on which a Lie group @ acts
smoothly and transitively by isometries, that is, M is a compact homoge-
neous space which may be equipped with a Riemannian metric invariant for
the action of G. That is possible, for example, if G is compact (see Theorem
2.43 of [7] for necessary and sufficient conditions), or if M is a globally sym-
metric space ([9], §IV.3). In such a case, the surface measure d5 induced by
the metric is also G-invariant and, consequently, the equation

T,f(z)=f(g" - z), zeM gcG, feH,

defines a unitary operator on the Hilbert space H = L?(M, dS). It is easy to
show that g — T, is a strongly continuous representation. Our goal in this
section is to give necessary and sufficient conditions on a bounded operator
A € L{H) for the mapping

(3) g€ Gy A=T,AT; ' € L(H)

to be smooth with respect to the norm topology on L£{H). The operators
for which this condition is satisfied are called G-smooth.

Let —A;, I =0,1,..., with 0 < A < Ay if [ < I, denote the sigenvalues
of the Laplace operator A on M. For each [, let Ey denote the corresponding
eigenspace and let 3 = {Yix : k=1,...,d;} denote an orthonormal basis of
Ej. Given a bounded operator A € L(H), define its signature (with respect
to this choice of bases) by

o0
sgn(A) = (ar)ien € [ [ L*(34;C*)
I=0
with a) = (A¥j,...,AYly,). It follows from the fact that the Laplace op-
erator on a compact manifold is L2-diagonalizable that the mapping A
sgn(A) is injective. Thus, we may describe a bounded operator by giving its
signature.
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PROPOSITION 1. If A € L(H) is such that g — 4A is smooth in the
strong operator topology, then every component of its signature is smooth:
a; € C°(M;C%), le N.

Proof Since G acts by isometries on M, every T, commutes with A
and hence leaves each Fj invariant. Let R;{g) denote the matrix of Ty|g,
with respect to the basis /. Since g — T} is strongly continuous, it follows
that g — Ry(g) is a continuous homomorphism between finite-dimensional
Lie groups, and thus is smooth.

For each g € G let sgn(y;A) = (a7 )ien. It is straightforward to check that

(4) arlg™ =) = Bi(g)'af(z), zeM.

It follows from the smoothness hypothesis that the mapping g € G — af €
L2(M;C%) is smooth. Thus, the proposition follows from (4), the fact that
Ry(-} is smooth and the next lemma below. m

LEMMA 2. Let o € H be such that g — Tya is smooth as o mapping from
G into the Hilbert space H. Then a € C*°(M).

Proof. If k is an integer large enough, then (1 — A)~* is an integral
operator with continuous kernel. Indeed, it follows from the pseudodifferen-
tial calculus that the inverse of the elliptic operator (1 — A)* is a pseudo-
differential operator of order —2k ([10], Theorem 18.1.24). It is well known
that the kernel of a pseudodifferential operator is continuous if its order
added to the dimension of the manifold is negative. So, let & > m/2 and let
K € C{M x M) be the kernel of (1 — A)~*.

Given a satisfying the hypothesis, let b = (1— A)~*q. Since 4 commutes
with every Ty, so does (1 — A)~*. Using the invariance of the measure dS,
we then have

(5) b(g- z) = | K(z,y)alg-y)dS,.

M
For each ¢ € M, let n,(g) = g - =. Equation (5) tells us that, for each
z € M, bom; equals the inner product of a fixed element of ‘H (namely,
K(z,-)) and Tya. If a function f on M is such that f o . is smooth for
every =, it follows from the fact that m, is a smooth submersion (since G

acts transitively) that f is smooth. This proves that b is smooth. We are
finished, since a = (1 — A)*b. »

Still assuming that the hypothesis of Proposition 1 is satisfied, let us
compute the directional derivatives of the function A = T,AT, 1. Let X be
an element of the Lie algebra g of the group @, and let 5x denote the left
invariant vector field on G induced by X. It follows immediately from the
fact that g — T} is a group homomorphism that Sx (,4) = ;A% , where A%
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denotes the value of E'x(yA) at the identity. The signature (z;);en of AX,
in its turn, may be evaluated using

d
6 B = — exp tX
( ) : dt t=0al ,
which follows from the fact that ;A4 is smooth in the strong operator topol-
ogy, and the fact that right multiplication by exptX gives the flow of Sx.
The derivative in (6) has to be understood as a limit in the Hilbert space

L*(M;C%). Since a; is smooth, however, one can compute that limit at each
point z € M, using

(7) of (@) = Ri(glai(y™ - =),

which follows from (R;(g)*)~! = R;(g) and (4). Since @ acts smoothly on
M and M is compact, that pointwise limit is in fact uniform in 2, and thus
we also get the limit in L?-sense. We obtain

(8) 1 = LXa; + P¥ay,

where PX = %]H)R; (exptX) and L* denotes the vector field on M given
by
d
X
*ie =gl

(strictly speaking, L*a; stands for (LX ® I )a;). Both mappings X — L*
and X ~ P/ are representations of the Lie algebra g; the first being the
derivative of the regular representation g — T, and the second being the
derivative of the contragradient [6] of its restriction to Fj.

For each X € g and each I € N, let le denote the differential operator
Via= L¥a+PXa, a € C®(M;C%). We are ready to state the main result
of this section.

flexp(~tX) - z)

THEOREM 1. The following conditions are equivalent, given an operator
AeL(H).

(i) The mapping in (3} is smooth in the norm topology.
(ii) The mapping in (3} is smooth in the strong operator topology.
(iii) Every component a; of the signature of A is smooth and, for every fi-
nite sequence X1, ..., Xy in g, there is an A%t=%» € L(H) whose signature
equals (V]X” . .Vf‘a;);ew.

Proof. Qur previcus computations show that, if (ii) holds, then (iii)
holds if we take A**%» equal to the value of Zx,(...(Ex, (44))...) at
the identity.

Let us assume (iii) and prove (i). It is enough to show that, if an arbitrary
X € g is given, then Ex(,4) exists in the norm topology and:its value at
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the identity also satisfies condition (iii). Let D denote the linear span of
Ui=g 8- For v € D and g € G, we have

(9) lim TQ exp hX ATg_e];cp hX — TQAT; !
ES0 h

Indeed, at the identity, (9) follows from (4), from the fact that A — sgn(4)

is injective and from the definition of the differential operators Vi¥. For

arbitrary g, we also need to use the fact that D is invariant under T ! and

the continuity of Tj.

Given 4 € D, define f(t) = TexptxATe;Il)tXu, t € R It follows from
(9) that f(t) = TexthAXTe;:,txu. Since A¥ also satisfies (iii), we get
F7(t) = Toupix AXXT2 i, and, hence, supy [|£(8)] < 4% - ull. It
then follows that

T, (me“Pfo —4_ AX)TH_I'U,

(u) = gAX (u).

(10) < A [ull - R

i

for g € G, h € R and u € D. Since D is dense, (10) implies that SEx(g4)
exists in the norm topology and equals ;A% . w

REMARK 3. If a Banach-space-valued function has bounded directional
derivatives of all orders with respect to a farnily of vector fields that span
the tangent space at every point, then it is smooth. In Theorem 1, we have
used this elementary result for the family {S'x : X € g}. It is clear, however,
that it is enough to take X belonging to a basis of g, and that, in (iii), it
suffices to consider sequences Xi,...,X, taking values in such a basis.

3. A class of examples. For each bounded sequence a; € C%°(M),
[ € N (bounded meaning that p(ey) is bounded for every continuous semi-
norm p on C°(M)), define a Fourier multiplier A by

(12) Ay = Z o P,
=0

where I denotes the orthogonal projection of H onto Ej. Expression (11)
has a meaning for » € D; so that, a priori, 4 is a densely defined unbounded
operator on H.

Lemma 4. If all Fourier multipliers are bounded, then they are also G-
smooth.

Proof. Let Y, denote the vector-valued function (Vj,..., Yig,) €
C>(M;C*%). It follows from the definition of the matrix R;(g) that

(12) Ri(exptX) - Y;(exp(—tX) - z) = Y, ()
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for all t € R and x € M. It follows from the definition of Vi that V{¥Y;(z)
equals the derivative with respect to ¢ at t = 0 of the left-hand side of (12)
and, hence, VIXY; = 0.

Given a bounded sequence oy € C°°(M), let A denote the corresponding
Fourier multiplier. The signature (a;) of A equals {¢;Y;) and we have

Vitar = L* (aY) + Yy = L¥ (a0)Y; + e VY, = L% (e Y.
This shows that (V{¥a;) is the signature of the Fourier multiplier associated

with the bounded sequence L% oy € C°°(M); and similarly for higher orders.
By Theorem 1, A is G-smooih. »

Given a Fourier multiplier 4, define, for each (I,I') € N2, A, as the
bounded operator Py AFPy. In Theorem 2 below it is proven that A is bounded
{under an additional hypothesis on M) using the following version of Schur’s
test: If there exists an M > 0 such that

(13) m;pZHA;,p” <M and s?pZuAE,,,H <M,
14 [}

then A is bounded and ||A| < M. The norms ||.4;,1|| may be estimated using
the following lemma.

LEMMA 5. Given a non-negative integer k, there exists a continuous semi-
norm p on C°(M) such that

149 |Ou=2)* | auwdS| < pu(a)(t+ 2l ul - o]
M
forallac C(M), u € E; andv € Ey, with || - || denoting the H-norm.

Proof. Let Ly denote the Oth order partial differential operator on M
given by Lou = au, and define by induction Ly = ALg_3 — Lg_14. Then
Ly is a kth order differential operator whose coefficients in local coordinates
involve derivatives of order up to 2k of a. Taking a finite number of charts
and a partition of unity, one can show that there is a continuous seminorm
on C®(M) such that |Zxv|| < pr{a@)||v||z, with ||v||x denoting a kth order
L2-Sobolev norm of v, which we may suppose to be equal to [|(1—A)~4/2y].

Using the fact that » and v are eigenfunctions for A and successive in-
tegrations by parts, one sees that the left-hand side of (14) equals {,; ulyv.
The proposition then follows from the Cauchy-Schwarz inequality and
(1= A)~*2]| = (1 4+ A )2 n

THEOREM 2. If M as in Section 2 is in addition a rank-one symmetric
space, and if (cn)iex is @ bounded sequence in C™°(M), then (11) defines a
bounded operator A € L{H) which is G-smooth.

Proof Let || - oo denote the supremum norm for functicns on M.
A rough and obvious estimate for ||A;r|] is that they are all bounded by
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sup ||az!|eo, Which is finite, by our boundedness hypothesis on (o). There-
fore, when we estimate the sums in (13), we will be allowed to omit a (fixed)
finite number of terms.

Let {-,} denote the inner product of H (linear for the second argument).
Using the fact that, if v € Ey, then || A; ;yv||? = (P/(e, v), @, v), and applying
Lemma 5 with u = Pi(o,v) and a = o, we get

(15) A= AP Al < K@+ M)

where K = sup;ey +/P3(cu){|a]/oc, which is finite since (cz) is bounded.
Since M is a rank-one symmetric space, there are positive numbers a and

bsuch that \; = al?+bl ([14], Theorem III.3.5). From this explicit formula for
A1, one proves that sup; g 3y |Al/2 - )\1/2|_3/2 is finite. Writing |A; — Ay | =
[/\1/2 AM2. A2 4 A12), and noticing that supy.zp (1+:) Y22 an Pyt
is finite, one sees from (15) that sup; ¥, ||4:r |} is finite, and similarly for
the other supremum in (13). =
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