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Axiomatic theory of spectrum IIl: semiregularities
by

VLADIMIR MULLER (Praha)

Abstract. We introduce and study the notions of upper and lower semiregularities
in Banach algebras. These notions generalize the previonsly studied notion of regularity—
a class is a regularity if and only if it is both upper and lower semiregularity. Each
semiregularity defines in a natural way a spectrum which satisfies a one-way spectral
mapping property (the spectrum defined by a regularity satisfies the hoth-ways spectral
mapping property).

The notion of regularity in a Banach algebra was introduced and studied
in [KM] and [MM]. A non-empty subset R of a unital Banach algebra A is
called a regulority if it satisfies the following two conditions:

(iyifac Aandn €N, thena € R& o™ € R,
(ii) if a, b, ¢, d are mutually commuting elements of A satisfying ac+bd =
14thenabe R<a,beR. '

The axioms of regularities are weak enough so that there are plenty of
examples that appear maturally in Banach algebras and operator theory.
On the other hand, they are strong enough so that they have interesting
consequences, especially the spectral mapping theorem for the corresponding
spectrum og(a) = {A€C:a— A & R}.

In fact, the axioms (i) and (i) of regularities can be divided in two halves,
each of them implying a one-way spectral mapping theorem.

The aim of this paper is to systematically study semiregularities defined
in this way. There are many natural examples of such classes that satisfy
only one half of the axioms of regularities. The corresponding spectra include
the exponential spectrum, Weyl spectrum, T-Weyl spectrum, Kato essential
spectrum, various essential spectra etc.

All Bansach algebras considered in this paper are complex and unital.
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Lower semiregularities

DErFINITION 1. Let R be a non-empty subset of a Banach algebra A
Then R is called a lower semiregularity if

eeA, neN ¢a"c R=a€R,

(i) if @, b, ¢, d are mutually commuting elements of .4 satisfying ac+bd =
14 and ab € R then a,b € R.

For a lower semiregularity R define the corresponding spectrum og by
orle)={ eC:a~ A¢&R}.

Clearly, the intersection R = (), R of any system of lower semiregu-
larities is again a lower semiregularity. The corresponding spectra satisfy
or(a) =, onr,(a)foralla e A

Denote by Inv(.A) the set of all invertible elements of a Banach algebra A.

LEMMA 2. Let R C A be a lower semiregularity. Then:

(i) la€ R;

(i) Inv(A) C R;

(iii) ifa € R, b € Inv(A) and ab = ba then ob € R,

(iv) orla) C o(a);

(v) (translation property) or(a+ A} = A + ogr(a).

Proof (i) Letbec R. Wehavel-1+b-0=1and1-b=5be R. Thus
leR

(ii) Let @ € Inv(A). Then a-¢~'+a™*-0=1and a-a~* = 1 € R. Hence
a e R.

(iii) We have (ab)-0+b"1-b=1and (ab) -b~' =a € R so that ab € R.

The remaining statements are clear.

REMARK 3. Suppose that R C A is a non-empty subset satisfying
(1) a,bec A, ab=ba, abe R=>a,bc R.
Then clearly R is a lower semiregularity.
THEOREM 4. Let R C A be a lower semiregularity and o € A. Then
flor(a)) C or(f(a))
for each locally non-constant function f analytic on o neighbourhood of o(a).

Proof. Suppose on the contrary that A € f(or(a)) \ or(f(a)). Since
the function f(z) — A has only a finite number of zeros ay,...,a, in o(a),
we can write

F2) = d=(z~ ) ... (2 — an)*g(2),
for some k; > 1 and a function g analytic on a neighbourhoed of o(a) such
that g(z) # 0 (2 € o{a)). Thus

fla) = A= (a— o) ... (a— an)g(a)
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where f(a) — A € R and g(a) € Inv(A). By Lemma 2(iii), (a — 7)™ ...
oo (a—a)m cR.

Let ¢ € {1,...,n}. For certain polynomials p, g we have
(2= 0s)* - p() + (T[(= — @) ) -ale) = 1.
J#i

The corresponding identity for z replaced by a gives (a — o) € R. Thus

a—o; € Rand oy € ogla) (i=1,...,n). Hence A ¢ f(or(a)), a contra-
diction.

COROLLARY 5. Let R C A be a lower semiregularity and 0 ¢ R. Then
plor(a)) C or(p(a)) for all polynomials p.

Proof. It is sufficient to verify the inclusion for the constant polynomials
p(z)= A. In this case we have p(or(a)) C{)} and or(p(a)) =cr(A-14)={A}.

THEOREM 6. Let R C A be a lower semiregularity satisfying the following
condition: if c=c* € R, a € A and ac = ca then c+ (1 — c)a € R. Then
flor(a)) C or(f(a) for all a € A and f analytic on a neighbourhood of
a(a).

Proof. Let U be the domain of definition of f. Suppose on the contrary

that A € flor(a)} \ or(f(a)). Let U be the union of all components of U/
where f is identically equal to A, and.Up = U \ Uy. Let k be defined by

_ [0 (zeln),
Mz) = {1 (ze U:)
Then we can write
F(E) = A= h(@)(z — aa) ... (2 — an)ing(s)
where oy, ..., an € o{a) N U, g is analytic on U and g(z) # 0 (z € o{a)).
Set g(2) = (z —a1)** ... (2 — an)®. Thus
fla) — A = h{a)g(a)g(a) = h(a)g(a)(L — h(a) + g{a)h(a)),
where 1 — h(a) + g(a)h(a) € Inv(A). We have f(a) — A € R and so, by
Lemma 2(iii), h(a)g(a) € R.
Consider the function r defined by
_ a7t (zeln),
r(e) = {O (zEU:).
Then ¢(z)(1 — h(z)) - r(2) + h(2) - 1 =1 and ¢g(a)h{a) € R and so g{a) € R,
h(a) € R. As in Theorem 4, g(a) € R implies a —o; € R (i =1,...,n) and

so o; € ogla).
Since A € f(og(a)), there is B € Uy Nog(a). Further, h(a) is an idempo-
tent in R and, by assumption, we have (a — 8)(1 — h{a)) + h(a) € R. Next,
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(1 — h(a))+ (a—~ B)h{a) € Inv(A) and so
a—B={((a—B)(1-hla))+h{a))((1~ hla)) + (a— H)A(a)) € R.
This contradicts the fact that 5 € or(a).
ReEMARK 7. In particular, the condition of the previous theorem is sat-
isfied if the unit element is the unique idempotent in R.
Another typical application is when 4 is the algebra of all bounded oper-
ators on a Banach space, all idempotents in R are projections onto subspaces

of finite codimension and R is invariant under finite rank perturbations (for
example, Fredholm operators, upper (lower) semi-Fredholm operators etc.).

THEOREM 8. Let R C A be a lower semiregularity. The following condi-
tions are equivalent:

(1) R is open;
(ii) or{a) is closed for each a € A and the set-valued function a — or(a)
15 upper semicontinuous.

Proof. Straightforward.

REMARK 8. Let R € A be a lower semiregularity. Then the spectrum og
can be extended to n-tuples of commuting elements of A in such a way that
porlay,...,a,) C or(p(a,--.,an)}
for all cornmuting n-tuples a4, ..., a, € .4 and all non-constant polynomials

p in n variables (see [MW]). Indeed, define
or(at, ... an) = {(A1,...,An) € C" 1 plar — A1, ..., ap—Ay) € R for all p}.

The extension is not unique; another (trivial) extension is og(a1,.. ., an)
= () whenever n > 2.

The first extension is maximal among all extensions satisfying the one-
way spectral mapping property (clearly, the trivial extension is minimal).

We now show some examples of lower semiregularities. Of course, every
regularity (for examples, see [KM] and [MM]) is also a lower semiregularity.
Therefore we restrict ourselves to examples of lower semiregularities that
are not regularities.

Let £(X) be the algebra of all bounded linear operators acting on a
Banach space X. For T € £(X) and k& > 0 define

ax(T) = dim N(T**1)/N(T*),
Be(T) = dim R(T*)}/R(T**1),
7 (T) = dimker(R(T*)/R(T*) L R(TH1)/ R(TH2))
= codimIm(N (T*2) /N (TH+1) L, (T v (1),
where the operators 7 and T are induced by T (see [G]).
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The following properties of these numbers can be found in [MM]:

(i) ao(T) > aa(T) 2 ... and Go(T) = B (T) > ...
(i) v (T) = (T} — g1 (T) = Bk(T) — Br41(T) whenever the differ-
ences make sense.

(iii) an (T™) = 2 amn+i(T),

i=0

m—1
ﬁn(Tm) = Z Bmn-ti (T):
a2
TW(TT) = Z Ymni(T) - min{é + 1,2 — 1 — i}
2o
2 Y Ymati(T):
i=0
(iv) If A,B,C,D are mutually commuting operators satisfying AC +
BD = I then
max{a,(A), an(B)} < an(AB) < an(4) + on(B),
max{8n (A}, Bn(B)} < Brn(AB) < Bn(A4) + Bu(B),
max{y,(A), Yo(B)} < 1 (AB) < 1 (4) +7a(B).

(v) If AC + BD = I then R(A"B") is closed & R{A") and R{B™) are
closed.

(vi) If R(T™) is closed and v;(T) < oo (i > n — 1) then R(7Y) is closed
for every j > n— 1.

Write N°°(T) = | J;5o N(T*) and R™(T) = ;5o B(T*).

Fix m > 0. The previous properties imply that the following subsets of
L{X) are lower semiregularities: '

(1) {T € £(X) : dim N(T) < m} = {T : sup os(T) < m},
(2) {T € £(X): dimN®(T) < m} ={T: > a:(T) £ m},
(3) {T € L(X) : imau(T) <m},
(4) {T € £L(X): codim R(T) < m} = {T" : sup §;(T) < m},
(5) {T € L(X) : codim R®(T) < m} ={T: 3 Bi(T) < m},
(6) {T € £(X) : lim(T) < m},
(1) {T € £(X) - supw(T) < m},
(8) {T € LX) : T (D) < m},
(9) {T € £(X) : limsup 1 (T") < m}.

(10) {T € L(X) : dim N(T'}) < m and R(T) is closed},

(11) {T € £L(X) : dim N°(T) < m and R({T) is closed},
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(12) {T € L(X) : there exists n such that o, (T) < oo and R(T*t1) is
closed},
(13) {T € £L(X) : supy(T) < m and R(T) is closed},
(14) {T € £L(X): S %(T) < m and R(T) is closed},
(15) {T € £{X) : there is ng such that v,(T) < m and R(T™) is closed
(n=no)}-
Note that the range in classes (4)—(8) is closed automatically.
Denote by $(X), (X} and #_(X) the sets of all Fredholm, upper
semi-Fredholm and lower semi-Fredholm operators acting on a Banach space
X . It is easy to see that these classes are even regularities. The union

(16) &, (X) U &_(X)
is a lower semiregularity. Indeed, by [02], it satisfies condition (1) of Re-
mark 3. The corresponding spectrum was studied by Kato [K], Oberai [02],
Gramsch and Lay [GL], and others. It is sometimes called the Kato essen-
tial spectrum (o). By Remark 9 the one-way spectral mapping theorem
ox(f(T)) C flox(T)) is satisfied for all functions analytic on a neighbour-
hood of o(T).

Upper semiregularities
DeriniTION 10. A subset B C A is called an upper semiregularity if
(feeR,neN=a"€R,
(ii) if a, b, ¢, d are mutually commuting elements of A satisfying ac+bd =
14 and a,b € R then ab € R,
(iii) R contains a neighbourhood of the unit element 1 4.

The definitions of upper and lower semiregularities are only seemingly
asymmetric. In fact, for lower serniregularities condition (iii} was satisfied
automatically.

Clearly, R is a regularity if and only if it is both a lower and an upper
semiregularity.

Again define op(a) = {A € C:a— A ¢ R}. Clearly, the intersection of
any family of upper semiregularities is again an upper semiregularity. Also,
the mapping a — or(a) is upper semicontinuous if and only if R is open.

REMARK 11. If R C A is a semigroup then conditions (i) and (ii) of
Definition 10 are satisfied. Thus a semigroup containing a neighbourhood of
the unit element is an upper semiregularity.

LeMMA 12. Let R C A be an upper semiregularity and a € R N Inv(A).
Then there ezists £ > 0 such that {b € A:ab=ba, |b—al <e} CR.

Proof. Letd > Osatisfy {c € A: [le—14] < 6} C R. Let a € RNInv(A).
Set € = §/|la"||. Suppose that b € A, ab = ba and ||b — a|| < . Then

icm

Aziomatic theory of spectrum IIT: semiregularities 165

la”tb— 1l = [la= (b —a)|| <|la™ ]} - |b—a|| < 6 and so a~1b € R. Further,
a-a”'+{a"'h)-0=1, henceb=1a-{a"'h) € R.

LeMMA 13. Let R C A be an upper semiregularity, a, € RNInv(A) (n =
1,2,...), a € Inv(A), an — a and ana = aa,. Then a € R.

Proof. For each n we have a, - a;! +(a;'a) - 0 = 1. Further, a;'a — 1
so that aj,'a € R for n large enough. Thus o = a,, - (a;la) € R.

THEOREM 14. Let R C A be an upper semiregularity and a € A. Let M
be a component of C\ a(a). Then either M C og(a) or M Nog(a) = .

Proof Let L={a—A:A€ M, a— X € R}. By Lemma 12, L is open
and, by Lemma 13, it is relatively closed in M. Thus either L == @ or L = M.

CoROLLARY 15. Let R C A be an upper semiregularity. Then A-14 € R
for each non-zero complexr number A.

Proof. Consider the element o =0. The set M = {A € C: A # 0} is a
component of C\ ¢(0). Further, L€ R, so A€ Rfor all A € M.

LemMMA 16. Let R C A be an upper semiregularity, let o € R, b €
RniInv(A) and ab = ba. Then ab € R.

Proof Wehavea-0+5-b"1=1,s0ab¢c R,
Denote by ¢(a) the polynomially convex hull of o (a).

THEOREM 17. Let R C A be an upper semiregularity and a € A. Then
or(a) C 7(a). Further, ox(a)\o{a) is a union of some bounded components

of C\ a(a).

Proof. For |A] large enough we have 1 — a/A € R, so that a — A =
—A(1 — a/A} € R. By Theorem 14 the unbounded component of C \ o(a) is
disjoint from oz(a) and thus og{a) C 7(a).

COROLLARY 18. or(a) U o(a) is o compact subset of C for all a € A.

TueoreM 19. Let R C A be an upper semiregularity and a € A. Then
cr(p(a)) C p(or(a)) for all non-constant polynomials p.

Moreover, if or(b) # 0 for all b € A then og(p(a)) C p(cr(a)) for all
polynomials p.

Proof. Let p be a non-constant polynomial. Let A & p(og(a)). Write
p(2) — A= pB(z — a1} ... (2 — an)* wheren > 1 and 8 € C, 85 0. Thus
pla) = A= Bla—a)* ... (a —an)*.

By assumption, a; € og(e) (i = 1,...,n). Thus a—a; € Rand (a—o)* € R.
As in Theorem 4 we have (2—a1)* ... (z—0,)* € Rand pla}—X € R, ie.,
X € og(p(a)). Thus or(p(a)) C p(er(a)) for all non-constant polynomials.
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Suppose that op(bh) # 0 for all b € A. Let p(z) = A be a constant
polynomial. Then

ar(p(a)) = or(A-1a) C {A} = p(or(a)).

THEOREM 20. Let R C A be an upper semiregularity. Suppose that R
sotisfies the condition

(2) be RNInv(A4) = bl e R

Then og(f(a)) C f(or(a)) for all @ € A and all locally non-constant func-
tions f analytic on a neighbourhood of o{a) U or(a).

Further, op{f(a)) C flor(a) Ueo(a)) for all functions f analytic on a
neighbourhood of orla)Uo(a).

Proof. Suppose first that f is locally non-constant and suppose on the
contrary that there is A € og(f(a)) \ f(er(a)). Then f(a} — X = g(a)g(a)
where g{a) = (@ — a1)* ... (a — on)* and g is a function analytic and
non-zero on a neighbourhood of o(a) Ucogr(e). By assumption, f(a)— A & R
and o; € ogla), ie,a—0; € R {i=1,...,n). As in Theorem 4 we obtain
g(a) € R. Further, there are a compact neighbourhood V of o(a)Uog(a) and
rational functions p,(z)/¢n(2) with poles outside V such that p,(2)/gn(z) —
¢{(2) miformly on V. We can assume that the polynomials p,, ¢, are non-
constant and p,(z) # 0 on o{a) U og(a).

By Theorem 19 this means that p.(a),q,(a) € R. By assumption,
gn{a)™t € R. Therefore py(a)gn(a)™ € R and, by Lemma 13, g(a) =
lim pa(a)ga{a)™' € R. Since g{a} € R and g{a) € RN Inv(A4), we have
f(a) — X € R, a contradiction.

Suppose now that f is analytic on a neighbourhood of ¢{a) Ucg(a) and
A€ or(f(a) \ flo(a) Uor(a)). Let U be the domain of definition of f,
U = Uy YU, where Uy, U3 are disjoint open sets, f|U; = A and f is not
identically equal to A on any non-empty open subset of Us. By assumption,
(or(a) Uol(a)) N Uy = &, so Uy is an open neighbourhood of ¢(a) U or(a).
The proof proceeds as in the first part.

In many cases the inclusion oz(f(a)) C flor(a)) is true for all analytic
functions. By Theorer 20 this is true if R satisfies (2) and R C Inv(A), i.e.,
ar{a) 2 ola) for all a.

More generally, one can show that cg{f(a)) C f(or(a)) for all f if R
satisfies {2) and each component of ¢(a) meets or(a}.

Ancther typical situation is described in the following theorem.

THEOREM 21. Let R C L(X) be an upper semiregularity satisfying (2)
such that

(i) f T € R and F' € L(X) 15 a finite rank operator commuting with T,
thenT - F e R,
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(i) f T € L(X), U1,U; are disjoint open sets, o(T) € Uy U Us and
or(T) C Us, then the spectral projection of T corresponding to Uy is of
fintte rank.

Then or(f(T)) C flor(T)) for all T € L(X) aend f analytic on a
neighbourhood of o(T") U or(T).

Proof. Let f be analytic on a neighbourhood of o(a) U og(a) and sup-
pose that there is A € or(f(a))\ f(or(a)). Let Uy, Us be disjoint open sets,
and suppose f|U; = X and f is not identically equal to A on any non-empty
open subset of Us. By assumption, og(a) N Uy = B, so or(T) C Uy. Let h

be defined by
_ 0 (Z (S U1),
h(z) - { 1 (Z e Ug).

By (i), I — h(a) is a finite rank projection. We can write
fz) = A=h(z)(z - 1) ... (2 — an) ¥ g(2)

for some o,...,0, € o(a) N Us, g analytic on U; UU, and g(z) # 0
(z € ofa)). Bet g(z) = (2 — 1) ... {z — an)*~.
We have o; € or(T"), so T — o; € R and, as in Theorem 4, g(a) € R.
Further, f(T) — A = h(Tg(T)g{T) € R and by assumption (i),
g(T)g(T) € R. As in Theorem 20 we can get g{T'} € RN Inv(£L(X)) and so
g(I" € R, a contradiction.

ExaMPLES. (1) Let R be the principal component of Inv(A). Then R
is an open semigroup and so an upper semiregularity. The corresponding
spectrum is the exponential spectrum oy, of Harte [H1]. By Theorems 17
and 20, o(a) C gexp(a) C T(a) and foep(a) C gexp{f(a)) for each function
f analytic on a neighbourhood of oexp(a).

(2) Let R = {T' € (X) : indT = 0}. Again R is an open semigroup
and thus an upper semiregularity. The corresponding spectrum is the Weyl
spectrum (sometimes also called Schechter spectrum) ow(T) = {A € C :
T~ A¢g@(X) or indT 5 0} (see [8], [01]). It is well known that ow(T") =
No(T + K) where the intersection is taken over all compact operators K.
By Theorem 21 we have ow (f(T)) ¢ f(ow(T)) for each function f analytic
on a neighbourhood of o (T').

(3) More generally, let J be a closed two-sided ideal in a Banach algebra
Aand R =1{a € A: (a+J)NnIov{A) # 0}. It is easy to check that
R is a semigroup containing Inv(.A) and so an upper semiregularity. The
corresponding spectrum was studied in [H2].

(4) Let A = L£(X) and m > 0. Clearly, the following sets are upper
semiregularities: : o
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{T € &(X):indT > m},
{T e ®X):indT < —m},
{T € $(X) :indT € mZ},
{Ted (X):indT > m},
{Ted (X):indT < —m},
{Teé,(X):indT < —m},
{Ted_(X):indT = m}.
In particular, for m = 0, the last two classes are
&7 (X)={T € 9,(X):indT <0},
FT(X)={T €d_(X):indT > 0}.

These classes and the corresponding spectra were studied by Rako&evié [R1],
[R?2] and Zemdnek [Z2].

The corresponding spectra were called the essential approzimate point
spectrum and the essential defect specirum and denoted by oe, and oeq,
respectively. They satisfy

Gea(T) = ﬂ{a,r(T + K) : K compact},
cea(T) = ﬂ {os(T' + K) : K compact}

(where o and os denote the approximate point spectrum and defect spec-
trum, respectively), and the one-way spectral mapping theorem for all ana-
lytic functions (cf. Theorem 21).

Note that similar classes
Bi(X)={T € ¢.(X) : ascent(T) < oo},
B.(X)={T € $_(X): descent(T) < oo},
and the corresponding spectra o, and op_ (called the Browder essential
approzimate point spectrum and Browder essential defect spectrum e.g. in
[R1] and [Z2], and upper (lower) semi-Browder spectra in [H3], [KMR])
exhibit much nicer properties. Not only are these classes regularities but it

is possible to extend the spectra oy, and ¢a_ to all commuting n-tuples of

operators such that the multivariable spectral mapping property is satisfied
(see [KMR]).
Further, for single operators,

o5, (T} = [ {ox(T + K) : K compact, TK = KT},

o5 (T) = [ |{os(T + K) : K compact, TK = KT}.
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