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Solving dual integral equations on Lebesgue spaces

by

OSCAR CIAURRI (Logwofio), [JOSE J. GUADALUPE],
MARIO PEREZ (Zaragoza) and JUAN L. VARONA (Logrofio)

Abstract. We study dual integral equations associated with Hankel transforms, that
is, dual integral equations of Titchmarsh’s type. We reformulate these equations giving
a better description in terms of continuous operators on L? spaces, and we solve them
in these spaces. The solution is given both as an operator described in terms of integrals
and as a series 3~ o enJyt2n+1 Which converges in the ZP-norm and almost everywhere,
where Ju denotes the Bessel function of order v. Finally, we study the uniqueness of the
solution.

1. Introduction. In some physical problems related to potential and
electromagnetic or acoustic radiation theory, sometimes the unknown func-
tion satisfies an integral equation over part of the range (0, oo} and a differ-
ent integral equation over the rest of the range. These equaticns are known
as dual integral equations. An important case is the so-called dual integral
equations of Titchmarsh’s type:

gtﬁf Walzt)dt=g(z) H0<z<1,
(1)

0
| Ft)alat)dt =0 if > 1,
0

where J, stands for the Bessel function of order e (see [18] or [3, Ch. VII]),
g is a given function and f is an unknown function. For a function #,

| B(t) Jo(at) (2t} /2 dt, = >0,

0
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is usually known as the Hankel transform of h; so, the second equation in (1)
means that the Hankel transform of ¢~%/2 £ (£) is supported on [0, 1], and the
first one imposes a condition on the Hankel transform of ¢°~/2 f(¢).

There are different methods to solve these equations, most of them only
formal. For instance, they can be solved by using Mellin transforms or some
other integral transforms. Also, they can be reduced to Fredholm integral
equations. Usually, these methods allow one to find the solution f as an ex-
plicit expression with integrals; some of them can be found in the books [14,
p. 337), [10, §12, p. 65], [7, §5.11] and [3, p. 76]. Another method consists in
solving the equation as a series 3 .., ¢nJutont1; see [13] and [16], the first
one with a large bibliography. But, as long as the authors know, it is only
studied as a formal method.

In this paper we pursuit a rigorous approach to sclving dual integral
equations. We reformulate (1) so as to obtain a better description in terms
of operators on L? spaces, and we find the solution in these spaces. Also,
we identify the solution as a Fourier—-Newmann series whose LP and almost
everywhere convergence is studied.

The paper is organized as follows: in Section 2 we state the dual integral
equation in a more convenient form and define some associated operators.
Section 3 collects some properties of Bessel functions and Jacobi polyno-
mials. We describe a solution to the dual integral equation in Section 4,
and Section 5 is devoted to the uniqueness of the solution. Sections 6 and 7
contain some of the proofs.

Throughout this paper, unless otherwise stated, we will use C to denote
a positive constant independent of f (and all other variables), which can
assume different values in different occurrences.

Also, for any function g defined on [0, 1], the extension given by g(z) =0
at each z > 1 will be denoted by x[p,19, With a small abuse of notation.
Strictly speaking, x(o,1) could be understood either as a characteristic func-
tion or as an operator taking functions defined on [0, 1] to functions defined
on [0, oc).

2. The dual integral equation. Let us define, for o > -1, the integral
operatoer H, as

o f2 o0
Holfiz) = T | fOI(Vat )2 dt, >0,
0

for suitably integrable functions f. For instance, H, is an isomorphism from
the Schwartz class

8§t = {f e C*((0,00)) : Yk, 5 > 0, |t* ()] < Cryt
onto itself and H2 is the identity map. This operator is a modified Hankel
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transform. For o > —1/2,1 <p <2, and 1/p+ 1/p = 1, H, extends to a
bounded operator from LP([0, 00), z* dz) into L¥ ([0, 00), z* dz), i.e.

”Haf”LP'([O,oo),m“dm) < C“f”L‘»"([U,oo),m“‘dm)s fe LP{[O, DO):ma dm)
However, the Hankel transform does not extend to LP([0, co0),z* dz) if 2 < p
(see [2, 12, 17)).

Another operator will be used: the multiplier of the Hankel transform as-
sociated with xo 1), that is, the operator M., given by Ho (M f) =X[0,1Haf-
This multiplier plays an important role in the study of orthogonal Fourier
expansions (see [17] in connection with Fourier-Neumann series, and [11]
for Laguerre series).

Herz's classical result determines the range of p such that M, is a well
defined, bounded operator from L?([0, oo}, 2* dz) into itself ([5]; see also [11,
17)):

ProrOSITION 2.1. Let a > —1/2 and 1 < p < co. Then

4Ha+1) 4o+ 1)
2a+3 ST+l
For more general results on Hankel multipliers, see [12] and the references

therein.
In 2 dense subset of LP([0, 00), z* dx) (for instance, St)

M.f= HO!(X[O,l}Haf)
and H2 = Id. Whenever H,, is well defined, it follows that Ho f is supported
on [0,1] if and only if M.f = f.
Now, let us reformulate the dual integral equations. With a simple change
of notation, we can write (1) as

| Maf |l Lo(0,00) 0% dz) < CllFllz2((0,00),25da) €

—aj2 >
[P TaVat o dt = g(z) HO<z <1,
(2) a2 S
= 5 | re)Ja(Vat /2 dt =0 if 2> 1.
0

The second equation in (2) means that supp(Hef) & [0,1]; in other words,
My f = f provided that f belongs to a suitable L? space.

The first equation in (2) can be read as HMu (% f)xp,1) = X[o,139- Under
certain conditions, H, is an inversible operator. Then we obtain the equiva-
lent equation M. {t%f,z) = Ha(X[0,19 %) It will be convenient to multiply
both sides by 7, so we get e PML (P f, x) = m“ﬁHQ(XEO,Hg, z).

To sum up, we are interested in solving in LP([0, 00), #* dz) the equation

-8 B =g P o .: )
(3) {i{a?;x(; f: 93) z™%H (X[O,l]g m)
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In a strict sense, (2) and (3) are not exactly equivalent if we do not
assume that the functions belong to a suitable L* space. However, it is
interesting to note that, for any practical physical application, the interpre-
tation of a dual integral equation and its solution as in (2) is equivalent to
its interpretation as in (3).

Together with Ho and Mo f = Ha(X[0,Maf), let us consider the oper-
ators My g and H, g given by

Ma,ﬁf = fE“ﬂMa(tﬁf)v Hop9 = m—ﬁHa(X[ﬂ,l]g)-
With this notation, the dual integral equation (3) can be written as

Magf = Ha,pg,
(4 { Mafeg
Those operators are well defined, for instance, if f € S+ and g € C*([0, 1}).
We see below that M, g is bounded in the L?([0,00), 2% dz)-norm, under
some conditions on o, 3, and p. Therefore, it extends to a bounded operator

on LP([0, 00}, z dz). With a similar argument, M, s extends to a bounded
operator from LP([0, 1], z* dz) into LP([0, 00), % dz).

PROPOSITION 2.2. Let > —1/2, 32> 0 and 1 <p < oc. Then

|88 f | 22¢10,00),%dz) < CllFll2r([0,00) 22 da)
4{a + 1) 4(e+1)
2o+ 4843 2a4+48+ 1"
Proof. We give only a sketch of the proof. It follows the proof for M,
in [17]. Actually, this is a particular case of weighted versions of Herz's
classical result (with power weights).
Set

4(a 41 4{aa+1
Po—"—"w( ) and p; = (o +1)

T 2a+48+3 C 2a+48+ 1
For f € §t, Fubini’s theorem applies to M, gf = w"ﬁHa(x[o,l]Ha(tﬁf));
then Lommel’s formula
1

SJa(yt)Ja(ym)y dy = ﬁa(tJM—l(t)Ja(m) — o (t)Jari(z))
Q

gives
Ma,p(f,2) = 50702 FT 2 1oy (&' 2)H (1222 7o (/%) £ (1), @)
LA g (0 H (P Ty (879)£(0),2)
= Wl(fzm) - WZ(f) 93)7
where H is the Hilbert transform H(f,z) = {;° £ 4t. The Hilbert trans-

0 -t
form is a bounded operator from LP([0, 00), z* dz) into itself if and only if
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-1 <A<p-1LFx1l<p< oo then, by using the bound |J(z)| <
Cx~1/2 it is easy to check that W, and W3 are bounded operators on
L?([0, 00), 2% dz) if
4(a+1)
20+46—1
{disregard the right hand side inequality if 2 + 48 — 1 < 0) and
4o+ 1)

20+ 48+ 5
respectively. Then M, g is bounded if pg < p < py.

In fact, pg < p < p1 is a necessary condition for the boundedness of
Ma, 5. By interpolation, we only need to observe that M, g is not bounded
for p=pp (if po > 1) and p = p1. f p = po > 1, W, is bounded; however,
more precise estimates for the Besse! functions near infinity and a clever
selection of f show that W) is not bounded. Thus, M, g is not bounded.
The case of p = p; is analogous. m

Po<p<

<p<p1L,

Regarding the Hanke! transform H,, we have the following theorem of
Rooney ([9, p. 1100], [6], after a change of notation):

THEOREM 2.3 (Rooney). Leta > —1, 1 < p £ ¢ < oo and max{1l/p,
1-1/q} v <a-+3/2 Then

(OSO |/ 2/ 243/494 (b, )| E;E) /e < C’(OSO |z¥/FHe /21 4 gy d_.'z:) 1/;:.
0 T 0 x
The boundedness of H, g follows as a consequence:
ProOPOSITION 2.4. Let e = —1/2, 2 0, 1 < p < o¢c and assume
2{a+1 a+1
?-#B?)—l sP<Tg
Then ||Ha,a8lLe([0,00),a2dz) S CllgllLe(0,1],5 dz)-

Proof Takev =28+ a+3/2~2(a+1)/p and p = ¢. It is easy to see
that we can apply Theorem 2.3 to get

“Ha,ﬁgllLr([o,oo),w“dm) = ||m—ﬁ+(a+l)/PHa(X[O,1]g)”LP([O,wJ,dm/m)
< c;«||Zﬁ~l~(fJHrl){l—l/"p)X{D r

- C‘]|m'@+(°‘+l)(1“2/p)x

191l 22(10,00),d /)

0,119l L7 ([0,00), 2 da)
< Cllgllze(o,1),zdz)

where the last inequality follows from S+ (a+1)(1~2/p) > 0. =

Therefore, our dual integral equation (4) is well posed and the question
we try to solve is the following: given any g € L?([0,1},2*dx), is there a
(unique) solution f € L?([0, 00), z%dx)?
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3. Bessel functions and Jacobi polynomials. If o > —1, the Bessel
functions satisfy the orthogonality relation

T dx é,
(S) Jatant1 (%) Jat2m+1(z) P W_ﬁ‘ﬁ“j, n,m=0,1,2,...

After a change of variable, the system {j; }nro given by
i8(3) = Va+ an+ Llayansa (V32222

is orthonormal on L([0, 00), z* d). There is a tight relation between Bessel

functions and Jacobi polynomials pleP ) and the following lemma is relevant
for our purposes; the first part was proved in [1] and the second part will
be proved in Section 6. Of course, these formulas hold in Lebesgue spaces,
that is, almost everywhere.

LEMMA 3.1. Let o, 8 > —1 with a -+ 8 > ~1. Then
(5) Ha(jﬁ-'-ﬁam)
vat+pB+oan+1l(n+1)
=27 1—2)8plfl(1 2 z).
Assume further 8 < 1. Then

6)  Xou{z)Ha(tP551P, 2)

:2ﬁ‘m+f8+2n+ IMe+B8+n+1)
Na+n+1)

In particular, supp(H,(i21t4)) € [0,1]. However, note that (6) refers
only to the Hankel transform of 7§27 at z € [0,1]; nothing is claimed for
x> 1

The Jacobi polynomials{ P{*?(z)}e2, of order a8 (see [3, Ch.X] or [13,
Ch.IV)) are orthogonal on [~1, 1] with respect to the weight (1 —z)%(1+z)?,
o, 0> -1

After a change of variable, the system (PP ) (1—22)}22, is orthogonal
on [0,1] with respect to the weight z*(1 — 2)?, , 5 > —1. To be precise,
the orthogonality relation for these polynomials is

1
[ PR (1 - 20) LB (1 - 22)2™ (1 — ) dz = KD 6
0

P,go"ﬁ)(l —22)X0,1] (z)-

with
pled) a+n+ HI{B+n+1)
" (a+p+2m+) I a+B+n+1)n! "

Set
(7) pleP) (z) = (R{AN 2P (1 ~ 22), n=0,1,2,...
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This is an orthonormal systerm on [0, 1] with respect to the weight w(z) =

¢*(1 — z)®. For any suitable function g defined on [0, 1], its Fourier-Jacobi
series is the formal expansion

1

g~ aa(@p,  anlg) = {g(@)pl™ (2)2*(1 — z)? de.
n=0 1]

The following result by Muckenhoupt gives conditions for the uniform
boundedness and the mean convergence of S,.g (actually, both are equiva-
lent, by the Banach-Steinhaus theorem):

THEOREM 3.2 (Muckenhoupt [8]). Assume that e > —1, 8 > —1, 1 <
p < oo and let S,g denote the mith partigl sum of the Jacobi polynomial
series for g with parameters a and 8. Assume that

e e
b+(ﬂ+1)($-%)’ <mm{i—,ﬂ_}1}.

Then there exists a constant C such that

2% (1 = 2)°Sngll Lo (o, e (1-2)2 doy < Cllz®(1 ~ 2)°gl| Lo((0,1], 5% (1—2)6 da)
Jor everyn €N, and
lim [|z*(1 - 2)%(Sng — 9)llLe(j0,1),0% (1—2)P de) = 0
for every g with ||z°(1 — £)°g|| Lo ([o,1],05(1—2)5 dz) < 0
For our purposes, we will only need the following:

COROLLARY 3.3. Let « > —1/2, 5 20,1 < p < o0 and

ax{4(a—+ll 4 }<p<min{4(a+l) 4 }

2a+3 '28+3 2%a+1'28+1
Then
lim S,g=g
T—0d
in the LP([0,1], 2 dz)-norm, for any g € LP([0,1], 2™ dz).
Proof Take a =0 and b = —3/p in the previous result. m

The scheme we use to solve the dual equation (4) is as follows: expand g

as a Fourier—Jacobi series, that is, g = Y oo g anp'?) then the solution is
= }:::;U by, jf:"'ﬁ, where b, is explicitly given in terms of a, and the series
converges both in L? and almost everywhere.

Series of the form Y oo cnJusn are usually known as Neumann series.
Thus, we are describing the solution of the dual infegral equation as a

Fourier-Neumann series.
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The operator that takes g into f will be proved to be bounded on LP. It
can also be written in terms of integral operators.

4. Main results: the solution of the equation. In this section we
introduce an operator L, g and state some of its properties. This operator
solves the dual integral equation (4).

Let g be a suitable function on {0, 1]. We define L g9 by

1 ¢
_ 1 Jora(vat) g1, a
if 8 > 0, and Laog = Halx(p,)9). Qur first result states that Lq g is a
bounded operator from L*([0, 1}, z* dx) into LP([0, co), 2™ dx):

THEOREM 4.1. Let o > ~1/2, > 0,1 < p < 00 and

2(2¢ + 3)
Nat Bl 43 P>

Then
1 La,89 22 ([0,00) 02 d2) < Cllgllzr(o,1),02de): g € LP([0,1], 2% dz).

In what follows, we write PT < @ with the meaning P < Q. In this way,
we have
ma,x{A,BT} <M&e& A< Mand B< M.

This will keep the notation a bit shorter.
COROLLARY 4.2, Let a > ~1/2, 3 > 0, 1 < p < co and assume

22a+3) [4(a+1)\] . [4a+1) 4
< .
max{2(a+ﬁ)+3’(2a+3 A T E R
Then, for any g € LP([0,1], 2% dx), we have

1

7= an(@p™,  an(9) = | 9(@)p) (2)2%(1 - 2)° do
n=0 v}

in the LP([0, 1], z* dx)-norm and

Zm : - I(a+n4+1)22(n)HY2
Lo = by, a+ﬁ, by = 2 B )
= Tla+B+n+ AT nE™)

in the LP{[0, 00), z* dz)-norm and almost everywhere.

For the proof of Theorem 4.1 and Corollary 4.2, see Section 7.
Before going on, let us write Lemma 3.1 in terms of M, M, 5, and Hap
It is clear from (5) that H,j2*# is supported on [0,1], so that

(8) Mo (jtP) = ja+P.
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And, if we take (7) into account, (6) reads as
(9) Map( '3+ﬁ) ="M, (tﬂjgﬂg) =z7%H, (X[O,l]Ha(tﬂjﬁ+g))
= 27 Mo (x(0,11dnPPY) = dnHy aplP
with
4 —oellatBtnt Y203 +n+1)/2
" Ila+n+ 1)1/2(nt)1/2
Our main result is the following:

THEOREM 4.3. Let o > —1/2,0< B <1, 1 <p < o0 and

[ 2003 Ha+1D\T , Ha+1) 4
e {2(a+ﬁ)+3’(2a+3> }£p<mm{2a+4ﬁ+l’2ﬁ+l}'

For each g € LP([0,1],z*dzx), f = Lo gg is a solution in L2(]0,00), 2% dx)
of the dual integral equation

{ Ma,,@f == H«:\e,ﬁga
Maf = f.

Proof. Let g € LP([0,1],2%dz) and f = L, gg. It is easy to see that
we can apply Propositions 2.1, 2.2 and 2.4. Since L, 3 is bounded (by The-
orem 4.1}, Corollary 4.2 and (9) give

Mosf = lim Ma,[,(’;bkj;:*"ﬁ)
T

= lm Ha,p ( 2 6bkdkp§f’ﬁ )) = Ha,p0,

1

while Corollary 4.2 and (8) yield
g n
Maf = lim M3 s ™) = i 3 besi ™ = £ m
k=0 k=0

5. Uniqueness of the solution. Let us consider the L7 subspaces
Bpag = 50am{j5 P (2)}72o  (closure in LP([0, 00), 2 dx)),
Epo = {f € IP([0,00),z% dz) : Maf = f}.
The following results about the mean convergence of Fourier-Neumann se-
ries were proved in [1]:
THEOREM 5.1. Let > ~1, a+ 8> —1,4/3 <p < 4, and

max{*w———a+§+1,—i} <(a+1)(%—%) +§ <z
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Then for any f € By o p there exists a unique expansion

F=3 ba(fixt?

=0
which holds in the LP([0, 00), 2% dz)-norm. This expansion also holds almost
everywhere.

THEOREM 5.2. Let o > —1/2, B> —1/2, 4/3 < p with
-1 1 1 1
T < (a+1)(5——§) < Z
If p <2, assume further

-1 1 1 18]

— Nfz-=)-&,

1 < (a+ )(2 p) 5
Then By ap = Ep .

Using these results, we can prove
THEOREM 5.3. Let > —-1/2, 0 <3< 1, 1 < p < oo and

max{ 2(2a + 3) ( 4o+ 1) )T}Sp<min{ 4(a+1) 4 }

20+ B)+3" \2a—-28+3 2a+48+1'28+1
Then f = Ly gg is the unique solution in LP ([0, 00), z® dx) of the dual equa-

tion
{ Ma,,@f = Ha,,@ga
M, cuf = f .
Proof It is not difficult to check that, under the hypothesis of this
theorem, we can deduce the ones of Theorems 5.1 and 5.2 and Theorem 4.3.
For instance, 4/3 < p follows from

é<max{ 22 +3) 4(a+ 1) }
3 20a+P)+3 20—-28+3]"
Indeed, if this inequality failed we would have
202 +3) _ 4 da+1) _4
2@+8)+3 -3 20-28+3" 3’
which yield 2o + 3 < 48 and o + 28 < 0, respectively. Then o < —3/4,
which contradicts o« > —1/2.
According to Theorem 4.3, Lo pg is a solution of the dual equation. Let
us see that it is unique. Let f be a solution, that is, f € LP([0, oc), 2% dz),

Maf = f and Mo gf = Ha,pg. In particular, f € E, ,. By Theorems 5.2
and 5.1, we can expand f as a Fourier-Neumann series

F=3 ba(f)it?
n=0
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which converges in the LP([0,00), z* dz)-norm. Proving that each b, (f) is
uniquely determined will suffice.

From (9) and the fact that M, g is a continuous (bounded) operator in
LP, we get

o0
Hapg = Mapsf = Z b (f)dnHa, o057

n=0
Our assumptions on ¢, 3, and p, together with the estimates
Jo(z) = 0(z%), z-07, J.(2)=0("Y?, z-— oo,

yield mﬁj§+ﬁ € L7 ([0, c0), z* dz), where 1/p + 1/p' = 1. Hence, the map
b §o° 28527 (2)h(z)z® de is a continuous operator from LP([0, o), 2 dz)
into R. Then

o
| 22524 (@) Ha (g, )2 da
0

= Z b (f)dn S mﬁj§+ﬁ(m)?{a,ﬁ(p£,“’ﬁ), )e™ de.
=0 0

Now, recall the multiplication formula for the Hankel transform, which is
valid for hy, he € L?([0, 00}, 2% dx):

o [s.=]

S hi(z)YH(he, )2 dz = S Heo (b, 2Yho(z)z™ dex.

0 0
Indeed, in ST this follows from Fubini's theorem; then it extends to the
whole L2([0, 00}, z* dz) by continuity.

Thus, the definition of H, g, together with (5) and the orthogonality of

Jacobi polynomials, yields

o0 [s o]
| 2255 (@) Ha s (05P), 2)2% dz = | 521 () Halxp,0pl™?), )2 da
0 Q

1
=i { (1 - 2)°p (@)plP (2)2% de = ridin
0
with a constant ry 3 0 (actually, 7, = 1/dg, where d; comes from (9), as
before). Therefore,
S 2P joeHB (2) Mo po(z)2® dx = by (f). m
0

6. Proof of Lemma 3.1. As we already mentioned, the first part of
Lemma 3.1 was proved in [1}, so we only prove the second part. Let oF
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denote, as usual, the hypergeometric function. We use the formula

o0 272 (3 e+ v — A+ 1))
Y _ 2
g £ Ju(at)J, (bt) dt = T+ DIEA T p—v +1))
_ - b?
2Fl( +U2A+1’V /\2H+1 +1_)’ Peba

valid when p+#—A > —land A > —1 (see [4, 8.11(9), p. 48] or [18, 13.4(2),
p. 401}). Take a = 1 and = = %, with parameters A = -3, u= a+8+2n+1
and v = c. Then for § < 1, &+ 8 > —1, and 0 < z < 1 we get, after a
change of variable,

—ef2 o0

5— VI ) Ja(vVEy P dy
0

P F BRI I e+ B+ n+1)

- Fla+1)I'n+1)
If we take into account that

Fa+n+1)
MNa+1)IMn+1)
whenever o, 5 > —1 and ~1 < z < I, it follows that

T

sFilea+f+n+1,—na+l;z).

F)(z) =

1_
2F1(a+ﬁ+n+1,——n;a+1;Tm)

af
Wi ) T dy

a
_PVatBrm T F(a+ﬁ+n+1)P(aﬁ
I'a+n+1)

if € (0, 1). We have not finished yet, because this integral must be under-
stood as an improper Riemann integral, not a Lebesgue integral, In other
words, this means

Al HaltP 55 x(0,m), 7)
_ Vet BtamTil(a++n+1)
I'a+n+1)
pointwise on (0,1). Now, H, is a bounded operator, so that
Am Ha(t7 5 P xp0,m) = Ha(t571°)

T

— 2z)

PR (1 — 2g),

in the LP-norm. It follows that

Ho(tBja0 1) = e+ Bt aon+1 F(oz4-[;?+1«;,+1)P(‘ij
" INa+n-+1)

- 2z),

almost everywhere on [0, 1].
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7. Proof of Theorem 4.1 and Corollary 4.2
LEMMA 7.1, Let o« > ~1/2, 8> 0, and 1 < p < oo, with
2(2a + 3)
o+ +3 =7
Then

”Ha-i-ﬂ(x[&l]h)”LP([D,oo),a:“ dz) S C”h”Lp([o,l],ma dzy, kb€ LP([0,1], 2" dx).
Proof Takev=oa+f+3/2~2(a+1)/p. Then

[ Hats(X10,0P) | 2e (0,00), 22 da)

= |’m—y/2+(a+'3)/2+3/47{a+ﬁ (X[D,l] h) ”LP([O,DO) ae )

With our assumptions on «, §, and p we can apply Theorem 2.3 to get

[ Hara(Xo,17M| o ([0,00) e dz) < Clz*/2HETBYZE Ay Bl Lo ((0,00) i )

= Cllma+ﬁ+1—2{a+1)/?h“LF([O’I],Q:“ dz)-
The easy observation that cv + 8 + 1 — 2(a + 1)}/p > 0 finishes the proof, m

Proof of Theorem 4.1. Lemma 7.1 proves Theorem 4.1 in the case ﬁ =0,
since L ,Og Ha(x10,119)- Now, observe that Lo, gg = 27PHaig (x10,1112,29)
if B > 0, where

p—(at+B) &

Inp(g,2) = T @ {o@)(@z—t)f~te2dt, 0<z<l,

0

is the Erdélyi-Kober operator. It is well known. that this operator is bounded
in LP([0,1},z%dz) if & > —1, 8> 0, and 1 < p < co. Indeed, after a change
of variable we obtain

1

fa,a(g,m)=1,—(155§( — 212 g ) d
0

and, by Minkowski’s integral inequality,
1 : g-1 2
e8] Lo (0,105 d0) S T3 )5(1 2" 2% |g(z2) | 1o (0,1, me dm) A2

1
1 —
< ligllzrio,n,04a0) 7y T (1= 2)ptpamerii/e g,
0

= O”g“LP([O,l],m“dm)’
where we have used the fact that

9@z} oo, 1,0mdzy < 27219 1o (10,1),0%de)
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and
i
S (1- .::)ﬁ"lz"‘_(‘”"'l)/p dz = B(B, (e + 1)(1—1/p)) < cc.
0

Thus, I, s is bounded and again Lemma 7.1 proves the theorem. m
Proof of Corollary 4.2. Let g € LP([0, 1], * dz). Under our assumptions
on &, 3, and p, it is easy to check that we can apply Corollary 3.3. Therefore,

1

g= Z Qr, (g)p;a,ma an(g) = Sg(x)pv(la,ﬂ) (.’L‘).’I:a(l - m)ﬁ dz,
=0 0

in the L?(]0, 1],z dz)-norm. By Theorem 4.1, Ly g is a continuous (i.e.
bounded) operator from LP([0, 1], z® dz) into L7 ([0, 00), z* dz). Thus,

La,ﬁg = Zan(Q)La,Bpr(n,a’ﬂ):

n=0
where the convergence holds in the LP-norm. Now, consider the following
formula (see [4, 13.1(43), p. 191]):

o F(a+n+ 1) a+3,0
I s (PPN (1 - 2t),7) = F(a+ﬁ+n+1)ﬂ£ +6.0)(1 — 2g).

Lemma 3.1 (with parameters o + 3 and 0 instead of o and 83, respectively)
gives Horp(j2+0, ) = Va+ B+ 20 + 1 PY 0 (1 — 22)x(01)(2), so that

(1) HarplxouPLP0(1 = 26)) = (a+ f + 20+ 1) 7255
(since HZ, 5 =Id in L?). Thus,

I'la+n+1) o+
va+B+en+Iil(a+f+n+1)"
if 3 > 0. In the case 8 = 0, (10) and La,0g = Ha(xjo,119) give (11} as well.
In terms of the normalized polynomials pgf’ﬁ ), this means
e+ n+1)2(nh)/? ot
IMa+B8+n+1)12r(B+n+ 1)1/23” '

(11) Lap(P®(1—2t)) =277

Lasﬁp’slagﬁ) = 2-“}6

80 that

(] F(a+n+ 1)1/2(,”!)1/2 )
_ ~-A ath
sz,ﬁg - zaﬂ{g)2 P(O{ +ﬁ +n+ 1)1/21“(ﬁ+n -+ 1)1/2‘?77'

n=0

in the LP-norm and, by Theorem 5.1, almost everywhere. m
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