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Abstract. We show that the numerical index of a ¢p-, I3, or lee-sum of Banach spaces
is the infimum of the numerical indices of the summands. Moreover, we prove that the
spaces C(K, X) and Li(p, X} (K any compact Hausdorff space, u any positive measure)
have the same numerical index as the Banach space X. We also observe that these spaces
have the so-called Daugavet property whenever X has the Daugavet property.

1. Introduction. The numerical index of a Banach space is the greatest
constant of equivalence between the numerical radius and the usual norm
in the Banach algebra of all bounded linear operators on the space. Let us
recall the relevant definitions. Given a real or a complex Banach space X,
we write Bx for the closed unit ball and Sx for the unit sphere of X. The
dual space is denoted by X* and L(X) is the Banach algebra of all bounded
linear operators on X. The numerical range of such an operator T is the
subset V'(T') of the scalar field defined by

V(@) ={z*(Tz): z € Sx, =" € Sx., z*(z) = 1}.
The numerical radius of T is then given by
v(T) = sup{|A| : A e V(T)}.

It is clear that v is a seminorm on L(X), and v(T") < ||T|| for every T € L(X).
Very often, v i8 actually a norm and it is equivalent to the operator norm
||-|. Thus, it is natural to consider the so-called numerical indew of the space
X, namely the constant n(X) defined by

n(X) = inf{v(T): T € Sy}

Equivalently, n(X) is the greatest constant k > 0 such that k| 7| < v(T)
for every T € L(X). Note that 0 < n(X) < 1, and n(X) > 0 if and only if
v and || - || are equivalent norms on L(X).
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The concept of mumerical index was first suggested by G. Lumer in 1968.
At that time, it was known that a Hilbert space of dimension greater than
1 has numerical index 1/2 in the complex case, and 0 in the real case. Two
years later, J. Duncan, C. McGregor, J. Pryce, and A. White [9] proved that
L-spaces and M-spaces have numerical index 1. They also determined the
range of values of the numerical index. More precisely, for a real Banach
space X, n(X) can be any number in the interval {0, 1], while {n(X) :
X a complex Banach space} = [1/e,1]. The remarkable result that n(X)
> 1/e for every complex Banach space X goes back to H. Bohnenblust and
S. Karlin [4] (see also [10]). The disk algebra is another example of a Banach
space with numerical index 1 [6, Theorem 32.9]. Necessary conditions for a
real Banach space to have numerical index 1 were investigated in [15]. For
general information and background on numerical ranges we refer to the
beoks by F. Bonsall and J. Duncan [5, 6]. Further developments in the
Hilbert space case can be found in [11].

In this paper we compute the numerical index for some classes of Banach
spaces. First, we prove that the numerical index of a cg-, I1-, or loo-sum of
Banach spaces is the infimum of the numerical indices of the summands.
As an application of this result, we exhibit an example of a real Banach
space X such that the numerical radius is a norm on L(X) but it is not
equivalent to the usual operator norm, i.e. n{(X) == 0. We have not found
explicit examples of this kind in ¢the previous literature. Qur main results
deal with spaces of vector-valued functions, We prove that

(C(K, X)) = n(Li(p, X)) = n(X)

for every real or complex Banach space X, with no restrictions on the com-
pact Hausdorff space K or the positive measure u. We mention here some
results by A. Lima [14] showing that one cannot expect a general result on
the numerical index of injective or projective tensor products. The situa-
tion for spaces of the form L,(u, X) is much more complicated. Even the
computation of n(l,) for 1 < p < oo, p # 2, is an open problem.

The numerical radius is related to another quantitative characteristic of
an operator I, the Daugavet equation:

(DE) Td+T) =1+ |7

Quite a lot of attention has been paid to this equation, starting from the
result by 1. Daugavet [7] that it is satisfied by all compact operators on
C[0,1]. Actually, C[0,1] is the first example of a Banach space with the so-
called Daugavet property, an interesting property deeply studied in (12, 13].
Following [12], we say that a Banach space X has the Daugavet property
if (DE) holds for all rank-one operators I € L(X), and it then follows
that (DE) is actually satisfied by all weakly compact operators on X (12,
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Théoréme 4]. For further information on this subject we refer to [2, 12, 13,
19] and the references therein. As for the relation to the numerical radius,
it is easy to deduce from an old result by G. Lumer (see [16, Lemma 12] or
{5, Lemma 9.2]) that the equality v(T") = ||T|| is equivalent to the following
weak form of (DE):

(wDE) max{|[I[d +AT] : |A| = 1} = 1 + |-

Therefore, a Banach space X satisfies n{X) = 1 if and only if (wDE) holds
for every T' € L(X). With this relation in mind, one msy browse through
papers on the Daugavet property to find some relevant examples of Ba-
nach spaces with numerical index 1. For instance, it follows from results by
D. Werner [18] that all function algebras have numerical index 1.

We remark that the Daugavet property and having numerical index 1
are independent properties. Indeed, n{cg) = 1 although ¢ fails the Dau-
gavet property, while it will follow from the results of this paper that
n{C([0,1],12)) = n{l2) < 1 in spite of the fact that C([0,1],1») has the
Daungavet property [13]. Nevertheless, some ideas coming from papers on
the Daugavet property have been very helpful in our proofs, and conversely,
we managed to adapt one of our arguments to get a result on the Daugavet
property: it passes from X to C(X, X'} with no restriction on K.

This research was initiated while the second author visited Berlin in
April 1998. It is his pleasure to thank the Mathematisches Institut der
Freie Universitdt Berlin for support and especially Ehrhard Behrends and
Dirk Werner for hospitality and helpful discussions. Thanks are also due to
the referee for several useful suggestions. :

2. Numerical index of sums. Our first goal will be to show that
the numerical index of ¢g-, {1-, and [-sums can be computed in terms
of the summands in the expected way. Given an arbitrary family {X, :
A € A} of Banach spaces, we denote by {4 Xaley (resp. [Byeq Xals
[Pieca Xaliw) the co-sum (resp. Ij-sum, lo-sum) of the family. In case A
has just two elements, we use the simpler notation X G ¥ or X &, Y. For
countable sums of copies of a space X we write cp(X), I1(X) or I (X).

PROPOSITION 1. Let {X : A € A} be a family of Banach spaces. Then
(D Xileo) = n((@D Xiln) = n{[ Xili.) = inf n(X)).
AEA Aed AgA

Proof. Let Z denote either X $o Y or X @, Y for any Banach spaces
X and Y. We first check that n(Z) < n(X) by showing that n(Z) < v(S)
for any § € L(X) with ||§] = 1. For such an operator S, let T € L(Z) be
given by T'(z,y) = (Sz,0). Then ||T|| = 1 and since

n(Z) < v(T),
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for every ¢ > 0 we may find z = (z,y) € Sz and 2" = (z*,y*) € Sz» such
that

(1) z*(z) + " () = "I - lell + w7l - Dyl =1

ENG)

(we may assume that n(Z) > 0), implying that n(Z) - ¢ < v(S5), and
therefore n(Z) < v(S), because =*(z) = ||lz*|} - ||z by (1).
For fixed Ag € A one clearly has

[@ X)\]co == [ @ X)\]cu Eoo -XAoa
AEA A#EAo

n(Z) —e < |2*(T2)| = =" (Sz)| =

80

n{[ B Xnleo) < n(Xno)
Aed

and it follows that

([P Xila) < infn(X5).
AgA

The same argument works for I;- and lo.-sums.
The proof of the reverse inequalities will follow ideas from the proof of

[19, Theorem 1] by P. Wojtaszczyk. We first work with the cp- or the lao-SII].ZIL
If Z denotes any of these sums, an operator T' € L(Z) can be seen as a far.mly
(T\)rea where T\ € L(Z,X,) for every A, and ||| = sup, 17|, Given
£ > 0, we find Ag € A such that |Th]| > |7 — e, and. write X.= X B0 Y
where ¥ = [@),.5, Xaleo o0 ¥ = [@5, X,]i..- Since Bz is the convex
hull of SX,\O x Sy, we may find =g € leo and yo € Sy such that
T3, (0, )l > T} — e
Now fix «f € X3 with ||z3]] = z§(zo) = 1 and consider the operator
S € L(X,,) defined by
Sz = Ty, (z,x5(x)yo) (x € Xno)
We clearly have
181} = 180l = [Txq (0, wo) | > T &,
so we may find = € X, * € X3 such that
2|l = e*| =" (z) =1 and |z*(Sz)| = (X)) T — -
Now z = (z,z§{z)yo) € Sz, 2* = (z*,0) € Sz. satisfy z*(z) = 1 and
(2)  [2*(T'2)] = " (T (2. 25(z)w0))i = =™ (S2)] 2 n{XKo) I Tl — el-
It follows that
o(T) 2 infn(X)|T]

and so n(Z) = infy n(X)) as required.
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The proof for the Iy-sum is somehow the dual of the above argument.
If 7 = [@sca Xali, an operator T L(Z) may also be seen as a family
(Tx)aea where now Ty € L(X), Z) for all ), and again ||T|| = sup, [|T3]]-
Given e > 0, find A9 € A such that ||T}, | > [IT||~¢, and write Z = X, @, Y,
Ty, = (A, B) where A € L(X,,) and B € L(X5,,Y). Now we choose zg €
Sx,, such that

1500l = |l Azoll + || Bxol| > |T| - &,

find aq € SX}\O? y* € Sy« satisfying

|Azollap = Az and y*(Buo) = || Bzl
and define an operator § € L{X),) by

Sz = Az +y*(Bz)ag (z € X»,).
Then

1811 = [[Swoll = || Azo + [[Bzollag)| = |l Azol| + [|Bzo|| > |T|| — e,
s0 we may find z € X, z* € X3, such that

izl = llz*ll = 2*(®) =1 and |e*(8z)| = n(Xx,)IT] - .

For z = (z,0) € 8z and 2* = (¢*, 2*(a0)y*) € Sz« we clearly have 2*(7) = 1
and

(3) |2*(T2)| = |2" (Az)+a* (ao)y* (Bz)| = |&* (Sz)| = n(Xa,) [T —e].
The desired inequality n(Z) > inf n(X)) follows. m
REMARKS 2. (a) By the proof of Proposition 1, we also have
n{[D Xal,) < infn(X))
Acd A

for 1 < p < 0o and any family {X) : A € A} of Banach spaces. The exact
computation of the numerical index for /,-sums is an open problem. Even
the exact value of n(ly) for 1 < p < co, p # 2, seems to be unknown.

(b) In [3] the reader may find a result on l-sums which sounds like one
of the assertions in Proposition 1, but dealing with the so-called numerical
indez of a numerical range space (see also [3] for the definitions). We shall
not go into the details but simply mention that, for any Banach space X,
the pair (L(X)},1d) is the motivating example of a numerical range space,
whose numerical index is precisely n(X). By [3, Lemma 5.11], the suitably
defined loo-sum of a family of numerical range spaces has numerical index
(as a numerical range space) equal to the infimum of the numerical indices
of the summands. However, the space of operators on an lo-sum of Banach
spaces is much larger than the l,o-sum of the spaces of operators on the
summands, and therefore, the statement on l-sums in Proposition 1 is
independent of the result in [3].
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EXAMPLES 3. (a) For each t € [0,1] in the real case (resp. ¢ € [1/e, 1] in
the complex case) there is o Banach space X isomorphic to co with n{X)=t.
Indeed, by [9, Theorems 3.5, 3.6] there is a two-dimensional real (resp. com-
plex) space Y with n(¥) = ¢, and we just take X = co(Y). The same
argument works for 1 or I, in place of co.

(b) There emists a real Banach space X such that the numerical radius
is a norm on L(X) but not equivalent to the operator norm. Moreover, X
can be chosen to be isomorphic to ¢, by, or le. Clearly, by {9, Theorem 3.6]
we can find for every natural number 7, a two-dimensional real space Xn
with n{X,) = 1/n. If we consider X = [P, ey Xnle, {01 X = [Dpen Xnliz,
or X = [, cn Xnjt. )» then n(X) = 0 by Proposition 1. Nevertheless, since
n{Xy) > 0 for every n, inequality (2) (or (3) for the I; case) shows that
v(T) > 0 for every nonzero T' € L(X).

In his 1961 paper [1], Y. Abramovich asked if a space made by combining
L-spaces and M-spaces with [;- and [-sums has the property that equality
(wDE) of the Introduction holds for all bounded linear operators in the
space. As we already explained, this is equivalent to asking if such a space
has numerical index 1. The following obvious consequence of Proposition 1
includes an affirmative answer to Abramovich’s question.

COROLLARY 4. The class of Banach spaces with numerical index 1 5
stable under cg-, l1-, and l.o-sums.

The above corollary is somehow analogous to the result by P. Woj-
taszezyk [19, Theorem 1] that the Daugavet property is stable under cg-,
I1-, and I-sums. As we already mentioned, our proof of Proposition 1 bor-
rows some of his ideas.

3. Spaces of vector-valued functions. The fact that n(co(X)) =
n{X) will now be generalized to spaces of vector-valued continuous func-
tions. Given a compact Hausdorff space K and a Banach space X, we con-
sider the Banach space C{K, X)) of all continuous functions from K into X,
endowed with its natural supremum norm.

THEOREM 5. Let K be a compact Hausdorff space and X o Banach
space. Then
n(C{K, X)) = n(X).
Proof To show that n{C(K,X)) > n(X), we fix T ¢ L(C(K, X))
with ||T)] == 1 and prove that v(T) > n(X). Given £ > 0, we may find
fo € C(K,X) with || foll =1 and t; € K such that

(4) [T fol(tolll > 1 —e.
Define 3o = fo(to) and find a continuous function ¢ : K — [0, 1] such that
w(to) =1 and @(t) = 0 if | fo{t) — yo|| = &. Now write yo = Azy + (1 — Az
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with 0 < A <1, 1,23 € Sy, and consider the functions
fi=1-9)fotpz; € C(K,X) (1=1,2).
Then |l¢fo — ¢yoll < £ meaning that
[fo~(Mi+(1-Nf)l <e

and, using (4), we must have

(5) HTf(to)ll > 1—2e or [[[Tfa](te)ll > 1~ 2e.
By making the right, choice of 2y = 21 or zg = x5 we get 29 € Sx such that
(6) T = ©) fo + pzo)l(fo)|| > 1 — 2.

Next we fix z3 € Sx+ with z3(xo) = 1, put
P(z) = z5(@)(1 - p)fo+ oz € C(K, X) (z€X),
and consider the operator § € L{X} given by
S = [T(S(N](t) (z € X)
Since, by (6},
I8l = |Szoll > 1 - 2e,
we may find » € Sx, z* € §x+ such that
z*(z)=1 and |z*(Sz)| > n(X)[l - 2¢].
Now, define g € Sc(k,x) by g = $(z), for this z, and consider the furnctional
g* € Sc(x,x)+ given by
g'(h) = z"(h{to)) (R € O(K, X)).
Since g(ty) = =, we have ¢*(g) = 1 and
9" (T}l = ja" (Sz)| = n(X)[1 — 2],

Hence v(T) = n(X), as required.

For the reverse inequality, take an operator § € L{X) with ||S|| =1, and
define T € L(C(K, X)) by

[T(FI() =S(f(t) (teK, feCK X))
Then |T)| = 1, so »(T) > n(C(K, X)). By [5, Theorem 9.3] the numerical
radiug of T iz given by
o(T) = sup{|z* ([T FI()] : f € Scpe,x), t € K, a” € Sx», 2*(£(£)) = 1}

Therefore, given & > 0, we may find f € Sc(x,x), =" € Sx+, and t € K such
that z*(f(t)) =1 and

n(C(K, X)) — e < [z*([TF1(£))] = |=*(S(F ()i
It clearly follows that v(5) > n(C(K, X)), so n{X) > n(C(K,X)). =
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REMARK 6. The first part of the above proof can be easily adapted to
get a stability result for the Daugavet property, that is, C(X, X ) has this
property whenever X does. Just assume that T’ € L(C(K, X)) with | T'|| = 1
is a rank-one operator, build S € L{X) exactly as in the above proof, and
note that § is a rank-one operator as well. The Daugavet property of X
gives an ¢ € Sx which satisfies

iz + Sz|| > 1+ S| —e> 2 -3¢

Now define again the function g € Sg(x, x) 2s in the above proof, and note
that
[T+ 2 l[(1d +T) (g)](fo)il = llz + Szf| > 2 - 3e.

Recall that C(K) has the Daugavet property if and only if K is perfect,
and, in such a case, C(K, X) has the Daugavet property for any Banach
space X (see [13]). Conversely, if C(K, X) has the Daugavet property and
K has an isolated point, then we can write C(K, X} = X @ Z for some
Banach space Z, and it clearly follows that X has the Daugavet property
(see [19]). Therefore, we may summarize the situation as follows: C(K, X)
has the Daugavet property if and only if K is perfect or X has the Daugavet
property.

REMARK 7. Very often, when working with the numerical index of a Ba-
nach space, we are only able to use operators of a simple kind, say finite-rank
or compact operators. So one may wonder if the numerical index can be com-
puted by using only this kind of operators. For instance, it was observed in
[15] that an Asplund space X satisfies n(X) = 1 as soon as v(T) = ||T'|| for
every rank-one operator on X, and the same is true if X has the Radon-
Nikodym property. Nevertheless, the above thecrem shows that, in general,
one cannot estimate the numerical index by using only weakly compact
operators. Just take X = C([0,1], H) where H is a Hilbert space with di-
mension greater than one. Then X has the Daugavet property (see [13]),
so v(T") = ||T'|| for every weakly compact operator T' on X, but the above
theorem tells us that n(X) =n(H) < 1.

Given a measure space (12, X u) we now consider the Banach space
Ly(u, X) of Bochner-integrable functions f from 2 into a Banach space
X with its natural norm

£ = § 7)1 dus®)-
2
We generalize the fact that n(l1(X)) = n{X) as follows.

THEOREM 8. Let (2, X, 1) be a measure space. Then, for every Banach
space X,

n(L1(p, X)) = n(X).
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Proof Let us first note that it is enough to deal with finite measures,
since Ly (p, X) is isometrically isomorphic to an I;-sum of spaces Ly (ui, X)
for suitable finite measures y;, and Proposition 1 applies. So, we assume
p(£2) < o0, and fix T € L(L1(p, X)) with ||T|| = 1 to prove that (T) >
n{X), which will give us the inequality n(Li{u, X)) > n(X). Given g > 0
we find f € Sg, ¢, x) such that | Tf]| > 1 — ¢ and use [8, Lemma II1.2.1] to
get a partition 7 of 2 into a finite family of disjoint measurable sets with
positive measure satisfying

If—E:fll<e and |Tf-E.Tf||l<e,
where E, is the contractive projection given by

1
AEDY (m;‘gdu)m (g € La(p, X))

Aew
We clearly have
|EwTE | 2 |BT7| - | BT — BaTEw fli > |ETFN |  Erf]
2T =T = ExTf| - |f = Exfl| > 1 - 3e.

Now, let ¥ be the range of E, and let § € L(Y) be the restriction to
Y of the operator E,T. The above inequality shows that ||S]| > 1 — 3e.
Moreover, Y is isometric to a finite {-sum of copies of X, so n(Y") = n(X)
by Proposition 1. It follows that v(S) > n(X)[1 — 3¢] (1f n{X) = 0 the
required inequality holds trivially), so we may find & € Sy, h* € Sy« such
that

h*(h) =1 and |h"(Sh)| > n(X)[1 - 3=].
By taking g* = E}(h*) € Br,(u,x)- we immediately have
g (h)=1 and |g"(Th)| = |h*(Sh} > n(X)[1 - 3¢],
which shows that »(T) > n(X)[1 — 3¢], and the required inequality follows.

To prove the reverse inequality, take an operator § € L(X) with {|S|| = 1,
and define T € L(Ly(u, X)) by

IO =T(F(t) (e, felipX)),
which clearly satisfies ||T|| = 1. So, given £ > 0 we may find f € Si,(u,x)
and f* € 8, u,x)« such that

=1 aad [f(TH 2 n{Lo(p, X)L —e].
‘We may arrange that f has the form

f= Z At xfh 3

'r""l )
. * n
where %1,. .., %, are nonzerc vectors in X with >, l|mi| = 1, and Ay, ...
., A, are disjoint subsets of {2 with positive measure. Moreover, f* can
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be taken of the form

frwy=3 af {hdu  (heLi(n X)),
i=1 A
where 77 € Sx- and z}(z;) = jjz:|| for i = 1,...,n, All this follows from [5,
Theorem 9.3] and the denseness of simple functions in Ly (u, X'). We clearly

have
n

> el

i=1

= |fH(TF)| 2 n{La(p, X)L -],

* T - *
L; (Sm)‘ > ’ ;ﬂé (S.’Bi)

and since Y I, ||=i|| = 1, we must have

si(sp2r )| 2 nlato 01 =
for some k € {1,...,n}. It follows that n(X) > n(L1(u, X)). =

REMARK 9. One can discuss the Daugavet property in spaces Ly {u, X)
in the same way as we did for spaces C'(K, X) in Remark 6, but this time
the similar result follows easily from [13] and {19]. If X has the Daugavet
property and g is a positive measure we may write L3 (i, X) in the form
Li(v, X) &1 [@;e; X, for a suitable set I and an atomless measure .
Then L;(v, X) has the Daugavet property by [13], and the /;-sum of spaces
with the Daugavet property has it by [19]. Conversely, if L;(u, X) has the
Daugavet property and p has an atom, then Ly(u, X) can be written as
X ©.1 Z for a convenient space Z, and it clearly follows that X has the
Daugavet property [19]. Therefore, Ly (u, X) has the Daugavet property if
and only if 1 18 atomless or X has the Daugavet property.

Since C(K,X) = C(K) ®. X and Ly(p, X) = L1(p) @z X where ®,
and ®, dencte, respectively, the injective and projective tensor products,
one may wonder if Theorems 5 and 8 might be special cases of a general
result giving n(X ®, Y) and n{X @, X) as a function of n(X) and n(Y").
To conclude this paper, we use an example due to A. Lima [14] to show that
such a general result cannot be expected, even in the finite-dimensional case.

EXAMPLE 10. There exist Banach spaces X and Y with n(X) = n(Y)
=1 and such that n(X @ X) < 1, n(Y @, Y) < 1, and n(X ®, X) =
n(Y ® Y) = 1. Indeed, let X =if and ¥ = X* = I%, that is, the real
four-dimensional I; and l,, spaces respectively. It is clear that

(X @ X)=n(Y @ Y) =n(X)=n(Y) = L.

To see that n(X ®. X) < 1 and n(Y ®, Y) < 1, let us first recall the
result by C. McGregor [17, Theorem 3.1} that a finite-dimensional space Z
satisfies n(Z) = 1 if and only if |2*{z)| = 1 for all extreme points z € Byz
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and z* € Bgz«. Now, take 2 =Y ®, Y and note that
"=X® X=LY X).

It follows from results by A. Lima [14, Lemma 3.2, Proposition 2.4, and
Theorem 2.3] that Z (hence also Z*) does not satisfy McGregor’s condition
on the extreme points, so n(Z) < 1 and n(Z*) < 1, as claimed.
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Polydisc slicing in C*
by -

KRZYSZTOF OLESZKIEWICZ and
ALEKSANDER PEERCZYNSKI (Warszawa)

Abstract. Let D be the unit disc in the complex plane C. Then for every complex
linear subspace H in C™ of codimension 1,
volan o (Dndl) < volap_o(H ﬁDn) < 2volen.-2 (Dn_l).

The lower bound is attained if and only if H is orthogonal to the versor e; of the jth
coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is
orthogonal to a vector e; + oey, for some 1 < j < k € n and some o € C with |o| = L.

We identify C™ with R*"; by vol;, (-) we denote the usual k-dimensional volume in R*",
The result is a complex counterpart of Ball's [B1] result for cube slicing.

1. Introduction. In 1986 Ball [B1] discovered

THEOREM Bp. Let I = [-1,1]. Let H be a linear subspace of R™
(n=2,3,...) of codimension 1. Then

vol,—1 (™YY < vol,— 1 (H N I™) < V2vol, 1 (I™71).
The lower bound is attained if and only if H is orthogonal to the versor
e = (5§,)3‘,= of the jth coordinate azis for some j = 1,...,n; the upper
bound is attained if and only if H is orthogonal to a vector e; ey, for some
1<j<k<n.

The lower estimate goes back to Hensley [H] who also used a “proba-
bilistic approach” to establish some upper bound. Following closely Ball's
approach we establish the complex counterpart of Theorem Bg; we prove

THEOREM Bg. Let D = {z € C: {z| £ 1}, Let H be a complex linear
subspace in C* (n =2,3,...) of codimension 1. Then

volon—2(D™ 1) < volgn_o{H 1 D™) < 2volgn-g(D™ ).
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