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On isomorphisms of standard operator algebras
by

LAJOS MOLNAR (Debrecen)

Abstract. We show that between standard operator algebras every bijective map with
a certain muitiplicativity property related to Jordan triple isomorphisms of associative
rings is automatically additive,

1. Introduction. It is a surprising result of Martindale [7, Corollary]
that every multiplicative bijective map from a prime ring containing a non-
trivial idempotent onto an arbitrary ring is necessarily additive. Therefore,
one can say that the multiplicative structure of rings of that kind completely
determines their ring structure. This result has been utilized by Sernrl in [11]
to describe the form of the semigroup isomorphisms of standard operator
algebras on Banach spaces. The aim of this paper is to generalize this result
quite significantly. Other results on the additivity of multiplicative maps (in
fact, *-semigroup homomorphisms) between operator algebras can be found
in [3, 8].

Besides additive and multiplicative maps (that is, ring homomorphisms)
between rings, sometimes one has to consider Jordan homomorphisms. The
Jordan structure of associative rings has been studied by many people in
ring theory. Moreover, Jordan operator algebras have serious applications in
the mathematical foundations of quantum mechanics. If R, R are rings and
¢:R — R is a transformation, then it is called a Jordan homomorphism if

$(A+ B) = ¢(A}+ ¢(B)
and
$(AB + BA) = ¢(A)9(B) + ¢(B)d(4)

for every A, B € R. Clearly, every ring homomorphism is a Jordan homo-
morphism and the same is true for ring antihomomorphisms (a transforma-
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tion ¢ : R — R'is called a ring antihomomorphism if ¢ is additive and
#(AB) = ¢(B)$(A) for all A, B € R). One can go a little further by weak-
ening the multiplicativity property as follows. It is easy to see that if the
ring R’ is 2-torsion free (which means that 24 = 0 implies A = 0), then
every Jordan homomorphism ¢ : R — R’ is a Jordan triple homomorphism,
that is, ¢ is an additive function satisfying

1 $(ABA) = ¢(A)$(B)$(A) (4, BER)

(see the Introduction in [1]). The aim of this paper is to show that in the
same situation as in [11], that is, in the case of standard operator algebras
acting on infinite-dimensional Banach spaces, every bijective map satisfying
(1) is automatically linear or conjugate-linear and continuous.

2. The result. We begin with the notation and definitions that we shall
use throughout.

All linear spaces are considered over the complex field. Let X be a Banach
space. Denote by B(X) and F(X) the algebra of all bounded linear oper-
ators on X and the ideal of all finite rank operators in B{X), respectively.
A subalgebra of B{X) which contains F'(X) is called a standard operator
algebra on X . For any n € N, we denote by M, (C) the algebra of all n x n
complex matrices and ? stands for the transpose.

The dual space of X is denoted by X* and A* stands for the Banach
space adjoint of the bounded linear operator Aon X. If z € X and f € X*,
then z ® f denotes the operator defined by

(@ )(z) = f(2)z  (z€X)

Similarly, if H is a Hilbert space and %,y € H, then £ ® y denotes the
operator defined by

(z®y)(z) =(zy)z (z€H).

Two idempotents P, € B(X) are said to be mutually orthogonal (in
the algebraic sense) if PQ = QP = 0. One can introduce a partial ordering
on the set of all idempotents in B(X) by defining P < @ if and only if
PQ = QP = P. An element R of B(X) is called a tripotent if R® = R.

Now, the result of the paper reads as follows.

THEOREM. Let XY be complez Banach spaces, dimX > 3, and let
A ¢ B(X) eand B C B(Y) be standard operator algebras. Suppose thai
¢ A — B is a bijective transformation satisfying

(2) $(ABA) = $(A)$(B)¢(A) (A B € A).

If X is infinite-dimensional, then we have the following possibilities:
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(i) there exists an invertible bounded linear operator T : X — Y and
¢ € {—1,1} such that

$(A) = cTAT™' (Ac A)

(ii) there ezists an invertible bounded conjugate-linear operator T : X —
Y and c € {~1,1} such that

#(A) = cTAT™ (A € A);

(ili) there emists an invertible bounded lineor operator T : X* — Y and
c € {—1,1} such that

$(A) = cTA'T™' (A e A);

(iv) there exists an invertible bounded conjugate-linear operator T : X* —
Y and c € {—1,1} such that

¢(A) = cTA*T™  (Ae A).

If X is finite-dimensional, then dim X = dimY . So, ¢ can be supposed
to act on o matriz algebra M, (C). In this case we have the following possi-
bilities:

(v) there exists a ring automorphism h of C, an invertible matriz T €
M, (C) and ¢ € {-1,1} such that

¢(A) = cTh{AYT™ (A € My(C));

(vi) there exists a ring automorphism h of C, an invertible mairiz T' €
M. {C) and ¢ € {—1,1} such that

$(A) = cTh{AYT™! (A e My(T)).
Here, h{A) denotes the matric obtained from A by applying h to every entry.

REMARK. According to the referee’s wish we point out that there are
a lot of discontinuous ring automorphisms of the complex feld. See, for
example, [6].

Proof of the Theorem. First note that ¢ preserves tripotents in .4 and B
in both directions, that is, P € A is a tripotent if and only if so is ¢(P).

‘We show that for every n = 0,1,... and tripotent P € A we have
rank P = n if and only if rank ¢(P) = n. First observe that ¢(0) = 0.
Indeed, since i¢(0) € B, there exists an A € A such that i¢(0) = $(A4). It
follows that —¢(0) = (i¢(0))¢(0)(i4(0)) = #(A0A) = ¢(0) and this implies
that ¢(0) = 0. So, we have the rank preserving property of ¢ for n = 0. It
follows from the first part of the proof of [9, Theorem 4] that every tripotent
on a Banach space is the difference of two mutually orthogonal idempotents
(to be honest, the cited theorem is about Hilbert spaces, but the part of the
proof that we need here also applies to Banach spaces). Suppose now that
the equivalence “¢{P) € B is a rank-k tripotent if and only if P € A is a
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rank-k tripotent” holds true for k = 0,...,n. Let P € A be arank-(n + 1)
tripotent. Then the rank of ¢(P) is at least n+1. Let Q € B be a rank-(n+1)
tripotent such that ¢(P)Q¢(P) = Q and Q¢(P)Q = Q. The existence of
Q follows from the representation of tripotents as differences of mutually
orthogonal idempotents mentioned above. Let @' = ¢~(Q). We have

(3) PQP=Q and QPQ=0Q.

Clearly, the rank of @’ is at least n+ 1. On the other hand, the first equality
in (3) shows that the range of Q' is included in the range of P, so the rank
of Q' is exactly n -+ 1. The tripotent P is the difference of two mutually
orthogonal idempotents. These idempotents induce a splitting of X into the
direct sum of three closed subspaces. With respect to this splitting every
operator has a matrix representation. In particular, we can write

I o o0
P=|(0 ~I 0].
0 0 0

Cu Q2 Qi3
Q' =|Qn Qa2 Qxn
Qa1 Qa2 Qss

be the representation of @'. It follows from the first equality in (3) that
the only possibly nonzero entries in the matrix of Q' are Q11 and Q22. The
second equality in (3) now implies that @11 and —Q22 are idempotents. By
the equality of the ranks of P and Q' we conclude that P = ¢)'. Therefore,
&(P) = Q and so rank ¢(P) = n+ 1. By symmetry, we find that if ¢(P) has
rank 7 + 1, then the same must be true for P.

The key step of the proof now follows. We prove that if P/, P € A are
mutually orthogonal rank-1 idempotents, then ¢(P’ + P} = ¢{P")+ ¢(P").
In order to verify this, let P € A be a rank-3 idempotent. Then Q = ¢{P) is
a rank-3 tripotent. Let @ = Ry — Ry, where Ry, Ry € B(Y') are idempotents
with B Re = RpRy = 0. If A € A is any operator satisfying PAP = A, then
. RQe(A)Q = p(A). We compute

R1¢(A)Ry = R1(Q¢(A)Q) Rz = —R1¢(4) Rg,

which implies that Ry¢(A)Rp = 0. Similarly, Ra¢(A)R; = 0. Tt follows
that ¢(A) = Ri¢(A)R; + Ra¢p(A)R2. Conversely, if ¢(A) = Ri¢(A)R; +
Ry${A)R;, then
Qb(A)Q = Q(R1¢(A) Ry + Rag(A)R2)Q
= Rug(A)Ry + Rap(A)Ry = $(4).

Let
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The algebra of all operators A € 4 for which PAP = A is isomorphic
to M3(C). Let r; be the rank of R; and let ry be the rank of Ry. Clearly,
ri+r2 = 3. The algebra of all operators B € B for which B = R BR; +
RyBR, is isomorphic to M, (C) @ M,,(C). Therefore, ¢ induces a bijective
transformation

¥ Ms(C) — M, (C) @ M,,(C)

which satisfies (2). We assert that either 7, = 3 or r5 = 3. Suppose on the
contrary that, for example, ) = 2 and r3 = 1. One can see that there are five
rank-1 tripotents Py, ..., P; on the Hilbert space C° such that P, P; = 0
(i # 7). Indeed, choose an orthonormal basis z,y, # in C* and consider the
operators

(z+y)®@z, y®(z+y), 3@E-ve@-y), 28(@+z), (z-20z2

They fulfil the requirements. It follows that there are five rank-1 tripotents
in M5 (C)& My (C) with similar properties. This readily implies that there are
four rank-1 tripotents Q1,...,Q4 in M3(C) for which Q;Q;Q; = 0 (¢ # 7).
But this cannot happen. In fact, applying a similarity transformation or the
negative of a similarity transformation we can suppose that ¢J1 = a @ a for
some unit vector a in 2. Choose a unit vector b € C2? which is orthogonal
to a. Since hQ;Q1 = 0 {j = 2,3,4), it follows that in the “vector-tensor-
vector” representation of any of Qs, @3, Q4 either the first or the second
component is a scalar multiple of b. Clearly, at least in two of (2, @3,
(4, the vector b appears in the same component. For example, suppose that
Q9 = c®b and Q3 = d®b. Since 2QaQs = 0, we see that either (¢, b) = 0 or
(d,b) = 0. But this implies that either Q% = 0 or Q3 =0, which contradicts
the fact that @2, (J5 are nonzero tripotents.

We have proved that the induced transformation + is a bijection from
M;(C) onto itself which satisfies (2). Moreover, observe that we have also
shown that either (I) = I (this is the case if r; = 3} or ¢(I) = —T (if
rq = 3). Without loss of generality we can suppose that 9(I) = I. It follows
from (2) that

$(A®) = Y{ATA) = Y(A)TY(4) = $(A)?,
which shows that ¢ preserves idempotents in both directions. If P, Q are
idempotents in M3(C) such that PQ = QP = P (that is, if P < Q), then
(4) P(PYp(Q)(P) = ¢(P) and P(Q)HAPIW(Q) = %(P).

Since ¥(P),1:(Q) are idempotents, multiplying the second equality in (4) by
1(Q) from the left and from the right, we find that %(Q)¥(P) = (P)y(Q)
= (P). So, 9 preserves the partial ordering < between the idempotents in
M;3(C) in both directions. We now apply a nice result of Ovchinnikov [10]
describing the automorphisms of the poset of all idempotents on a Hilbert
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space of dimension at least 3. Tt trivially implies that v is orthoadditive on
the set of all idemnpotents in M3(C), that is, if P, @ are mutually orthogonal
idempotents in M3(C), then (P + @) = ¥(P) + {(Q). Returning to our
original transformation ¢ we see that if P,@ € A are mutually orthogenal
rank-1 idempotents, then ¢(P + Q) = ¢(P) + ¢{(Q}.
If Pis arank-1 tripotent and X € C is a scalar, then
¢(AP) = ¢(P(AP)P) = ¢(P)(AP)(P) = hp(A)¢(P)
for some scalar hp(A) € C. This follows from the fact that ¢(P) has rank 1.
‘We have
hp(X2)8(P) = $(N2uP) = $(AP)(P)(AP))
= ¢(AP)(uP}$(AP) = hp(A)*hp (1)$(P),

which gives
(5) hp (M) = hp(X)*hp (1)
for every \, u € €. Choosing u = 1, we see that hp(A2) = hp(X)?. From (5)
we see that hp is a multiplicative function.

We next assert that hp does not depend on P. Let @ € A be a rank-1
tripotent with PQP # 0. We compute

$((AP)(L2Q)(AP)) = $(AP)P(u*Q)H(AP)
= hp(A)*hq (u”)$(P)P(Q)$(P)-
Orn the other hand, we also have
(AP (P Q)(AP)) = ¢((uP)(WQ)(uP)) = hp(1)*hq(A*)d(P)$(Q)&(P).
This yields
hp(N)?hq (%) = he(u)?hg (W)

and so hp = hg. If PQP = 0, then we can choose a rank-1 tripotent R € A
such that PRP # 0 and RQR # 0. Hence, we can infer that hp = hp = hq.
This means that hp really does not depend on P. In what follows A : C — C

denotes this cornmon scalar function.
Let A € A. Then

(P)H(A2A)p(P) = $(P(\2A)P) = ((AP)A(\P))
= ¢(AP)@(A)$(AP) = h(A)*(P)e(4)p(P).
Since this holds for every rank-1 tripotent P on X and ¢(P) runs through
the whole set of rank-1 tripotents on ¥, we obtain ¢(A2A) = h(\)%¢(A4) for
every A € €, which yields
P(AA) = h(N)¢(4) (AeC).

‘We prove that A is additive. Let 2,y € X be linearly independent vectors,

and choose linear functionals f,g € X* such that f{z) =1, f(y}) = 0 and
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g(e)==0,g(y) =1 Let A, u € Candlet A= Az +u)®(f+9g), P=2z&f,
@ =y ® g. By the orthoadditivity property of ¢ we can compute

h(A + p)d(A) = ¢((A+ p)d) = ¢(A(P + Q) 4)
= ¢(A)P(P + Q)p(A) = ¢(A)H(P)(A) + {A)$(Q)(4)
= $(APA) + $(AQA) = (A} + ¢(uA) |
= (A(A) + A{u)o(4)
and this proves that h is additive.

We now verify that ¢ is additive. Let A, B £ A and pick any rank-1
tripotent P on X. There are z € X and f € X* such that P =z ® f. We
compute

(6)  $(P)o(A+ B)p(P) = d(P(A + B)P) = ¢(f((A + B)z}P)
= h{f((A+ B)z))¢(P) = h(f(Az))(P) + h(f(Bz))¢(P)
= ¢(f(A2)P) + ¢(f(Bz)P) = $(PAP) + $(PBP)

= ¢(P)d(A)¢(P) + p(P)p(B)¢(P) = ¢(P)(¢(A4) + ¢(B)}d(P).
Since this holds true for every rank-1 tripotent P on X, we deduce that
#(A + B) = ¢(A) + ¢(B). Consequently, ¢ : A — B is an additive bijection
satisfying (2).

Since every standard operator algebra R on a Banach space is prime
(this means that for every A, B € R, the equality ARB = {0} implies
A= 0or B =0), we can apply a result of Bredar {1, Theorem 3.3} (also
see [4]) to conclude that ¢ is necessarily a homomorphism, or an antiho-
momorphism, or the negative of a homomorphism, or the negative of an
antihomomorphism. In the homomorphic cases the satement follows from
[11], while in the antihomomorphic cases one can apply analogous ideas (cf.
(2, Proposition 3.1]). m

REMARK. We should explain why we have supposed in our theorem that
dim X > 3. First, it is easy to see that the conclusion does not hold true if
dim X = 1. Indced, the function z — z|z| is a multiplicative bijection of C
which is not additive. The place in the proof where we used the assumption
that dim X > 3 is where we applied Ovchinnikov’s result. If we knew that
every bijective function ¢ : Ma(C) — M2(C) satisfying (2) preserves the
mutual orthogonality between rank-1 idempotents (that is, #(P)¢(Q) =
#(@)p(P) = 0 whenever P,Q € My(C) are rank-1 idempotents with PQ =
QP = 0), then the use of this deep result could be avoided. Unfortunately,
we do not know whether ¢ has this preservation property. However, if we
suppose that ¢ satisfies the stronger equality

(7) $({ABC}) = {¢(A)¢(B)¢(C)}
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where { ABC} denotes the so-called Jordan triple product 1(ABC +CBA),
then one can check that ¢ preserves the mutual orthogonality between rank-
1 idempotents and hence we get the conclusion in the Theorem also in the
case dim X = 2. Observe that if ¢ is additive, then (7) is equivalent to (2).

To conclude, we note that our approach was mainly functional-analytic.
In our opinion, it is a challenging question how one can generalize the “ad-
ditive part” of our result to general rings to obtain results similar to Mar-
tindale’s theorem.
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