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Universal divisors in Hardy spaces
by

E. AMAR and C. MENINI (Talence)

Abstract. We study a division problem in the Hardy classes HP{B) of the unit
ball B of C* which generalizes the HP corona problem, the generators being allowed to
have common zeros. Precisely, if S is a subset of B, we study conditions on a C*-valued
bounded holomorphic function B, with Bjg = 0, in order that for 1 < p < co and any

function f € HP(B) with fig = 0 there is a C*.yalued HF(B) holomorphic function F
with f = B F, i.e. the module generated by the components of B in the Hardy class
HP(B) is the entire module Mg := {f € H?(B) : fig = 0}. As a special case, for § = 0,
we get the H* corona theorem.

1. Introduction. Let B be the unit ball of C*, H?(B), 1 < p < oo, the
Hardy classes of B and S C B a subset of B.

DEFINITION 1.1, Let B = (By,...,Bx) € (H>(B))". We shall say that
B is a universal divisor (of dimension N) for § if Bjg = 0 and for any
1 € p < oo and any function f € HP(B) with fjg = 0, there is a TN -valued
HP(B) function F with f = B-F := Yiv ; B:F}.

We shall say that S is the support of B.

EXAMPLES. e nn = 1, § = {o; € D : i € N} a Blaschke sequence. Then
the associated Blaschke product is a universal divisor and there is no other

nonempty set S which can be the support of a universal divisor.
on =2, B = (By,Bs) € H*(B)? with |B|?(z) = |B1(2)|* + |Ba(2)|* =

62 > 0 for all z € B, and S = (). Then B is a universal divisor for § (the

HP(B) corona theorem [2]), i.
Yp e [l,00f, Vf € HP(IB), JF € HP(B)?, f=B-F.
The aim of this paper is to generalize these examples. Let us give another
definition, with &, an automorphism of B interchanging a and 0.
DEFINITION 1.2. Let S be a sequence of points in B ¢ C". We shall
say that a CV-valued bounded holomorphic function B = (By,..., By} is
N-strongly defining for S if Bjg = 0 and:
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2 E. Amar and C. Menini

(1) there are n functions among the B;, B = (Bi,...,Byn) say, such
that for all @ € 8, B = M, - &, with an n x n matrix M, in H*(B) and
satisfying:

IMalop <6 *onB and |[M, e <67 on {8 < 6}

(2)Ve> 0, 3In >0, (2 € Noesl|®al =&} = |B(2)| = n).
In that case we shall say that S is N-strongly defined.

REMARK 1.3. The conditions in this definition imply that
S=B7'0) and 3n>0, |B*|>naec ondB

Indeed, the condition {1) implies that the sets {|$,| < §}, a € S, are disjoint
([3], Proposition 3.1); because B is in H>*(B)", it has radial boundary
values B* a.e. on JBB, hence if { € OB is a point where B(r{) admits a
limit B*({) as r — 1, choose points z, on the ray {r{ : r € [0,1[} and in
naes{|¢a| = 6} to get |B*(C)‘ = limy o0 iB(zn)l =7

Recall that a sequence § = {a; : 1 € N} C B is interpolating for H>°(B)
(respectively for (,c., H?(B)) if for any A = {A; : i € N} in {°°(N) there
exists f in H°(B) (respectively in .., H?(B)) such that f(a;) = X; for
all 4.

In [3] it is proved that S interpolating for H°°(B) implies that there are
n bounded holomorphic functions B; with the property (1) but we shall
also need the other property and to get it the number of the B;'s has to be
increased. .

In the same paper [3] it was proved that if there is a B with the prop-
erty {1), then S is an interpolating sequence for Np<oo HF (B)-

The very first example is the automorphism &, itself and, in Section 2,
we get

THEOREM 1.4. Let [ € HP(B) be such that f(a) = 0. Then there is
a vector-valued function F in HP(B)* such that f = &, - F with ||F||, <
Coll flips the constant C, being independent of a € B.

The main result of Section 2 is

THEOREM 1.5. If S is an H*°(B) interpolating sequence, then there is
an (n + 2)-strongly defining function B for S.

‘We do not know, for S an interpolating sequence in B < C", if there is an
n~strongly defining function, but in order to get the fact that an interpolating

sequence is the support of a universal divisor this is not necessary because
we have
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THEOREM 1.6. If B is an N-strongly defining function for S in the unit
ball of C2, then B is o universal divisor for § in H?(B).

This is the main result of Section 3. We state and prove this theorem
in C2. Using the recent solution of the 8-equation by Andersson and Carls-
son [5], our theorem may generalize to the unit ball of C.

COROLLARY 1.7. Let B = (By,...,By) € H¥(B)* be such that

k
S IBi*> 48>0 inB.
im=1
Then for any function f € HP(B) there is a vector-valued function F €
HP(B)* such that f =B F.

In order to prove this take S = ) and the hypothesis is just what is
needed to know that B is k-strongly defining for S. Then we get the H?
corona theorem for any number of generators in the unit ball of C2.

At this point it is worthwhile to mention the well known results of
G. Henkin 6] and N. Varopoulos [11] about the corona problem in the ball
B of C”.

THEOREM 1.8 (Henkin, Varopoulos). Let g1,...,g8 € H®(B) be such
that k
Mgl 28>0 inB.
i=1
Then there exist fi,...,fx € \,»1 H?(B) solving

fim+.. .+ fvgn =1

This theorem can be deduced from Corollary 1.7 because 1 €[5, HP (B)
and our solutions f1,..., fw depend only on the data f and on g1,...,9n
but not on p. But this theorem does not imply the corollary.

As another corollary we get a result of C. Horowitz [8]:

CoOROLLARY 1.9 (C. Horowitz). Lei & be an interpolating Blaschke prod-
uct in the unit disc D in C. Then & is a universal divisor for o = $7(0)
and for the Bergman classes BF(D), for any p € [1, col.

This work started when the first author was visiting the Catalan Institute
of Mathematics under the European Program Picasso.

He benefited from many discussions with P. Ahern (who also gave a proof
of Theorem 2.1), J. Bruna and E. Doubtsov on these topics. In particular
E. Doubtsov proved the existence of an inner function ¢ in B such that
if f € HP(B) and f = pg with g holomorphic in B, then g € H?(B) (a
“good” inner function in Rudin’s sense); and P. Ahern, refining this result,
proved that there are good inner functions ¢ such that if S := ~1(0) and
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f € H?(B) with fig = 0 then there is a g € HP(B) with f = g, proving
that there are supports of universal divisors of codimension one.

2. Existence of strongly defining functions

THEOREM 2.1. Let f € HP(B) be such that f(a) = 0. Then there is
a vector-valued function F in HP(B)" such that f = &, - F with ||F||, <
Cliflip, the constant C, being independent of a € B.

Proof. Let Z = &,(2) be a change of variables. Then the jacobian for
the Lebesgue measure on dB is
(1= Ja5)"
|1 —@z|2

this jacobian can be written as

Jo(z) = = P(a,z) (i.e. the Poisson kernel);

— [ag]2)n/
Ja(z) = |ka(2)|P with k,(2) == —(é__—gm)w%/—:,

the function k, being holomorphic in B.
Now g(z) := f o $,(z)} is such that
9(0)=0 and | |g]PJa(z)du(z) = | |,
am
hence if we put h(z) := g(2)ka(2), we get h(0) = 0 and ||hl|, = il
We are now in a position to apply the theorem of Ahern and Schueider

(9, p- 115]: there is a constant ¢ > 0 and a vector-valued function H such
that

h(z)=2-H(z) and IH]l> < CllA|l,-
Let G(z) = ko(z) " H(2). Then
| G dv = | H| < C7lAllg = 07 £z
R
Finally let F(z) := G o $,(2). We get
IFIF = § IFPav = | |GodufPdv = | |GI7Jadv < 7| £,
ol o 9B
and :
f2)=goda(z) =hod,(2)k; o Pa(2) =Py Hodk' o B,(2)
=Da(z) - GoBa(z) = B,(2) - F(2).0
Now we prove the main result of this section:

THEOREM 2.2. If § is an H™(B) interpolating sequence, then there is
an (n 4 2)-strongly defining function B for §.

icm
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Proof. First, recall that there is a sequence (3;);eny C H™ (B) such that
Bi{a;) = &;; for each a; € §, and Yoio1 18i(2)| < C for all z € B, where the
constant C' only depends on the sequence § [3, Section 2],

For every integer k, let

Hy =B [[(1-8).
ik
Note that Hy € H*(B), Hi(a;) = &5 and 5o, |Hi(2)| < Ce® for all
ze B
The (n + 2)-strongly defining function B will be

Bii=> H}, 1<i<n,
k
Bry = H(l - Bs),
k

Bn—|—2 = H(l - Hk)a
k

where ®% is the ith component of &,, . One can verify that B € (H (B))"+2,
B|s = 0 and because the sequence (Hy), has the same properties as the

sequence (5y)x, the proof of [3, Section 2] shows that B = (By,...,B,)
satisfies condition (1).

Let z € [ e5{|®Pal >0} and assume that | Bn11(2)| <7 and |Bn.2(2)| <7

Since 3, |Be(2)| < C, the set I of indices such that |3;(z)| > 1/2 for all
i € I is finite; one can remark that |I| < 2C for all z € B.

Since 1 — x > ¢~ 2® for all z € [0,1/2], we have

e 2 2nar BN TT 11— Bi(2)| < 1Buga (@)l <, [ 11~ Bul2)] < e,
i€l i€l
Thus there exists ¢ € I such that [1 — 8;(z)| < (7e*€)Y/IIl and because
|Hi(2)| < |1 — Bi(2)| - |Bx(2)|€€ for &k # i, we have
S B (2)] < CeCne?O) VI < G0 < 172
Feght
for » small enough. Therefore
™2 T 1B — Hi(2)] € |Basa(2) <,
To conclude one can see that
B(2)] 2 |Hi(2)| - [8:(2)] = Y 1Hi(2)] - 18x(2)]
ki
> (1 -ne)e — O 2% >

for 17 small enough. w

|1 — Hi(z)| < me.
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3. Universal divisors in H*(B)

TueoreM 3.1. If B is an N-strongly defining function for S in the unit
ball of C2, then B is a universal divisor for S in HP(B), 1 <p < co.

The proof will necessitate some preliminaries.
Let f € HP(B). Then we can write

2 B
f=3"Bif=b=B-H with H:=f(

: B EN)
|BJ? '

: [BP " IBP

F=l

Because H is not holomorphic, we have to correct it. Unfortunately this

involves (0, 2)-forms and terms of the kind 8(B;/|B|?) A 8(Bn,/|B|?) which

are not even integrable near a point of S, the common zeros of the By’s,
Hence we must modify H near S. In order to do this recall that by

Theorem 2.1,

Yae S, AF, ¢ HP(B)", f=&, F,.

Let B := (B1, By) be the interpolating part of B, i.e. for all @ € 5, B =
M, - @, with [Malop < 07% on B and | M7 op <671 on {|®,] < &}, Then
setting

(3.1) Ga = (M7 F)1, (M 1F,),0,...,0)

we get f = B -G, on {|®,| < é}. Hence we are done near the points of 3,
now we mix the two solutions in the following step.

Because S is N-strongly defined, the sets {|$,| < §}, a € 9, are disjoint,
and we may set

& &;|?
Xs 1=ZX<152| ), C;’::z:>c(|52l )Gi

with the shorter notations @; := &,, and G; := G,, for g; € 8, and with
x being a C*° function defined on Ry such that 0 < x < 1, x(¢) = 1 for
0<t<1/2, and x(t)=0fort>1.

Then we have f = B+ L with
(3.2 L:=G+(1—xs)H.

Of course if § = we just take x = 0, because then |B| > 5 everywhere
in B.

Now the vector-valued function L = (L1,...,Ly) is in C*(B), but still

is not holomorphic and we shall have to “correct” it, but this time we shall
be able to do it with the right Carleson type estimates.

3.1. Notations and definitions. In the following p(z) := |2|® — 1 i the
defining function of the ball.

icm
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DEFINITION 3.2. Let w be a 8-closed (0, 1)-form in L*(B) and f € L (8B).
We say that 0y f = w if

(3.3) Yo € cg’;;m_l)(ﬁ),&o =0, S fo= Sw A,

B B

Let f € C*(B) and 8f € L'(B). We say that f* € L*(OB) is a Stokes
boundary value of f if 8,f* = 8f.

At the end we want to deal with holomorphic functions, hence we shall
need the next lemma.

LeMMA 3.3. If f* € LP(8B), 1 < p < 0o, and Oy f* = 0 then f* is the
(usual) boundary value of a function in the Hardy cless HP(B).

Proof Using Propositien (2.2) of [10], we know that there is a function
U € L' (B) such that U = 0, i.e. I/ is holomorphic in B, and

(3:4) Yo €Chan®, | fre={U8.
o B
Let us apply this with

@(¢) = P(2,¢)80(C) A (830(¢))"
for z fixed in B, where P is the Poisson-Szeg6 kernel of B,
A gimple computation gives, with 8 :=d A ... Ad{n,

5, =elzn” 1 i
Bo=oni .07 =z ol P

and we notice that 1

=z O
is precisely the Bergman kernel of the ball and, on 8B, ¢ is precisely the
Poisson kernel. Hence using (3.4) with that ¢ we get

T _ (*Q(Z))n c 1 A
f (Z)_IiU(C)(l*EC)n n(l—z-f)”""lﬁ/\ﬁ

where f* (2) is the Poisson integral of f*; but

BAB

Cn

(—alz)™
Oz o
is & holomorphic function in ¢ and from the reproducing property of the
Bergman kernel we get f*(2) = U(2). Hence the lemma follows. m

Let us recall the notion of Carleson measures of order o as defined in [4].
First of all, & pseudoball Q(a, h) of center a € OB and radius h € ]0,1{is

Qa,h):={n€B:[1-a-nl <h}
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A measure p is Carleson if there is a constant ¢ > 0 such that

|ul(@(a, k) < CR™.

The set of Carleson measures is denoted by W(B); we denote by WO(B)
the set of all bounded measures on B. Now we are able to define Carleson
measures of order o € [0,1], denoted by W=(B), as the intermediate space
in the sense of complex interpolation of Banach spaces between the bounded
measures and the Carleson measures defined above:

W (B) = [WO(B), W* (B)],.

In [4] it is shown that if p is in W*(B), & > 0, then there exists a measure
v in W'(B) and a function f in L?(|v|), p = 1/(1 — ), such that du = f dv.
For a (0, k)-form w = }_ 1\, wrdZry, we define [w|? := 3, |wy|?.
DEFINITION 3.4. (1) The space of Carleson (0,1)-forms of order ¢ in B
is
w A Bp }
€ W*(B) ;.
V=2 R

(2} The space of Carleson (0, 2)-forms of order o in B is
Wioa) (B) = {w € C5g)(B) : v/—g|w| € W2 (B)}.

DEFINITION 3.5. The space of Carleson~Wolff (0,1)-forms of order 1
inB is

OW(D’]_)(B) = {w S C&?,l) (]B) :
—0lwl® + [w A Bol® ~ ol Lw| + V=g |Cw A Bo| € W (B)}
where £ is any smooth (1, 0)-vector field on .

W 1, (B) = {w € C2 (B : o]+

From now on, B will be the unit ball of C2,

Let A*(CN) be the exterior algebra on CV, let e;, i = 1,..., N, be the
canonical basis of AT(CV), and e, = eq, A... Aeq,,0: € {1,... , N}, the
associated basis of AF(CV).

Let MY be the set of C*°(B) differential forms in B of type (0,7} with
values in A¥(CV) and let:

o L§ be the set of elements of Mg whose coefficients are functions having
a Stokes boundary value in L?(8B),

¢ L% be the set of elements w of MF such that w = fuw; + wy, w; has
coefficients in C'Wig 1)(B), we has coefficients in W) (B) and f € H?(B)
with e = 1~ 1/p,

o L% be the set of elements of M} whose coefficients are in the space
W(5,2,(B) of Carleson {0, 2)-forms with & = 1 ~ 1/p.

icm
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These spaces are suitable for our purposes because we have the existence
of a linear operator &, defined later on, such that if w € L¥ and Bw = 0 then
B(Sw) =w and Sw € L¥ , fori=1,2.

REMARK 3.6. Because Carleson measures of order a are bounded mea-
sures and our forms are amooth, the components of an element in Lg ,i2>1,
are in L*(B) and the definition for 8, can be used.

The spaces Lf are modules over H*(B) because if B € H*(B) and
[ € LP(0B) is a Stokes boundary value for f then B,(2) := B(rz) € £ (B)
for all » < 1 and

vr<l, |fBe= {8f A B

B B
because if ¢ € 53 (B) and §p = 0, then the same is true for B.p. Using

Lebesgue’s dominated convergence theorem, we can let » — 1 to deduce
that B, — B* € L*(9B) a.e. on B and

Vi € C54(B),0p =0, | f*B*¢o={8fA By,
& B
which means that B*f* is a Stokes boundary value of Bf and B*f* €
LP(OB); hence the assertion of the remark follows.

8.2. Koszul’s complez. Recall that B := (By,..., By) is a vector-valued
bounded holomorphic function in B C €2 such that B~1(0) = S and |B| >
n>0on{,cq{|Pal > &}

We shall use the Koszul complex method, introduced in this context by
Hérmander [7] to “correct” the vector L defined by equation (3.2).

Let us define two linear operators acting on M¥: first,

N Bi
RB(LU) =w /\Z -l-El—z-ei;

=1

w € MF N {suppw C {|B| = n}};

then Rp(w) € MF* n{u:supp C {|B| = n}}.
The operator dp is defined by induction and linearity as follows:
dg : M2 — 0, dp(e;) = B; and for e, € A*,

dp(eq Ae;) = Biey — dplea) Aes € MFL,
It is easily seen by induction that d% = 0, 8dpw = dpbw and
(3.5) dpw =0 = dB(RBw) =w.

Hence a = Rpw is a solution to the equation dpo = w provided that the
necessary condition dpw = 0 is fulfilled. N
With L defined in equation (3.2) let woo := f and wo1 := 3 ;1 Lie;.
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Together with the operator  we then have a double complex, whose
elementary squares are commutative diagrams and where & is the operator
solving the 8 equation:

13
ds \ .
0,2 a2 vas ] 0
dp \S R |
w9 ~ G2 Rp
J.

a1 (1,2 - Wo o 0

N,
@o,1 — Q0,1 \ fis dBJ
1 wo,1 —-—Lr Wit —L‘- 0
dp

o

f—— 0

To move down in this double complex we shall need results on solution
of the 8 equation:

THEOREM 3.7. There is a linear operator 8 such that:
(1) For every w € L3 with 0w = 0, u := Sw € L is such that du = w
and dpu € L%, '

(2) For every w € L% with Bw =0, u 1= Sw € Lf is such that Opu = w
and dgu € L3™1.

Proof. (1) is Theorem 3.5 of [3]; for a more general version see The-
orem 4.1 of Andersson and Carlsson [5]. In fact the coefficients of u are in
the Carleson class W&,y (B), hence dpu € L because B € H(B)V.

For (2), let w be a component of an element of L3. Then w = fuy + we
with w1 € CWg,11(B), ws € Wy (B) and f € H?(B). By Theorems 4.1
and 4.2 of [5] there exists an operator & such that 8,Sw = w if Fw = 0 and
moreover 8(fw;) and Sw; belong to LP(JB). Set u = Sw. The preceding

fact implies that u € Lg; that dgu € Lg“l is a consequence of the fact that
L} i8 a module over H*(B). w '

icm
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3.3. Proof of the division theorem. Let f be a holomorphic function in
HP(B) such that fig = 0. We want to write f = Ef\;l [iB;, with the f; still
in H?(B).

For i > 1 let

Wi = OWin14,  wii41 = Rpuw;;.

PROPOSITION 3.8. The form w;,; belongs to L“g and for i > 1 we have
suppw; ; C {|B| 2 n}.

Proof. ngt in C* we do need not to go farther than w3 because any
(0, 2)-form is 8-closed.

Now let us establish that suppw;; C {|B| > n} for i > 1. By definition
of wy,1 it is enough to show that supp 8L < {|B| > n}. But

OL = 6G +3((1 — xs)H)

in | J;{|®:| < 6/2}, G is holomorphic and 1 — xg = 0, thus 8L = 0 and the
conclusion comes from the fact that {|B} < n} < |J,{|®:| < §/2} for n small
enough by Definition 1.2(2).

For 4 2 17 Ly g =5w.,;_1,i and W41 = RBwi’i, hence SUpPD Wy 4 C Supp wWi—1,i
and supp wi,;+1 C suppw;; and they are all included in {|B| > n}.

For i > 1, wy; € L] will be established in Proposition 4.16 for ¢ = 1 and
Proposition 4.15 for 7 == 2.

Finally wy; € L} implies that wg 3 € L} because, by Theorem 3.7(2), we
have a 8 € L} with B = w1 = ‘S_wo,l, which means precisely that wg 1 has
a Stokes boundary value in LP(0B), hence wp,; € L}. »

Now we can play the usual diagram chasing:
LeEMMA 3.9. Fori=0,1,2 we have dpw;; = 5wm- =0.

Proof. Because the B; are holomorphic, we have dgd = ddg, which
implies that the elementary squares of the complex are commutative dia-
grams (by Proposition 3.8, suppw C {|B| = 7} and hence everything is well
defined). This proves the lemma. w

We can now give the proof of our main result. B
By Theorem 3.7(1), there exists 13 € L} such that Boy 3 = wp g and
Q0 1= dBCxl,g & L%. Then

Bau o = Bdpay,3 = dplay 3 = dpws 3 = dg Rpwae 2 = wa 2,
because dpws,2 = 0 by Lemma 3.9. We get
-5011’2 - w2,2 = ’Bmwlgg, hence E(wl!g and 051,2) = (.

We already know that wy,2 is in L3 by Proposition 3.8 and that oy 2 is also
in L%, hence there is a function ag z € L such that y002 = wyp— 1,2 and
a,1 = dpg 2 € L} by Theorem 3.7(2).
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Let 4 be such that "5;,(103 = 38 by definition of 8. Then
Oy, = Opdpon,z = 0dpf = dgdf = dpByon 2 = dp(w1,2—01,2) = dpws 2,

because by Remark 3.6, dgag,z is a Stokes boundary value of dgf and
dBCli]_lz = d%al,;; = 0.
But w2 = Rpwi 1, hence —Ebag,l =dgRpwy; =w1,), because dgw,; 1 = 0.
Finally we get

dp(wo,1 — @01) = dp(wo,1 — dpo2) = dpwo, = f,
By(wo,1 — ao,1) = 0.

Putting F := wg 1 —aw,1 € L}, we see that the coeflicients of I are in H? (B)
by Lemma 3.3 and f = dgF. This yields the assertion of Theorem 3.1.

The necessary estimates used in this proof will be settled in Section 4
but before let us give an application.

3.4. An application. Let o := {a; : 1 € N} ¢ D € C. It can be viewed ag
a sequence S := {a; = (0;,0) : 4 € N} CB C C?, and we have

PROPOSITION 3.10. If the sequence o = {o; : 1 € N} C D is H>®(D) in-
terpolating then there exists a 2-strongly defining function for § :=
{a: = (;,0) : 1 € N} C B.

Proof. First, it is well known that in the case of the unit disc there is
a sequence (5;)ien in H(D) such that B;(ay) = &3 for each point o of o,
and 3772, |8i(2)| < C for all 2 € I, where the constant ¢ only depends on
the sequence o (Beurling’s linear extension).
For all i € N let
 — 2, |C!i|
by SV B S a1
(ZI) 1-82 o
be the Blaschke factor associated with a;, and let §; be the functions defined
above, of one variable, associated with the sequence o.
We define the 2-strongly defining function B = (B, B;) by
1~ fouf)1
Bi(z) = || & , B = A L—-—w—imm-——
1(2) 1:[ (z1),  Baf(2) Zzzi:ﬁ (7)== T
As [l —@iz| 2 (1 |ou*)?(1 — |21|*)/2, we have B € (H*(B))? and
obviously Bjg = 0. Using [3, Section 2] we have f;(21) = 7;;(21)b;(z1) and
Bi(z1) — 1 = vi(z1)b;(21) with |yi(z1)|+ 3 i 175 (21)] £ C. As the sequence
o is separated, it is well known that B, (zi can bhe written as

By(z) = }(2)- Ci(z) with0<~<|Ci <1

icm
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on {z € B : |B;(2)| < do} with dy > 0 small enough. Moreover

(3.6) B(z) = Ll

e 2a(1 4+ vi(21)0i(21))
, (1= Jey?)'/2
‘i’bz(zl)jzaﬁ'hl(zl) 1—a,z Z3,

so B(z) = M;(2) - &;(z) with det M;(2)| bounded by constants above and
below on {z € B : |$;(z)| < §p} with §y > 0 small enough. To establish (2) of
Definition 1.2, recall that as the measure p:= ¥,(1 — |a;|*)d., is Carleson,
for each f in H2(B) we have

V1£ du < CllFI3.
it}

For f(€) = =5 (1 - |z1]%)*/? this implies that

1— o)1 = | )
b)) = 5 <C Vz eD.
e I .
If |bi(21)| = 7 for all 4, then |By(2)] > e"CC+Y/(27) because
1 1
—) > - . 0, 1[.
In{l ~ ) > w(1+2 1_33) vz ¢]0,1f

Thus, | B1(2)| < n implies that there exists ¢ such that

-1
1 1
|bi(z1)<<§("511“7 - 1)

and by using (3.6) we have
\Ba(2)| 2 \ — b)) 2 €2 — a(e)? - O sl

(1= o1
1 — @2y

because z & (V;en{|®i] = €} and [bi(z1)| = |87 (2)]. Then |By(2)| = n for

1 > { small enough. =

COROLLARY 3.11 (C. Horowitz). Let ¢ be an interpolating Blaschlize prod-
wct in the unit disc D in C. Then & is a universal divisor of o = &72(0) for
the Bergman classes BP (D), for any p € [1,00].

Proof. Let g € BP(D) with g, = 0. Then f(z1,2) = g(z1) s in
HP(B) and of course fig = 0 for § := {a; = (o, 0) : i € N}. By the previous
proposition and Theorem 3.1, there exists F' € H? (B)? such that f = B F.
Put 23 = 0. Then

glz1) = f(21,0) = F(z1,0) [T bs(21)

iel

%2
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where b,(z1) is the Blaschke factor associated with ;. This yields the result
of Horowitz because F(z1,0) € BP(D) by the subordination lemma of [1]. w

4. Estimate

4.1. Special case of a point. For what follows, we shall need more precise
estimates than those in Theorem 2.1.

REMARK 4.1. On {{6,(z)| < 6} with a = (r,0), we have [z3] S (1—72)"/2,
|1 —rz1} =~ 1—712, {r—z| < 1—r?% the implied constants being independent
of @ € B (this is a standard fact).

PROPOSITION 4.2. If a € B, f € H?(B), f(a) =0, then the vector-valued
function F given by Theorem 2.1 satisfies

VzeR, |Bau(2)] <6 |F(2)| S fla)

with F(2) = PI(|f])(z), the Poisson integral of |f| at 2, o(2) :=
implied constant being independent of a € B.

Proof. We have
1

oh
Hi(z} = § (tz) dt = h(z) = 2H(z), as soon as h(0) =
‘ 09
Applying this with h(z2} := f ¢ $,(2}k.(2) as in the proof of Theorem 2.1,
we get

|22 =1, the

Hi(z)= S fod,(tz) %k?‘:(tz) dt + S M(tz)km(tz) dt

0 82’1;

We are interested in G(z) := k]!(z) - H(z), hence
1 1
Gule) = ki ()| £ 0 Bult2) 22 (t2) it + b 2) | 2229 (12 (22) it

= I (2) + Ix(2).
Now we have
(1 |a?)?/> Oka _ 4 (1—l|af)?P
ko(2) 1= —— e DA
(=) (1--az)¥e’ hence 8zi p (1— @)ty @i

On {|z| < 8}, we get

- i)
KNS Ay and (S| S 0oy

hence

1
L(2)] S 1foBaltz)|dt and |I(2)] < iaf °®
1] . 0

“)(t )tdt
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We then have, using Cauchy’s formula,
2a(¢)
Fod,(tz —°—--—- do
hence on {|z| < 6},

foda(t2)] S § [Fo@a(Q)ldo(¢) = | 1£(0)|7a(C) dor(C).
8B

8B

But Jo(¢) = P(a,(), the Poisson-Szegt kernel of the ball, and hence,
setting

F(&) = | P(z,0)1F(0)| do((),
f2):
we get on {|z| < 6},

|f o Ba(tz)| S Fla) and [L(2)| S Fla).
In the same way we obta,in

d(fod o &a(
Aio%a) ——=—(do((),
Er BSB C (€)

and again on {|z| < 6},
O(fod, ~ ~
A2 2e) )| 5 o) and 1ol 5 )
hence |G (z)| < F(a) on {|z| < 6}. |
Coming back to F, we get F(z) := G o $,(2), hence |F(z)| < f(a) on
{|®.(2z)| < 8}, proving the proposition. w
LeMMA 4.3. Let a € B, f € H?(B) and 7 be the Poisson integral of |f|.
On the set {{@.(2)| < § < 1}, we have f(a) S f(2).
Proof. As usual we can set a = (r,0). We have
(L= =2 (—r2? _ (-] (1_ (1—r?? 11—EZI4_)
L=Calt 1-Curl |1"_€—“’|4 1= 12P? 1-Cyr*/
But on {|#4(#)] < § < 1}, we have 1 - [2|* =~ 1 — r?, hence
(1=~r?)? <
(L- 22~

Moreover
1-¢z=1—-(yr +Z1T ~Te=1-Cr+Gr —Gm — Gz,

hence _ N ~
L —Ca| S |L=Cyr|+[Col - Ir— 2l + |Ca| + 22|,
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and
BTl _,, Ir=al sl
11— 1"'| B L =G =Gl
But |1 — {yr| > 3(1 —r?), hence finally
-4
11-Cor ™
So we have proved that |P(a,{) — P(2,¢)| § P(z () provided that
|Ba(z)| <8 < 1.
Now

Fle) - F2)l < | 1P(@ Q) — P(5,01- £l do({) § Fla),

OB
proving the lemma. m

REMARK 4.4. By the symmetry between~a and z in the previous lemma,
under the same hypothesis, we get f{a) = f(z) on |&,{z)| <5 < L.

REMARK 4.5. We only need the previous results in C? but the proofs
clearly extend to C".

LeMMA 4.6. Let a € B and M, be a holomorphic matriz with |My(z)/op
< C for all z € B, such that | M,(2) op < C in [$4(2)| < § < 1. Moreover,
let f € HP(B) with fla) = 0 and F, be a divisor of f, f = &, - F,,
given. by Theorem 2.1. Finally let Ho(z) := 'Ma(2) " Fo(z) and Gu(z) =
((Ha)y, (He),,0,...,0), as in equation (3.1). Then |Ga| S f on |$.(2)| <
§ < 1, the implied constant depending only on C and &, but not on a € B.

Proof. Clearly it is enough to prove this for H,. We have |H,(z)| <
[t Ma(2) " op| Fa(2)]; but |Fu(2)| < Fla) S f(z) by Proposition 4.2 and
Lemma 4.3, which proves the lemma. m

4.2. Estimation of the forms involved in the Koszul complex

4.2.1. Expression of the forms. Let us recall some notations:

2 2
Xi i= x(i%-l—), X; = glgx’ (%‘-2-'—)
We showed in equation (3.1) that there exist holomorphic maps defined on
{|@a51< 6} by
(4'1) —((t 1F)11(t 1F)2a 3 _,,O):(G%,_,_,va)
with F; a map in (H?(B))? given by division of f at the point a; € S, and

M; a 2 % 2 matrix with coefficients in H°°(B), uniformly bounded on B and
with M; " uniformly bounded on {|®,, |< é}.

icm
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Since the Koszul complex comes from equation (3.2), we have
N n
. B.
@ =3 (Sn s (1- X Bt e
g1 i i

and wy,1 1= Owy,1, w1,2 == Rp(w1 1), so that
N

0 wa= Y {(Sxeim, + 0,580

dke=1 i B
+ (1-—¥x,-)f5(!§—f2)

(le Fy. 35, DL 5%, )) B }l‘;";ej/\ek

and wy g := Ows,2; moreover wy 3 1= Rp(wp ), and so

N
(44) wia= Y. { - 2(2 Xi(21,99,, + 8. 8%,,))

J,kd=1 B
1157 3(55)

*3(|B| ) (T rien 7, + 2,58, )6

-2 (i5f) .
- (Z (&L DB, + B2, adia,)) B2 )}!gl e; Ney Aer

7

4.3.2. Lemmas for the majorization of the forms. Set

N N
08| =Y [0B;|, 8B Adg| = |8B;ADe|
j=t =1
s0 we have
LeMMA 4.7. For all i,j € {1,...,N},
|0B; A 8B;| < |0B|-|0B A dg|.

Proof We can assume &B; A 0B; # 0. Set w := 8B/|0Bi|, I = 1,7,
and let v be a (1,0)-form such that (8g,7) is a normalized basis. For | =4, 7
we have

w=wbe+by, wAde=>bryAhde



18 E. Amar and C. Menini

and by an obvious computation
s Aug] < (1bs] + [B;1)100 A Y] < Jus A gl + |u; A Del.
Therefore
|0B; A 8B;| < |8B|(|8B; A 8¢| + |0B; A dg|) < |0B| - |0B A dgl.00

LEMMA 4.8. Forall ;€ 5, 7=1,2, and ke {1,...,N}, on {|P,,| < 8}

N {88y A B # 0} N {8Bg A Op # 0} we have:
(i) |697,] < 108,

(ii) |6, A 8Bk| S |8B| - |8B A Dy,

(iii) 1087, A Bp] S |8B A Dyl

Proof It is proved in [3] that x;|0P.,| < Cx:{|0B1| + |0B3]) for all
a; € S and hence (i) follows.

Let z be such that |8B1(z)|+ 0Ba(2)| & |0B1(z}|. For u; := 8B, /|0B;|,
on {|P,,| < 8} N{8B1 A do # 0} we get

021, (2) = afur(2) + 5] 80(2),
1885, (2)] = |of| + 18| < |8B1(2)].
Thus
|6@%, A 9By (2)| S 10B1(2)](lwa A OBk (2)| + |90 A 8B4(2))

S (|0By A 8By (2)| + |0B1(z)| - |00 A 8Bk(2)|)

S 16B(2)] - |68 A do(2)]
by Lemma 4.7. With a similar computation we get (iii). If = is such that
|0B;1(2){+|0B2(z)| =~ |0B2(z)|, we do the same just interchanging 1 and 2. w

REMARK 4.9. All the majorizations below will be done on {88, A8 # 0}
N {@By A dp 5 0}, which is a set of full measure in B.

4.2.3. Majorization and estimations of the forms. In the following we
shall identify a form with its coefficients in the basis (e; Aeg) or (e; AexAgy).

LEMMA 4.10. We have |wos| S FIOB| - |8B A 8g| and |was| S FlOB|-
|8B A Opl, where f is the Poisson-Szegd integral of |fl.

Proof. The components of w3 are those of wyy times B;/|B|? which
is bounded on suppuws 3, hence the majorizations for wa,3 and wp o are the
same; we shall prove them for wy 3.

Because suppws 3 C {|B} > 5}, the proposition is a consequence of the
formula (4 4); the modulus of the sum is majorized by the sum of moduli,
|| by F and then we apply Lemmas 4.7, 4. 8(ii) and 4.6(i). =

icm
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5, }
B)?

Now we decompose wy 1 = ft] + ¢, with

{(1"2%) (iBi ) - (;x;@ai,ﬁéﬁai))
t i= (3 Xi(2a,, 32,161

and (B, 08,,) = &L 5@1 + &2 59—52
In the same way we decompose wia = ft1 + ty with t; = t.By/|B|?,
i=1,2.

REMARK 4.11. We notice that estimates for #;, 8¢; imply analogous esti-
mates for ¢}, &, hence it is enough to get estimates for w;  in order to have
them for wy 1.

LEMMA 4.12. On B we have
(1) —a(lt]? + |8t1}) S —~0j0B?,
(if) v/—2|0t1 A Oo| S /—0|0B| - |8B A D,
(iii) [t1 A Bel* S |0B A Ol
where the implied constants are independent of z.

Proof &8ty is the sum of terms like:
o —{ B; B_k BkBB A OB
E f St B .
; x"@““’a@“"’a(lw)lslﬁ’ (- ZX‘) E

ngk

ZX @a‘i,aéa, ¢a1’6¢a1> |B|43

—— ngk
;xl'(a@a“a@ai}—l‘glr,

The assertions are direct consequences of:
(i) : Lemma 4.8(i),
(i) : Lemma 4.8(1) and (iii),
(iii) : Lemma 4.8(iii). w
Lemma 4.13. We have
(i) |t2| S foil@an@@ai) :

—_— EE}GB}@B;
! J
in(@m,aéa‘.) |BIG

i

.. to /\EQ < 7 .1_1(@&&:%0&)/\59'
(i) Ve NfZi:X, /o '

where the implied constants are independent of z € B.
Proof. This is a direct consequence of Lemma 4.6. u
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LEMMA 4.14. —|8B?, |8BADol, /=0 )0B|-|0BADg|, 3, Xi|(Ba;, 0%
and 5, X {Pa., 0%, ) A Bo|//—¢ are Carleson measures on B.

Proof Recall that B € (H>(B))"; it was shown in [2] that —|0B*
and |8BAdp|? are Carleson measures. This implies that /—p|0B|- |08 A8y
is a Carleson measure by the Schwarz inequality. The last two points are
already shown in [3]. =

PROPOSITION 4.15. wp 3 € L§ and we o € L2.

Proof. /—p|ws,s| and \/“g|ws | are majorized by f1/=5|0B|-10BAS|
up to a constant (Lemma 4.10) where fis the Poisson integral of |f|, f €
H?(IB), and /=g |0B| - |0B A 8g| is a Carleson measure by Lemma 4.14.
Thus f1/=¢|6B|-|8B A ol is a Carleson measure of order 1 — 1 /p (see [4])
and so are /g |wa 3| and /= |ws 3|; moreover wy 5, we 3 € Cf’g,z) (B). m

PROPOSITION 4.16. wy 1 € L} and w; o € L3.

Proof. We have wy; = ft] 415, w1 = ft, + tz. For any (0, 1)-form u
and any smooth (1, 0)-vector field £ on B, |[Cu| and |Lu A Bg| are bounded
by |Ou| and |Bu A Dp| respectively, thus by Lemmas 4.12 and 4.14, #{ and
t1 belong to CWg 1y. By Lemmas 4.13 and 4.14, ), and t; belong to W(?),n-

Hence by the definition of L}, wy ;1 € L} and wyg € L3, w

This finishes the proof of the necessary estimates used for the main
theorem, Theorem 3.1. As already said in the introduction, the case of the
unit ball of C*,n > 3, might be handled the same way thanks to the recent
results by Andersson and Carlsson [5] valid in any dimension.
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