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On the existence for the Caunchy-Neumann
problem for the Stokes system in the L,-framework

by

PIOTR BOGUSEAW MUCHA and
WOJCIECH ZAJACZKOWSKI (Warszawa)

Abstract. The existence for the Cauchy—Neumann problem for the Stokes system in
a bounded domain £2 C R® is proved in a class such that the velocity belongs to w2 ’l(ﬂ X
(0,T)), where r > 3. The proof is divided into three steps. First, the existence of solutions
is proved in a half-space for vanishing initial data by applying the Marcinkiewicz maltiplier
theorem. Next, we prove the existence of weak solutions in a bounded domain and then
we regularize them. Finally, the problem with nonvanishing initial data is considered.

1. Introduction. In a bounded domain 2 in R® with boundary S we
consider the initial-boundary value problem for the Stokes system:

ug — vAu + Vp = I,

divu =

(11) —1vu G,
i T(u,p)|sp = H,
ult=0 = Up,

where T(u,p) = {T(u,p)}ij=1,23 = {v(Biu; + Oju;) — pdi;} is the stress
tensor, u{z,t) = (u1(x,t),us(x, ), us(z,t)) the velocity vector, p(z,t) the
pressure, v > 0 the constant viscosity coefficient and 7 the exterior normal
vector to S.

To solve (1.1) we have to impose the following compatibility conditions
on the initial and boundary data:

div ug(z) = G(z,0),
ne T(uﬂzpﬂ)(m)ls = H(ﬁ?, 0)5

where pg is defined by % - T(ug,po) - % = H(0) - 7 on S. From (1.2); we get
the initial boundary condition pli=p = po.

(1.2)
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76 P. B. Mucha and W. Zajaczkowski

We prove the existence of solutions for system (1.1). The main result of
this paper is the following

THEOREM 1. Let r > 3, S € W2 Y/", F € L.(2r), G € WhO(02p),

‘Z_f —divF=divB+4, A, Be¢L(r),

dismsupp 4 < 23, ug € W2T(2), H e Wl Vni/2-1/En(g.),
Then there exists a unigue solution of problem (1.1)—(1.2) such that:
uwe WrHQr), peWM(0r), peW VPEHEN (5L,
and the following estimate holds:
(1.3)  Nullwzr(ap + IPlwaeiar + Plya-amarn-iren g
< G| Fl zoiory + 1Gllwz o) + 1Bl (o0

+ A”A“LP(QT) + “uo“W’g—z/r(ﬂ) + ”H”W,}_l"r‘ln_”m")(&r)]’

where Qp = 2 % (0,T), 8p = 8 x (0,T) and C(T) is an increasing positive
Function of T.

Theorem 1 can be found in [7] without proof.

The aim of the paper is to present a new approach to obtaining
Ly-estimates for solutions of evolution equations. We apply our technique
to the Stokes system. To prove existence of solutions to (1.1) we use ths
technique of regularizers. Therefore we consider problem (1.1} locally in a
neighbourhood of either an interior point or a boundary point. The boundary
neighbourhocd problem (1.1) is transformed to a problem in the half-space
z3 > 0. By applying the Fourier transform with respect to time and tangent
directions, problem (1.1) becomes a system of ordinary differential equations
(see (3.2)) whose solutions have the form (3.5).

Solonnikov [9] calculates explicitly the inverse Fourier transform of so-
lutions (3.5) and expresses them in the form of potentials in the half-space
zg > 0. Then he estimates them in suitable norms. In our case we directly
estimate the solutions of the ordinary differential equations (3.5) using the
Marcinkiewicz multiplier theorem [2, 3].

Moreover, in [10] the existence of solutions to (1.1) is proved in Hélder
spaces in a domain {2 which can be either bounded or unbounded.

The result of this paper has an auxiliary character. Our ultimate goal is
to prove stability of an equilibrium solution to the free boundary problem
for a self-gravitating incompressible fluid. First we have to prove existence
of local solutions to the corresponding Navier-Stokes problem (see [4]).

Next we are going to prove existence of g]obal—m—tlme solutions of the
following problem:
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v +v- Vo - divE(v,p) = kV 5 dy in 2,

o 2~
dive =0 in (2,
n-T(v,p) = —pofi on §; = 842,
Vt=0 = V0, (24=g =0,
v - Tt = velocity of the boundary S,

(1.4)

where v(x,t) is the velocity of the fluid, p(z,t) the pressure, T(v,p) the
stress tensor, k the constant of gravity, py the external constant pressure.

By an equilibrium solution of problem (1.4) we mean the following solu-
tion of (1.4):

v=0, = Bp,
dy .
(1.5) Vp(z)=k | —— in Bp,
B, 12—l
P=1p on &Bg,

where By is a ball of radius R.

In [5] we prove stability of solutions of (1.5). For this purpose the
Ly-approach is much more appropriate, because all considerations are sim-
pler and shorter.

Sumrnarizing, to show stability in [5] we need the result of this paper.
2. Notation. In our considerations we will need the anisotropic Sobolev

spaces W™ (Qr), where m,n € Ry U{0},r > 1 and Q7 = @ x (0, T"), with
the norm

T
21) Julfmnige = | [u(z.8)|" dzdt
0Q

| D u(z, )| de d

dx dz’

DI u(z, ) — D™ u(z!, £
ch |z — g!|striml=[im[])

r
+ 3 [ IDYu(e, &) dodt
ogln'(S[Inf] 0 @
TT | nnl Mg e
J*Dt u(mat)_Dt (mat)i /
-i-gdmgé PRy dtdt’,
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where s = dim @, [¢] is the integral part of o, DL = 35;1 ...Bﬁ;g , Where
I={li,...,1ls) is a multiindex. If Q is a manifold the above norm is defined
using a partition of unity.

In the case when Q7 = R* x R we can apply the Fourier transform and
define the Bessel-potential spaces given by the norm

(22)  lullgremer = ullp. @) + |1 Fog [ETE &0)) | @+
+ 1P 6ol T(E, £o)lllz. e,

where %(€, &) is the Fourier transform of u(z, t),

(¢, &) = et [ e 2u(z, 1) dudt = F, o [u](£, o),
and F~! the inverse transformation

Frafil(m,t) = (2m) "2t D { ot { eoq(e, &) de déo

where £ = (&1,...,&)and €2 = &1 + .. - + £,2,.
If m,n € N then W™ (Qr) = H™™(Qr) (see [11]).
In the proof we will use the following results.

THEOREM 2.1 (Marcinkiewicz theorem, see [3]). Suppose that a function
& R™ — C is smooth enough and there exists a constant M > 0 such that
for every . € R™ we have
gl

<M, 0<k<m,l1<ji<..<j,<m.
ijl...ﬁmj,c

ile L 'mjkl

Then the operator
Pg(z) = (2m)™ | dye™¥d(y) | e*g(2)dz
RBm Rm
is bounded in Ly (R™) and
|Pglir,@n) < ApmMllgllL, @)
PROPOSITION 2.2 (see [1]). Let v € W™™((2p). If
3
1 1hy1 1 1V1
nzZ(a¢+~——)—+ (6‘+—--)~ <1
po r qg)m r q/n
then the following estimate holds:
1D D3 ullz,(ar) < ellulwrnian + cE)ulzyan
wheregq2>r2>2,e€(0,1) and c(e) — 00 as e — 0.
PROPOSITION 2.3. Let v > 2, u € W21(f27) and ult—o = 0. Then

Hu|fwr1,1/=(nT) < C(Tl/r + Tl/z)”“”wﬁ-l(nr)-
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Proof. First we note that
TT

|ulz, £) — ue, )"
(2.3) §2§ cS) g dtde
TT
r/2 |u(m5t) n u(m,t’)r ! r/2 r
=1 §2§ cS; fogper G dtdesT / lligyea ory-
Next we have
(2.4) lellwaoony < T ull b @rwriey) < T w21 s

where in the last inequality we use uls~0 = 0. From (2.3) and (2.4) we get
the assertion.

In our considerations we will use well known results such as imbedding
theorems for Sobolev spaces. All constants are denoted by e.

3. Problem in the half-space. The first step to solve problem (1.1)
is to consider this system in the half-space z3 > 0 with ug = 0 in (1.1)4. To
solve it we have to consider two cases. The first is when F' = 0 in the half-
space and the second when the whole space without boundary conditions is
examined.

The problem (1.1) in the half-space z3 > 0 with vanishing forces reads
ug —vAu + Vp =0,

divey =0,

v{ua,1 + u1,3) eg=0 = Hi,

v(uaz + u2,3)|ss=0 = Ha,

(2vus,3 — p)|zs=0 = Ha,

’u,ltgo =0,

(3.1)

To solve (3.1) we apply the Fourier transform

'U(S,fl,ws) = | dte—*t S e_imlelu(t,:c) dcc",
R2

0
S dte™® S e %'E p(t, ) da’,
0 R?

where s = iy and £’ = (£, €2),2' = (21, 22).

Assuming that H € er—l/ ri1/2=1/(2r) (£3 =0), r > 3 and H|img =0 we
can extend H by zero for ¢ < 0. Therefore we can look for solutions of (3.1}
vanishing for £ < 0.
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After the transformation system (3.1) takes the form vals, &', mg) = — il_i . ;z‘;ﬁ%ﬂ

d® | 2 o

V(—dmg +r ) +itg="0, x [(1€'] = 3r)(iahy + i€aha) + r(r — |¢')hale™">s
d2 2 . iE2S

g =0, L

(g e e TP + )

Y R WO R X [2r(i1hy + i€aha) — (r? + |€'P)hg]
dr? dz3

e~ T _ e—IE']ms

. dug Y S ——
iE]_'U]_ -+ ’.'.Eg‘vg + — =0, 35 = !
(3.2) das (3.5) r— ¢l

[cont.) 1
o i£1vs = hy, vg(s, 8", m3) = — S [(r — [€'D*(1€1h1 + iaha) + 1'[(s/v)hg)e™ "™
d$3 23=0 vP
s
(372 * "'52”3) =he R ar)
3 z3=0

dus x [2r[¢"|(i€1hy + i€aha) — |€7|(r? + |€[%) ha]
(2V~— - q) = hg, .

dxy =0 e~ TT8 _ p—l€'|ma

Xw?
v—0,g—-0 asz3— o0 r— ¢

where r* = s/v + |€'[?,argr € (—n/4,7/4). Solving (3.2)1,3,3,4 with {3.2)s

! _ TS : ; - / —i¢'|wa
we get (see also [6]) q(s,€,23) = V_zl—;[z’/(iﬁlhl +i&2h2) — v(r + |€'12/r)hsle )

(3.3) v = B(s,8)e™ + ¢(s, £) (61, iba, — €' )e I 17, where
. g= _5¢,(5’£f)em|51[ms’ (3.6) P= (7,2 + i£r|2)2 _ 47,[6:'3_
Wher§t§.= (@1, 8, (6181 +i62®,)/r). From boundary conditions (3.2)s,67 LEMMA 3.1. For P defined by (3.6) the following estimates hold:
we obtain
U[’_rdsl - 21’61'5,1?5 + (2{1/7‘)(%51@1 + 7’62@2)] - h‘l: |Pl > Elsl . IEI|2, |S|2 < 3V2|P|
(3.4) v[—r®; — 20 |£'|¢ + (iba/r) (16181 + iads)] = ha, v
s¢+ 20(|¢')*p ~ 1181 — i€aB3) = hs. The proof can be found in [8].
Solving system (3.4) and using (3.3) we gt'at a solution of (3.2): LEMMA 3.2. Let h € Wi-1/m1/2=1 ;(121")(]1&3). Then there em'ftus & solution
vi{s, & x3) = — ﬂe—ms + _2&1_ of problem (3.1) such that u(t,m') € Wr,’mc(W) and p(t,z) € Wn'mc(]ﬂ)“), and
ur vArP(r +i¢')) the following estimates are valid:
% [(I€7] -~ 3r)(i€shy + i€aha) + r(r — [€') hale ™ IDZull s, ey + [ Detsl o) < ellhllyyz-srmasa-sram ga)s
i) | Dl ooy < c|ihllgra—1srasa-1an
R Pir 1 1en (DA} = WA R3)?
(35) VAP(r+¢']) (3.7) )

||u|IW2—1/r,1—1/(2r) gy S C”hnijifr,lji\—l/[:!f-) R3)?
X [2r (i€1hy + i€2ha) ~ (% + |€'[2)hs] . (= =

g=res _ o= 23

* r— ¢ ' : where D% = B2, x [0,00)5, % R;.

||p||W'}w1/r-,1/2—1/(zf-) (B%) < C”h”w‘}—lf‘r,lfﬂ—lf(ﬂr) (R®Y)
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Proof First we take the pressure (3.5)4 with hy = hg = 0. Then

LTS e
(3.8) q{s, &, z3) = 21%@ €15 b (5, 7).
From Lemma. 3.1 one can check that for some M,
% Eyrs
s 24

dshoepoe:  vFP

where I; = 0 or 1, so that the condition of Theorem 2.1 is satisfled. To see
this we note that

|SI1 Eiz Eés l

< M,

1| _ | Pa|_ | 2"+ &) — 2216
Psaaﬁ = -—P— uls T <M,
o L1 [ Betl | BENER+ IER) — akigE — 1ar)e/)?
[Pieden 5| = 161751 ~ [l -
sttt it M|y
rP rP

which gives, by Lemma 3.1, the desired estimate.
We consider the norm of derivatives of the pressure

(3.10) De,p(t,z) =cle® | eim'ﬁ’zi%;;fle"f”“hl(s, ¢y déo de.
hic4 k2
‘We know that
T3
EET R

K= F ) =

and

3.11 Flige Wl — g K1 — 3T .
( ) t,@ {E]_e 1 1 (ZIJ% + {E% + $§)5/2

We also have

(3.12) (KL, do’ =0

Hence to estimate || Dgrpi|1 (pe) we have to show that

(3.13) Lt,z)= | dy KL (/,zs)[h(t, 2’ —¢') — ht,2)]
B2

belongs to L.(D*%). By (3.12) we have
Fralbre™ 1o h(s, )] = I,

Hence we have

i3
(3.14) 1Esllgy < 3 § 2122

Ty gy
R? (y2 + 23)5/2 ) dy

icm
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where
N{y'} = |[ha" =/, t) = h{a’, ) 2.,y o2, y-
Applying the Hélder inequality to (3.14) we get
(3.15)  [I1ll%, qoay
r dy' rirT

< N P 3 dy

<3§ dos | dy (y’2+m§)’"+3/2N W) sz (2 + w3)3/2
yies N™(y")

B LA
where we have used the fact that {zs(y™? + 23)~3? dy’ = 2.
We examine the integral

zlylla

|y:'|r$3 f
(3.16) J = dig e |y |Q.
i it
Taking w = z3/|y| we get
Tyt
1= ] |y |23 (1 4 w?)r+8/2°

s0 J; does not depend on |y/| if
r+24+oa=2r+4+3

or

(3.179) a=r+1
and is finite when

(3.18) 2r+3-1>1,

which holds for our r. Therefore from (3.15) we get
At = — o) — hit, &)l
1, ey e § ]
R? B2 R
so by definition (2.1), the fact that h € WY 21/ @ 2 Ry (note also
that 2 +r{l ~1/r) =1+r) and (3.17) we have
(3.19) “IlliL-r(D“) < c“h’“W}"U"'“(m)‘

Similar considerations can be applied in the cases hy # 0 and hgl # 0.
When we consider the derivation with respect to z3 we use 8y, (e~!¢'1%2) =
—|€|e~ €173 which reduces our considerations to cases with &'. Finally, we
get

(3.20) ‘ HDmP“Lr(D‘!) < CHh”W,}“UW-U(Ra)’

dx' dy' dt,

which gives (3.7)z.
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Now we take the velocity. First we assume that Ay = hs = 0 and we
consider the terms from (3.5)1,23 with ™73, We take the first term; the
others can be estimated in the same way. We consider

u(t, x) = Seﬂ S et [—;l;ﬂ_mshl (8, §’)] déo dé’

and
(3.21) D2 uy (t,z) = (et | [ & g1 (5,5’)] déo de’.
‘We have
K% = F 1l 7®3] = x3 | ]2

rarleT ~ aragee P\ T

- 1 jz?
(3.22) Frolbre ™) = K5, = P (_Zﬁ)
and
(3.23) |KZ do' =0.

Since |t £2¢%] - |85 61’18129(&/7‘” < ¢, by Theorem 2.1, acting as in the
pressure case we have to consider only

(3.24) Lit,z)= | dy | 'K (¢,y/,zs)[h(e’ —y/,t —¢) = h(z",t — )]
K2 R
In view of the Minkowski inequality, we get

(3.25) |l <\ dt | &/ |K, IN(Y)
R &2

1 2} W2 )
< [, I R L T
< crg (ISK alib]ks2 dy Sy OXP ( 4vt) exp ( o )N (v ))
23\ /7"
x(SdtSd (—[:?—)) ,
2w vi
where m will be specified later, r* =7 /(r — 1),
Ny == —y' 8= t) — bz’ = )2, m, xm2,)
and for the last integral in (3.25) we have
{dt| do

1 . jof?
4 T

T €X —_———
P p( vt

2 2
<clatld tlf I .
—Cé ESI o1 ( i) TP\ T

icm
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Taking w = 1 /#/2 we have

= 1 . x w2 2
| at T £1/2{ dw 12w " /2 exp (—ZI;) exp («——3)

0 '
') -
g /24 22
=C S dt~—r-n—exp ('——3)
Taking t = |z3]*/w we get °

oo ay r/241—r"m
S dw zw™? (ﬁ) e~ w/ ()
w
0
. - 1

L 2rT2-2 —w/(4v)

=5 o S dw w2 +1-rrm e
Thus we have to assume

24r*/24+1—r*m <1,
80
2 1

{3.26) m > —+ 7=
Hence if m satisfies (3.26), then

1 . 2\ \ /7 ‘B o) e
(3.27) ( | dtds’ prr S (-%)) < egliTT AT
R} xR?

2
T

l.\DiC“

We have

[(4+7* — 2r"m)/r*]r = [4/r* +1—2mlr = [5 —4/r — 2mjr = br —2mr — 4.
Applying (3.25) and (3.27) we get

(3.28) 2|7, o)

< v 1 z2
r+5r—2mr—4 / _ <3
Sc g dzgzy™" é dt}é? dy $(7/2=m)r €Xp ( 4Vﬁ)

y.' 2 aN-r- ,yr
X exp (— 14v|t)iy’| w)

'™
Hence we have to consider
oo

(3.20) | daugaptor—imr

1]
T 1 z3 W2\, e
% é & Ay P ( ZE) EXP( i )V

o
t3r—mr--2+l/2 112
o] aP T e (<D e
0

t{7/2—m)r t
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Taking t = |yf'|%/w we see that the above integral is equal to

00 3 r—3/2—(7/2—m)r
{ dw Iy’ (131 lz) Tm I

Tz
w
p w

o 1

_ S dw l r|2+6r—2mr—3—(7—2m)r+ae-w/(4u)‘
- w2tr—mr—3/2—(7/2—m)r
0

The conditions for independence from |y/| and for finiteness of (3.29) are
2460 —2mr—3—(T—2m)r+a=0
or
(3.30) a=1+r
and
24+3r—mr—-3/2—-(7/2—m)r <1,
—r < 1,

which is true for m satisfying (3.26), and this implies boundedness of (3.29).
Thus from (3.28), (3.30) and definition (2.1) we get
122l o) < elfllyi-timo g,
and in the same way as in the case of the pressure we conclude that
(3.31) 1DZ wallp, @y < cllBllga-rmo gy

To show regularity with respect to ¢ we consider

(5,6 dép de’.

erel 1 ||
2] e (2)

and repeating the considerations for DZ,u; we get

e TEE
Dtul (t, CL‘) = cE)t X Eat S Ew: € - h.]_
Using

(3.32) [|Dtul”L,~(D4) < CHhHW}—l,’r,l/Z—l/(Ev)(Rg)-

Now we take only one term with £ mifgle ™ Yecause others can be

estimated similarly using Lemma 3.1. Choosing hs = hg = 0 we consider

_ - ?AS e~ TEL _ e—|€,|m3
ug(t, 2) = Fi W[Qmﬁhﬂ Y
By Lemma 3.1,
7:‘513 .
AP L

satisfles the conditions of Theorem 2.1.

icm
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We need to know that (see [6])

Ki=ril [e~rz; = E—/:e’lms] . [wsa o=l l(ms—1) =7y dy]
. 0
zf_m—ll,mz[s Y e e P g ]
_U Y v s~ Y —lal? /(4u2)
=) gn° | da (1 —a1)2 + (T2 —an)2+ (@3 +2)2)3/2 '
‘We have

—-TEE . —|E'1m3
(3.33) D% u(a,t) = Fik [ﬁ@pﬁ&hi]ﬁ ir——leﬁ’l_]

and (see [8])

C
34 2R -
(33 ) |D:L'K | — tl/z(mz+t)2’
and
(3.35) | D2, K dad = 0.

RZ
Therefore, similarly to the case of u;, we introduce
(3.36) I3(t,z)
={at' | ay' D}
R R

K3,y ms)[a(e’ — ¢/, t — ') — h{z' t — 1]

Yills

and get

dy’

3.37 Isliz, sy <
( ) s (R®) - £1/2(y% + ’.L'% +1)2

N(y")

1 . 1/r
§ & g NW))
% ( S dt S dy’

For the second integral in (3.37) we have
1 T dt
dt \ dy’ ~<ec .
]RS+ l§2 Yy t1/2(yr2 + .’E% + t)ymr g t1/2($§ _+t)mr 1

1 1/r
tl/z(y.-z + w% + t)m'r' ) ’
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If we take w = t/x2, the last integral becomes

T dw 23

§) cawl/2(1 + w)m‘“*'lmgm"'z-

Hence when choosing

mrt—1> -

21

3r—1
(338) m > '2— P
we get

1 1 (3—2mr*)
3.39 dt \ dy’ ,‘) <emy T rE
(3.39) (RS+ n§ tH2(y"? + 23 + 5™ ’
Thus by (3.37} and (3.39) we have

(3‘40) ”I31|E'_(D4) “<_ ¢ S d$3 2:!(33—217’1.?'*)(7'*—1)

0
X S dt dy'
Ry xR2

N"(y')
ly|>

- ly'|*
$1/2 (502 + t) {2—m)r

‘We consider

(3.41) Sda_azgS—Zmr*){f—l)S dt |ylla,
Ry

1
1/2{ 52 2
2 £1/2(22 + g)=mir
so taking w = t/x® we get (for simplicity here we write 2’ = y')
oo (s o]
S dxg S dw z*
0 0

Assuming that (2 —m)r > 1/2 or

1 (3—-2mr*)(r—1)| 1o
[ w121 + 1) B [g[2E=m)r 3 |='{.

1
42 R
(3.42) m < 5

we have to examine
oo

S das zgS—Zmr')(r—l) |zf|a|m|l—(4—2m)r,

0
which after taldng w = xa/|2'] is
3r—3—2m'r|mr‘3r—3—2mr+a+l—(4—2m)r
(1 + w?){@—2mjr-1)/2
To have the integral independent of |z’| we need
14+3r—3-2mr+a+1—(4~2mjr=0,

de|m’}w
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(3.43) a=7r+1,
and to have it finite we have to impose (regularity “at 0”)
3r—3—-2mr > -1

or

44 d_1
(3.44) m< g -

and (“at oc”)
Ir—3-2mr—(4—-2m)yr—-1)=-2—-r<-1

Since inequalities (3.38), (3.42) and (3.44) can be satisfied for some m, (3.41)
is bounded and (3.40), in view of {3.43), is estimated by

(3.45) HI3HLT(D‘1) < CHH“W;I—II'?',J./Z—I/(ET) D)

and as before we get

(3.46) HDE:I'UQHLT‘(]}}L) < C||H”Wf:!.—1/r,1/'2—1/(2r)(RS)-
Similarly one can show that

(3.47) ||Dtu||L,(D4) S CHHHW}—ur,l/z—l/(zr)(ms)

and from (3.47) together with (3.20), (3.31), {3.32), (3.46) and from equation
(3.1); we get estimates for ||DZ,ul|z,. Hence we have

(3.48) we Wit (DY),

r, loc
which gives (3.7); and (3.7)3. From the boundary conditions we get (3.7)4.
Lemma 3.2 is proved.

The next step towards solving (1.1) in the half-space is to solve the
following problem in the whole space:

us — vAu+ Vp= F
(3.49) divu = 0,
u\t:ﬂ = 0.

LaMMa 3.3. Let f € L,.(RY) then there exists a unique solution of (3.49)
such that u € Wf,’llcc(R"‘) and p € WA’PDC(R“) and the following estimate
holds:

(3.50) || Dy, gy + |1 D3l ooy + 1 Dapllz, ey < ellFllLacre)-
Moreover if f € LEV(R3 x R) then p = 0; where

i

L@ xRy = (e Cr @ B dv =01 .
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Proof After taking the Fourier transform system (3.49) reads
(8 + V€ va +ibog = fay 9 Lata =0
a

IJTZ 0 0 ’l:.fl w
0 I/T2 0 1:52 (]
0 0 wr? ifs| |vs
&L & & 0 q

Thus the solution is X = A1 F, where
£+l £ %:a £18s
V:i E|% _1;7'1 %l vr1|£|

£ t& 2€5

—oEE eE o

s 2 +£ 3

—otE wie R

1 T {143 T
-& - f

Tt is scen that estimate (3.50) is true and if f € L3V (div f = 0) then p = 0.

From (3.49)3 we get the assertion.

Using Lemmas 3.2 and 3.3 we deduce the main result of this section:
LEMMA 3.4. Let r > 2, f € L.(D*), g € WHO(D*), g —div f = div B+ A4,

A, B € L.(D%), diamsuppA < A and h € Wq}"lf"’l/z—l/(zﬂ(m = 0). Then
there ezists a unigue solution of the system

uy—vAu+Vp=7f,

or

AX =

| IS
Il
|

A7l =

divu=g,
€3 - T(u,p) =h
u’!t:O = 07

such that w € W2L(DL), p € WiO(D&) and p € Wy~ /2B @3y and
the following estimate holds:

(352)  [IDevllz, sy + D70z, o)
+1Dapl ., og) + 12l a-simarz-1ram ge, g0,y
< (D)1 flzqosy + 1Bl (os)
+ ;\HA”IJT(]ID}) + “h”W?}“l/ral/Z—l/(Zr)(Rg‘)]:
where D* = RZ, x [0,00)z, X [0, T:.

Proof. First we consider the following problem:

Aw =g,
(3.53) Wgy=0 = 0,
w—0 asz3-— 00,
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We easily see that a solution of (3.53) exists and
(3.54) HV"““WE'“(M) < C||QHW,}1°(D4)-
Next, we differentiate (3.53); with respect to t to get
(3.55) Awy =div(f+ B)+ A

with the same boundary conditions. To estimate ||Vw:|/z,. we look for Vuw,
in the form

(3.56) Vu, = Vwy + Vui,
where

(3.57) Aw} = div(f + B),
(3.58) Aw? = A,

and for (3.57) and (3.58) we have the same boundary conditions as in (3.53).
From (3.57) we get

(3.59) Vet ||z, 0 < e(llFllz, @) + I1BllL. )
and from (3.58),
(3.60) IVwiliz, @) < Al 4]z, o).

Hence by (3.54), (3.56), (3.59) and (3.60) we obtain
(361 [Vwllyzs e < elolipzaony
+ [ fllzoqoey + 1Bz, ) -+ Al Al @)
If we take u = v -+ Vw, system (3.53) reduces to
w—vAv+Vp=f,

3.69 divy =0,
( . ) Eg'T(’U,p) :hl’
U|t=0 =0,

where f' = f — Vw + vAVw, ' = h —€; -
1z, < 1 fllz, + el Vollgza,

Hh,’“W:,—1/r~,1,"ﬂ—1/(27‘)(m3=0) =< ||hHW&—1/r,1/z—1/(2r)(ms=0)+c]|V’wHW3,1.

T(v,0) and

(3.63

Next we consider the following problem:

Ap" = div f,
(3.64) 7| gm0 = 0,

p’' =0 aszz— oo
We see that p” € Wy, (D*) and

(3.65) 1Vl 2.ty < el llnm)-
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Now we take p in the form

(3.66) p=p +p"

where p is the solution of (3.64). Hence problem (3.62) can be reduced to
vy - vAv+ Vp' = fo,

dive =0,

(3.67) _ N g
63-‘]]:'(1),}?)-—-]1,
'U|t=0 =0,

where fo = f' — Vp” and it is easy to see that div fo = 0.

From Lemmas 3.2 and 3.3 (the case with div f = 0) we get a solution of
(3.56) which satisfies

(3.68) |1 Dsvllz,os) + I1D20l 2, sy + 1 D=2l 2oty

+ ||p’”Wr1—1/r,1/z—1/(2r)(mi, x[0,T])

< e(D)lIfoll . og)

The constant ¢(T') depends on T' because we take the trace of the solution
from Lemma 3.3 and the whole norm depends on T by (3.50).

By (3.61), (3.63), (3.65), (3.66) and (3.68) we get (3.52).

-+ ”hl HW,}_1/7-,1/2—1/(21-) (IR.}.)]

4. Problem in a bounded domain. In this section we prove the
existence of solutions of the following problem in the bounded domain 27:

uy —vAu+ Vp = f,

di =

(4.1) _vu 0,
7 - T(u,0)|sr =0,
'U"tr--o = 0.

‘We restrict our considerations to the case when
f e L) = [FEC () v f = 0} 1,

LemMa 4.1. If f € L§(f27) then there exists a unique solution of (4.1)
such that w € W2NQg) and p € W 1/4(!2 )N ‘Wl’l2 4(S7), and the
following estimate holds:

(4.2)

23 2z + DBl sy + Il yaransa s,y < T Flzagany

Proof In [10] we have existence of solutions for (4.1) and the estimate
(4.3) Hullwg-l(gT) + HPHW;-U(:)T) < e fllza(or)-

By the trace theorem and boundary condition (4.1)3 we get pe ‘W21 /21 4(ST).
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From (4.1); and div f = 0 we get the following problem for p:
Ap=0,

(4.4)
pIST EW.

1/2 1/4(8 ).

We see that the solution p of (4.4) belongs to W’ Ao,
and (4.4) we get (4.2).

Now we want to show regularity of the weak solution to problem (4.1).
We introduce two collections of open sets: {w(™} and {2} such that
w® ¢ Q) = 2, |, w® = 2 and |J, 2F) = Q with k € M UN where
PR NnS=0ifkeMandw®NS£DifkeN.

We assume that

7). Thus by {4.3)

sup diam 2 < 2X
k

for some XA small enough. Let ¢*) he a smooth function such that 0 <
¢®) < 1 and ¢W(zg) = 1 for £ € w®, ¢®)(g) = 0 for z € 2\ 2* and
|D2¢® ()| < ¢/A and 1 < 37, (¢BF)? < Np. We will omit (k) if it causes
no confusion.

By £(¥) we denote a center (a point inside) of w*) for k € M and a
center of w® NS for k € N.

Let us consider a local coo_gslﬂinate system y = (Y1, y2,%s) with center at
£) If k € A then the part S*) = § N 28 of the boundary is described
by ys = F{(yi,y2). We choose the coordinates such that F(0) = 0 and
VF(0) = 0. From § € W2 we see that F € Wy~ /. Extending F to F
in such a way that

F(y1,y2,0) = Fy1,52) and FeW?

we have
FeO'® witha<1-3/r,
Now we can transform 20 into the half-space by the transformation
z=Ouly) = (Id-F)(y)-

Let y = Yi(z) be a transformation to the local coordinates y which
congists of translations and rotations.

In our considerations we need some smallness argument, hence we define
i1k T1/2
(4.5) B=8+c()T*+ X% + ———1’--—-
where 0 < @ < 1 — 3/r, €,k,a,0 and c(5) will be defined by (4.12), (4.19)
and (4.23). ‘

VE| < X

_"_)\E/‘k,
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Let us introduce the variables U = u¢ and P = p{. Assume that ¢ = ¢
and [ € M. Then the equations (4.1) take the form

Uy, — vAU + VP = —20V¢ - Vu — vuAl + pV( + fC = f,
(4.6) divU =u-V{=g',
uplg=—o = 0.

Now we obtain a condition on new functions f',¢', A’, B/, where A’ and
B’ are to be defined. For this purpose we consider

4.7) gi~divf ={(g—div )+ V¢ (ue— )+ V[2vV (- Vu+ruAf —pV(]
and since

V¢ (ur — ) =V (vAu—Vp) =V - [v(V{ X rot u) — pV(] + pAC,

we have

(4.8) g, —divf = divB + 4/,

where

(4.9) B' = (B +2V( - Vu -+ vuA{ — 2pV{ + v(V{ x rotu),

A =(A—B-V(+pAcC.

Since we are looking for u € W2 and Vp € L, we apply Lemma 3.4,
thus we have to examine the norms ||A'||;. and {|B'||L,.

By Lemma 3.4 we see that the solutions of (4.6) satisfy the following
estimate:

(4.10) ”U”W,fvl(mg,) + ”P”W,:'U(D:})
< COYUF Nraios) + 19 lwzo sy + A rus) + 1B |2 msy)s

where & > 2.
By Proposition 2.3 we have

(4.11) M weor

Tl/k 4. 1/
< C(HfllLk(nw) +

1
_‘““'X'”—H“”W;»l(nf) + ‘"/\'”P”Lh(ﬂ:n) .
From the imbedding theorem (1, Chap. 18] we see that
(4.12) ”P”Lyc(.!?r) < CHPHW;J/*(QT)s

since (1/2~1/k)3+(1/2—1/k)2 < 1. This implies that now we can consider
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only the case 2 < k < 10/3. Then by Proposition 2.3 we obtain

Tl/k +T1/2

o'z < e———lullgza,

1 1
419 140 < (42, + FIB12, + S5lelhygiran, )

Tl/k +T1/2 1
B s + ol s )

By (4.11)-(4.13) inequality (4.10) reads

(414)  |Ulwzo gy + 1P lwiops
Tk 4 /2

< c(T)(nfuLkmm e

1B 2 < c(uBuLk "

lellzr20 oy

+ AHA“LJ‘:(-QT) + ”B“Lk () t “p“W;'FI'/4(ﬂT)) .
We would like to have a similar estimate when k € . We write system
(4.1) in z-coordinates:
Up—vA,U -V, P
= f' + L1(8, — VF - 8,)(U, P) — L1(8.){U, P) = f",
div,U =g’ + VF . 8,U = 4",
€zs T(U, P) = @(’ﬁ . (T],,;’H.j - T),j‘u,;)) -+ VEF- T(U, 0) = h”,
where L1 (8z){u, p) = uy — vAzu+ Vgp.
To apply Lemma 3.4 we need new A" and B” which satisfy
(4.16) 8,9" — div f = divB" + A",
First we note that (the second term of the r.h.s. of (4.15)2)
(4.17) FiyUssi = 04 (Fi3Up) = UsFi .
To obtain the new B we have to consider
Ab = U; 1 Fy 5i,
(4'18) b|za=0 =0,
b—0 asazz— 00

(4.15)

We see that
Ui Fagillnis) < clUslle, my )y

where | = rk'/(r + k'), hence solving (4.18) we get
[ Vbllwa ey < ellTsllz,, me)-
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Since 31/(3 ~1) > k' + ¢ = k, by Proposition 2.2 we have
(4.19) NVl 2y i8p . ®e)) S ClT zuto, 7m0 2))
< NP EFRN T, o .
Then we define A" and B” by
(4.20) i:: = i:_(Ll(az—vF- 8.)(U, Py~ Ly (8, )(U, P)) + F; ;U; — Vb,

We also need estimates for components of B”, hence we examine
(4.21)  [|L1(8: = VF - 3:)(U, P) — Ln(8:) (U, P)l| 1, (s,
< ol [VEF| - VU || gy + €l [VFL - V20U gy + el IVFL - [Pl ms)-
To estimate the first term of the r.h.s. of (4.21) we note that
(4.22) HV2EL VU gmey < IVPFliz, @) VU |z e )
where [ = kr/(r — k), and we have
IVU |y to,mima yy < (8 + c(&)T) Uiy,

where 6,0 > 0 and ¢(8} tends to infinity as § — 0.
By (4.22) we get

(4.23) HVZE] VU @) < eliVU g 0,0iz.88.)
< o(6 + (T U2
By (4.19) with &'+ e = k, (4.22) and (4.23) we obtain
1z < 1 N + (8 + ()T + X¥)|[Ullypza + A P20,
19" lwzo < 19l + e(@ +e(8)T* + AX)U |y,

Tl/k+T1/2 N
= ) Uz,

1B |2y < 1Bz, + (8 4 c(8)T° + AE/")I[UHW@A + A% Pz,
A"z, < A"}z,

Then by Lemma 3.4 and (4.24) we obtain

(4.25)  [[Ullgrar + 1Pl ypae -+ HPHW;—Uk.l/ﬂ—lf(%J (20=0)

{4.24) ”h””wé—ljk,ll‘z—lj(zk) < C(

< o(1F Iz + 19 I + 1By + X4,

Tk 4 L/

; (5+ oy 4 T AT AE/k) (10 2 + ||P;1W;,a)).
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If we take 8 so small that

cf Ec(t‘i-l—c(ti)’[’“—l—)\“-{- 3

1
s/k bt
+ A )<2,

then from (4.25) we get
(4.26) ”U“W,f’l + ”P“W,:'D + HPHW:—lm.l/awu(zm(z:‘:o}

< (|l ze + 118 Iy + 1Bl + A4 || 2.)-
The above considerations lead to the following lemma.

LemMa 4.2. If A, B € L.(2r) and f € LEV(0r) then the weak solution
(u,p) of (4.1) satisfies

u€ W2HQr) and pe WHO(Qp)nW—HniA=1Gn (g,
and the following estimate holds:
(4.27)  Nullwzs opy + IPlwzogary T Plly2-1imiim-rsan gy

< (I fllzniaey + 1Bllz ey + A Az (20))

if B is small enough.

Proof. First we note that do = Jg-1 dz and |Jz—2 — 1| < cA*. Thus if
we denote U() = ¢Wy and PO = ¢Wp we get

H“HW,fvl(nT)ﬁ Z ||U(1)“W,f'1m~_p)?
IEMUN

(4.28) plweoen € 30 1POlwpoany,
lEMUN

||p|| 1—1/k,1/2—1/(2k) ﬁ ”P(l) H 1—1/k,1/2—1/(2k) .
Wy (87) ~ W, {(5T)
le

Then by (4.11)~(4.14), (4.26) and properties of functions ((!) we obtain

(4.29)  lullwas(ap) + IPlwi oy + IPlpr-smara-sian g

Tl/r +T1/2
< CNO(”f“Lk +[1B 4 +AHAHL)¢+___A—_—Hu”W:'l(.QT)+“p”W21’1/‘1(QT)
and if (77" 4 TV2)eNp/X < 1/2 we get

(4.30) ||u||W,f-1(nT) + “p“W,:'D(ﬂT) + ”p”Wi“lf’“alfﬂ_lf(zh)(sw)
< ol + 1Bllzs + Al Al + [Plly2ar4 ()

Recalling (4.12) we have (4.30) only for 2 < k < 10/3.
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By (4.1) and (4.30) we also obtain

Ap=0,

(4.31) B _
WJ: 1/k,1/2-1/(2k) (57)

peE
which gives p € W;’1/2~1/(2k)(-QT).
We put k1 = 5/2 < 10/3. Then by (4.30) and (4.31} we have

b

(432) ”uHWfl’l(nT) + ”p“W:iUQ—ll(%l}(QT) + ”pHW;l“U’“l!l/?“l/(%l)(ST)
< e(llfllpe, + 1Bl 1o, + MANzy, + i|P||W¢61fa—1fmo>(gT)),

where kg = 2.
Now we repeat the above considerations having estimate (4.32). Imbed-
ding (4.12} can be replaced by

(4.33) ol < C”P”W;l’”“‘”(""‘l)(nT)'

Since k1 = 5/2, we have the following condition on the new &:

2 1 10/2 1
3(5“@) *“@‘(g—g) <h

which gives 5/2 < k < 30/7, and we put k3 = min{r,4}. Then we obtain
estimate (4.32) with k1 = ks and kg = k;.

If r > 4 we again repeat the above considerations and obtain, having
p & W,i;l/z"l/(%ﬂ(()q‘), a new k which has to satisfy 4 < & < 16 and
we put k3 = min{r, 15}, and if »r > 15 we repeat all considerations and
obtain (4.27), which follows from (4.32) with k; = r and kg = ks, because
WH/37H30 ¢ L. In the last step B(r) > 0 (see (4.5)), hence T(r), A(r) >
0. The proof of Lemma 4.2 is finished.

5. Proof of Theorem 1. Qur ajm is to show existence of a solution of
problem (1.1):

'u.,g—yAu+Vp=F,

divu = G,
n- T(u’)p)lST = -Ha
Ulgemg = 2.

By (1.2)2 and the assumptions of Theorem 1, pg = p|i=q € q}m3/T(S). We

take T € Wi~ Y7 (02r) and By € WhO(Qr) N WAL G gy cuen
that

A‘ﬁo =0,
1—90IS =§0)
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1—1/1«,1/2—1/(27-)(ST)

where Py € Wr is an extension of py and

ag(x,0) = ug(z) and ”ﬂDHWE’l(DT) < C“uD”WE—zﬁ(n),
750(.'1:,0) = pg(:c) and Hﬁo||W1}—1/r,1/2~—1/(2r)(ST) < C||p0|lwr1—3/r(s),
{(5.1) _
HPDHW,?’D(S?T) < Cllpﬂllw,{'w"(s)
< cHuoHWTz-z/«(Q) -+ CHH:HW‘}—I/PJ/Q—I,’(ET)(ST).
If we agsume that the solution of {1.1) has the form
(5.2) ue=a' 48, p=p 4+,
then problem (1.1) reduces to
up — vAu' + Vp' = F/,

53 divu =G,
(5.3) ’i_?»‘T(U’,P’)lST - H,
'u'ltmO =01

where (using (5.1))

F' = F — (Ty — vA%y) — Vo,

G = G — divp,

H'=H — 7 - T(T, o),

1# )|z, < 1 Fllz, + clluollyz-2sm
16wz < 16 o + cllollygzsir

(5.4)

||H"HWTE—1/1-,1/2—1/(21~) < |!H“W£.—l/r,1/2—-1/(2v‘) + C||uo||wf—2/r,

where G} — div f' = divB’ + 4 and B’ = B — %p. By (1.2) we see that
|1m0 = 0, H'l4=0 = 0 and p'|t=0 = 0. Taking w = V@, where

AP =G,
Plg, =0,

we have w = V& € W2%(27), but from APy = div(B + f) + A, as in the
proof of Lemma 3.4 (see (3.53)—(3.61)), we get

lwel e, < ellfle. + 1B |z + AlAllL,)-
So w € W2 and
(5.5) @iz iap < cllgllwroiagy + 1Fllz. + 1B, + All4llz.)
and from G'|s—=o = 0 we have w|;=o = 0. Thus we can take

(5.6) uﬁ' - ul.’ + w,
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and reduce problem (5.3) to
uy —vAY + Vp = F",

57 dive” = 0,
( . ﬁ'T('ﬁ",p’)]ST :H”,
u|t=0 = 01

where, by (5.5},
F'=F — (w; — vAw),
H" = H' —7-T(w,0),
LH |l amrmara-rscany < | H' || gyam1smiasa-ran + cllwllgaa.

IF L. < IF N2, + elwlwza,

To reduce (5.7) to (4.1} we have to solve the following problem:
"o ae il

6 oot

which gives

(5.10) Ve N, < e(lF iz, + [1H || ya-rrear-s/an).

Putting p’ = p” + p" from (5.7) we get

u;} —phu VP! = B

divu” =0,
512 !
512 =T, 1) =0,
U= = 0,

where F"' = F" — Vp" and div F"" = 0.
By Lemma 4.2, (5.1), (5.5), (5.9) and (5.10), we obtain a solution of

system (5.12) which in view of (5.2), (5.6) and (5.11) gives a solution of
system (1.1) given by

(5.13) u=Tpy+u’ +w and p=ph'+p”l+ﬁ0’

which satisfies (1.2) for T' < Tj. Now it is enough to continue the solution

to the intervals [Ty, 2T0], [2T0, 3To), . .. This proves (1.3) and concludes our
considerations.
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