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Functional equations in real-analytic functions
by

G. BELITSKI! and V. TKACHENKO (Beer-Sheva)

:Abstmct. The equation ¢(z) = g(z,¢(z)) in spaces of real-analytic functions is
considered, Connections between local and global aspects of its solvability are discussed.

1. Introduction. Given a real-analytic manifold X countable at infinity,
dim X = m, we consider an equation

(1) o(w) = g(x, p(F2))
with real-analytic mappings
F:X—-X, g:. X xR =R
and an unknown real-analytic vector function
w: X —= R

Our aim is to discuss solvability conditions for (1).

The above problem has “local” and “global” aspects. The former means
the solvability in a neighborhood of a given point z¢ € X, while the latter
deals with the question of whether (1) has a global solution ¢(z), © € X, if

it is solvable in o neighborhood of every point mg € X.
It turns out that at least in the case of a linear equation

(2) (T} () = p(w) — A(z)e(Fz) = 7(2)
a collection. of local solutions may be used to construct a cocycle “obstruct-
ing” global solvability. This situation is similar to the Stokes phenomena
and Fealle- Voronin modules arising in classification problems of dynamical
systems (see {I]}.

The construction of the obstructing cocycle and its applications are the
main object of the present paper (see Theorem 3.1 and results of Sections 4
and 5).
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This approach allows us to study equation (2) from the linear operator
point of view: under which conditions it is normally solvable, has Fredholm
or semi-Fredholm property, etc.

For our purpose it is necessary to introduce a topology in the space
£ = A(X,R") of real-analytic vector functions ¢ : X — R™, We endow it
with the local convergence topology. Namely, a sequence yr, € & converges to
© € £ if for every zg € X there is a neighborhood V' 3 2o such that g (x) —
w(z), z € V. The latter, in its turn, means that there are complex-analytic
continuations hy(z) and h(z) of the functions ox (7 (u)) and (@1 (w)) in

—~

a neighborhood U ¢ C™, U > ug, such that
hi(z) — h(z) (z €U)

in the usual sense of convergence of complex-analytic functions. Here @ :
V — R" are local coordinates in V' and ug = (o).

The space of analytic germs ¢ : X ~» R™ at a point xp € X is also
endowed with a convergence topology. Namely, a sequence of germs @ con-
verges to a germ ¢ if there exists a common neighborhood U 2 o and
corresponding representatives ¢y (z) and ¢(z) such that

or(z) — p(z) (zel)
in the aforesaid sense.
Also recall that an operator T : £5 — &» is called normally solvable if
its image Im T is closed. A normally solvable operator is Fredholm if both

subspaces Ker T and CokerT' are finite-dimensional, and semi-Fredholm if
min(dim(Ker T'), dim{Coker T)} < co.

2. Local solvability. There is an essential distinction between the non-
fixed point case, i.e., Fag 7# %o, and the case Fzo = zg.

2.1. Local solvability in a neighborhood of a non-fized point. Let F be a
real-analytic mapping of X defined in a neighborhood of a point zo € X,
Fzg # z0, and let g be a real-analytic mapping of X x R™ defined in a
neighborhood of (zg,yy) € X x R". Assume that

det F'(zp) > 0, det %(mg,yo) # 0.

Under these assumptions the following proposition was proved in [BT1].

THEOREM 2.1. There exist a domain U C X, confaining the poinis xg
and Fzy, homeamorphic to the standard ball in R™, m = dim X, and 4
real-analytic vector function

(p:U'_)IRn: (P(-T()) = g(mﬂlyo)a
such that (1) is fulfilled for all  from some neighborhood 7 3 .
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If dimX > 1, then the statement of Theorem 2.1 is true under the
assumption det F'(zg) # 0. In the one-dimensional case, preserving the ori-
entation by F is essential as the following example shows.

ExaMpPLE 2.2. Consider the equation
p(x) +p(l—z) = y(z), zeR,
in a neighborhood of @y = 0. Here g(z,y) = v{z) —y, F(z) = 1 — =,
det g} (x,y) = —1. Assume v to be analytic in a neighborhood of origin. If ¢
is an analytic solution in a neighborhood of the interval [0, 1], then v should
be analytic on [0, 1] and satisfy the condition
Ae) = 7(1-2).

For instance, if y(z) == x then the equation has no analytic solutions ¢
defined in a neighborhood of [0,1].

In fact a stronger result was obtained in [BT1]. Namely, under the as-
sumptions of Theorem 2.1 the mapping

G(z,y) = (Fz,9(z,y))
is a local analytic diffeomorphism defined in a neighborhood of (o, y0)-
THEOREM 2.3. There exists on analytic diffeomorphism of the form
P(w,y) = (H(z),8(z,v), H(0)=zo, Hler}=F(zo),
mapping a neighborhood V of the segment [0, tlex x {0} C R™ x R* into o
neighborhood U ¢ X x R™ containing (zo,y0) and (Fzo, g(wo, o)) such that
(P oGod)(u,2) = (u+e1,Jz)
for all (u,z) from some neighborhood V CR™ x R™ of the origin.

Here €1 = (1,0,...,0) € R™, and J is the identity if det g;,(zo, yo) > 0
and J = diag(—1,1,...,1) otherwise.

In other words, Theorem 2.3 describes a rormal form of the diffeomor-
phism G in a neighborhcod of a non-fixed point. In particular, the diffeo-
morphism F' itself turns out to be local-analytically conjugate to the shift:

(H'FH)u)=u+e

for all u from a neighborhood of the origin. It is easy to show (see [BT1])
that Theorem 2.1 follows from Theorem 2.3.

2.2. Local solvability in o neighborhood of a fized point. Assume that
X =F™ and Fxo = %o-

Tuvestigations of this case go back to Poincaré, Dulac and Siegel (see [B]
for modern results and references). All of them deal with the behavior of
the mapping F in a neighborhood of a fixed point, in particular, with the
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possibility of reducing F to a normal form. This leads us to some specific
functional equation, called the Schrdder equation

F(Fz) = H(®(z)), @(z)==z+¢(2)

Its study involves all problems arising for the general equation (1).
First of all, the formal solvability is necessary for (1) to be solvable in
germs of analytic functions. This means the existence of a formal power

series
o0

)= >

|J}=0, |I|=0

pr(z — zo)’

satisfying the equation
B(x) = §(=, §(F)),
where p; e R™, I = (I1,..., In} € Z7, (Il =i+ ... + Ip, and

(z —x0)f = (@1 - 330,1)11 o (zm — mo,m)‘r’“.

The series
o
F(z)=zq+ Z FI(SG—-.’L'U)I
[T|=1
and
o0
Gz = > grs@-20) (y—w)’
[J]=0, [1|=0 :

are Taylor series at zq and (29, 4) of the mappings Fx and g(z,y) respec-
tively.

It is well known that the absence of resonence relations
a M. A =]

is sufficient for (1) to be formally solvable. Here

3}
a; € spec a—;(mg,yo), A; € spec F'(zg),
and p; € Zy.
In particular, for the Schrider equation with
Fz = A(x —zp) +o(z — zo), H{z)= Alx ~ zq) + o{x — xp),
the corresponding resonance relations have the form
M= M. AP, A Especd, Y pi2.

If there are no such relations, then F is formally conjugate to the linear
mapping H(x) = Az, i.e., the corresponding Schrider equation is formally
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solvable at xo. Poincaré and Dulac proved that if # and H are formally
conjugate and

(3) A espec F'(zo) = |A| < 1,

then F' and H are local-analytically conjugate. In fact, a more general as-

sertion is well known and may be proved by the Poincaré—Dulac method
(see [9]).

THEOREM 2.4. Let F' be o local analytic diffeomorphism in o neighbor-
hood of its fized point xg € R™ and let (3) be fulfilled. Then every formal
solution @ of (1) has a positive radius of convergence.

If (3) does not hold, then the conciusion of Theorem 2.4 is not fulfilled
as the following example shows.

ExampLE 2.5. A scalar equation
wlz) —zpz) =1, zeR,

has no solution ¢ analytic in a neighborhood of z = 0, since its unique
formal solution

)
(P(m) — Z 2k(kul)/2$k
k=0

diverges for z # 0.
The more general equation

(4) p(z) ~zp(2e) =v(z), zeR
with an arbitrary function v analytic at z = 0, is always formally solvable:
its formal solution is

(3) o) =D pma™
k=0

where m (k)( )
_ —kth—1y72Y (0
Pm = gm(m 1)/222 k(k 1)/2T.

k=0
Since |[v(*)(0)| € Cklg®, the series
G (%3(0)
_ k-1 /21
(6) iy = kz_%z (b-2/ o

converges for every analytic germ at & = 0. If I[v] # 0 then the series (5)
diverges at © # 0, and (4) has no solutions @ analytic at z = 0. On the
other hand, if [[y] = 0, then
o (k)
- _k(r-1)/27(0)
P = __2'm(m 1)/2 Z 9 k(k l)/ZT
k=m-+1
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satisfies |py,| < C™ with some C and (5) defines a solution of (4} analytic
at ® = 0. Therefore, a necessary and sufficient condition for (4) to have a
local analytic solution at z = 0 is I[y] = 0 where [ is a continuous linear
functional en the topological space of analytic germs at z = 0.

ExaMPLE 2.6. The equation

™ o) = o( 5 ) =

has a formal solution at z = 0 if and only if y(0) = 4'(0) = 0. In addition,
if 4{0) = +/(0) = 0, then the function

#le) = i”(l —::nm)

n=0

is an analytic solution of (7) in (0,e) where £ > 0 is any number smaller
than the radius of analyticity of v(z} at z = 0. We will now show that
this solution may not be analytic in an arbitrarily small neighborhood of
z = 0. To this end, let { = 2™ and v*(¢) = y(¢™*). Then 4* is analytic in
{¢:[¢] > &1}, and (1) may be written in the form

PO - (C+ 1) =9"(), Ki>e,
with () = ©((~'). The domain 2% lying outside the circle {|z| < e~1}
and the half-band |¥¢| < £7%, R¢ < 0 are invariant with respect to the shift

¢ = (-1, and since {v*(()| < K|(|~?, the latter equation has an analytic
solution

L =D 7(C+n), (enr.
n=0
Similarly we find a solution

PLO==Y 7 (~n), (e,
k=n

where 27 = — 2 is the mirror reflexion of 2+ in the imaginary axis, invari-
ant with respect to the inverse shift ¢ ~+ ¢ — 1. The inverse transformation
z = (" maps 2 onto a domain D* bounded by three curves:
{2:]el =6 R2 20}, {z:|z—ig/2| = £%/4; Rz <0},
{21 ]2 +1ie/2) = % /4; Rz < 0},
and the domain 2~ onto D~ = ~D*, The domain D™ is invariant with

respect to z +— z/(1 + z), D~ is invariant with respect to z z/(1 — z),
and the series

o4 (r) = gw(lfnm)’ o (x) = —g'}'(l —mm:)
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 corresponding to % and @* converge to analytic solutions of (7} in DF

and D~ respectively. These solutions are continuous in the closures of DT
and D~ and vanish at ¢ = (. Assume that ¢ is a solution of (7) analytic in
some neighborhood of & = 0. Then the functions 1_ (z) = w(z) — . (x) and
Y_(x) = w(z) — ¢_(z) are analytic in D+ and D~ respectively, continnous
in their closures and satisfy the homogeneous equation 1. (z) = 1 (Fz).
Iterating these equations in the respective domains we find ¢, () = 4. (0),
z€ DY, ¢ (z) =¢_(0), z € D~. Hence by continuity py(z) —9Y_(z) =0,
& € DY N D™, and we arrive at the equation

(8) iw( = )=0, zeDtND,

n=—o0o 14 nz

which is a necessary condition for solvability of (7). On the other hand, if

(8) is fulfilled, then
Z ! -
- 1+nz)’

() = w0 -1

& -
_ Z fy(l-l_nm), reD s

n=-—oo
defines an analytic function in D U D~ satisfying (7), which proves that
(8) is & sufficient condition for the local analytic solvability of (7).
To express these conditions in terms of Taylor coefficients of -, we note
that (8) means that the function

5 o(2), 0=v0 -

n=-—00

being analytic and 1-periodic in {2 : |S#| > 71} is identically zero. There-
fore all its Fourier coefficients vanish, Le.,

) 1 .
S 'y( , )eg‘k”dt:(}, c>e"l kel
t - i
-0
Substituting here the Taylor expansion of y(z) we find that (7} has a solution
if and only if v(2) is annihilated by the system of functionals

z € DT,

o (n) i, n—1
frov0.3 OB kel

Congditions of formal solvability of general functional equations always
have the form of some algebraic relations between derivatives of y(z) at zo,
finitely many for every such relation. In the case of a linear equation these
relations are defined by linear functionals. As Examples 2.5 and 2.6 show,
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vanishing of these functionals (i.e., formal solvability) is not sufficient for
solvability in analytic germs: there may exist linear functionals depending
on all derivatives of y(z) obstructing solvability. Both types of functionals in
Examples 2.5 and 2.6 are continuous in the space of germs, and since their
vanishing is sufficient for local solvability, the solvability is normal.

Another type of obstacle to solvability is related to the so-called “small
denominators”.

ExampLE 2.7. The equation

e(&,m) — bp(AE, pm) = v(E,m), (&m) € RZ,

is formally solvable for an arbitrary analytic germ v(£,7) at (0,0) if the
nonresonance conditions

1—-bXu? #0, p,g¢€N;U{0},

are fulfilled. Since under these conditions every monomial £P9? belongs to
the image of T, the latter is dense. Moreover, if

[1—BbXPpd| > P79, p,qe N, U{0},

with some £ > 0, then the formal solution converges in some neighborhood
of the origin and defines a local analytic solution. On the other hand, such a
solution may not exist if pathologically small denominators are present. For
example, if = b= e, A = =%, where f satisfies |§—p/q| < 1/4! for infinitely
many integers p,q > 0, then the function v(£,n) = (1 — £)™*{1 — )~ does
not belong to the image of T, since the formal solution does not converge at
all. In the present situation of small denominators the image of T' is dense
but not closed.

Examples of the above type were known as far back as Euler, But solv-
ability conditions and description of corresponding functionals for general
equations of the form (2) in a neighborhood of a fixed point are not known
vet.

3. Global obstacles. Suppose that the manifold X is covered by open
sets U, invariant with respect to F:
X =| U, FUyCU,.
o

Then we can restrict the linear equation (2) to every U, and consider the
equations

Tea = Yoy Ya= 'ﬂUc. € A(Ua):
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with respect to a function y, analytic on U,. In what follows we consider
only those analytic functions v on X for which every such restricted equation
has a solution ¢, € A(U,). We denote by A(X, {U,},T) the subset of all
functions v € A(X) for which v € Im T}y, for every a.

To every set {ypa} of “local” solutions there corresponds the 1-cocycle
cap(7) = (w8 — Pa)lv.nu,- ¥ {$a} is another set of solutions corresponding
to the same function v, then {@,} generates another cocycle {cog(y) =
(8 — Pa)lvanu, }- Tt is evident that

(9) TCQ,@(’Y)IU&DU,&] = TE&,B(’Y)'U&“U'& = 0?

and ., — $o € KerT|y, for all a’s. Denote by E the space of all cocycles
{cap} satisfying (9), endowed with topology of the direct product

B =] AU N Up)
o8
where, as before, A(V) is the space of analytic vector functions on V. Let
Ej be the linear subset of E formed by the cocycles c,5 = 95 — ¥4 where
Yo € A(Uy,) are solutions of local homogeneous equations

Tehec = 0.

To each function v € A(X,{Uq}, T) there corresponds the equivalence class
[v] from the guotient space E/FEy. We endow Ej with the induced topology
of E and note that, generally speaking, Fp is not closed in E. As a result,
E/Ey may not be Hausdorff.

THEOREM 3.1. Let F be an analytic mapping, {U.} be an open covering
of X by F-invariant subsets, and A{z) and v(z) be analytic matriz and
vector functions on X. '

(i) Equation (2) has & solution ¢(z) analytic on X if and only if [y] = 0.

(ii) For every class ¢ € E/Eq there exists a function v enalytic on X
such that [y] = ¢

Proof. (i) Let v be given and let Tp(z) = y(z) for some ¢ € A(X).
Then the family {@a{®)}ocr, With pa(z) = ¢(2)|ccv, generates the zero
cocycle from [v], and hence [y] = 0. On other hand, if v € A(X,{U.},T)
is such that Tips(x) = v(z), © € Uy, for every , and [y] = 0, then there
exists a family {1, } of analytic solutions of T%, = 0 such that

¢a(z) — palz) = Ps(e) —da(z), = €UsNUp.
Now
p(2) = pa(z) — talz), = €Ua
is a well defined function from A(X) satisfying (2).
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(ii) Let ¢ € E/Ey, and let pop € A(Usg) be a representative of c.
Consider a “real” Cousin problem

(10) Pa(®) — PalT) = Paplz), Yo € AUa).

It is well known (see [G], [W]) that there exists a real-analytic imbedding & :
X — RY. The submanifold X C RV is covered by the family {$U,} C X
and every function gap(z), € Uy, may be transferred to a real-analytic
function Faa(y) on {SU.NSUz} C BRY. Now it is evident that there exists a
family {T/,} of complex neighborhoods of {$U,} such that |, U, is a Stein
manifold (cf. [H]), and for every pair (e, 5) the function ¢.g has an analytic
extension to Uy N /5. According to the well known theorem (cf. [H]), there
exists a solution {@,(z)} of the Cousin problem

‘;Eﬁ(z)_ﬁza(z) =$aﬁ(z)7 z € Uanﬁ,ﬁ-
The set of functions
‘PC!(Z) = (:5,1(@59:), TE Uou

forms a solution of problem (10).
Starting with {p,{z)} we set

(11) Yo(®) = Tipa(z), @ € Vs
If x € U, N Upg, then, according to the definition of F,

Ya{z) — va(z) = T(pp(z) — ¢alz)) = Tpas(z) =0
and (11) defines a function v € A(X,{Us},T). According to the above
construction, [y] = ¢, which completes the proof,

For v € A(X,{U,},T) set B(y) = [v] € E/Ey. The operator & :
A(X,{U},T) — E/Eq is linear and Theorem 3.1(i) states that Ker® =
ImT. Generally speaking, @ is not continuous, and, as we will show later
(see Section 5.2), Ker ® may not be a closed subspace. Nevertheless, if © is
continuous, then statement (i) implies that I T" is closed, or in other words,
that (2) is normally solvable.

. 4. Equations in a single variable. In this section we consider equation
(1) on the real line R and on the circle T'. We assume that F is an analytic
diffegmorphism and denote by Fix(F) the set of all its fixed points. If F :
R! — R! has no fixed points at all, it preserves orientation and, as we
will see later, F is analytically conjugate to the shift z — 2 + 1. If there
exists only one fixed point, then F' may either preserve or reverse orientation
on R. Tt easily follows from the Poincaré-Dulac Theorem that if the fixed
point is of hyperbolic type, then F(z) is conjugate to a linear transformation
T — ax +b, la| # 1. In the case of more than one fixed point F' preserves
orientation, ie., F'(z) > 0, 5 € R!.
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4.1. Equations with o fired-point free diffeomorphism
THEOREM 4.1. Let Pix(F) = 0 and let

Glz,y) = (Fz,9(z,y))
be an analytic diffeomorphism of R' x R™. Then equation (1) has an analytic
solution @ : Rt — R™.

In particular, for the linear equation (2) we have g(z,y) = A{z)y+v{(z),
and it generates an analytic diffeomorphism G(z, y) if det A(z) % 0. For such
A(z) the operator T is surjective in the space A(R') and so CokerT = {0}.

Proof of Theorem 4.1. Without loss of generality we can assume Fz > z.
Let F(0) = a and let p(z) be a solution of (1) in a neighborhood of [0, a]
guaranteed by Theorem 2.1. Then the relation

(p(ﬂ.’.‘) =g(z,p(Fz)), z€l,
gives a step-by-step continuation of ¢ from [0, ¢] to [0, co). Further, we have
GHay) = (F e, h(z,y),  g(z,h(Fz,y)) =y,
and the relation
¢(z) = h(z, p(F'a))
gives a step-by-step continuation of ¢ from [F~1(0),0] to (~o0,0]. Both
these continuations define a global solution of (1).
THEOREM 4.2. Let Fix(F) = 0 end let

det A(z) #0 (xR,

Then the space Ker T is infinite-dimensional.

Proof ¥or definiteness, assume that det A(z) > 0. It follows from The-
orem 2.3 that there exists a global diffeomorphism &(z,y) = (H(z), S(z)y)
which conjugates the mapping

G(z,y) = (Fz, A~ (z)y)
of R* x R" onto itself to the simplest mapping
Go(z,y) = (z + L, 1).
The homogeneous equation corresponding to Gy has the form

¥(z) ~¢(z+1) =0
It is satisfied by every l-periodic analytic vector function 4. As a result the
function ¢{z) = S(H z)y(H 'z) is a solution of the equation T'p = 0.
Using Theorem 4.2 it is eagy to show that the conclusions of Thecrems 4.1

and 4.2 remain true if det A(z) has a finite number of roots. The following
exaraple shows that neither of these assertions holds for A(x) arbitrary.
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ExaMPLE 4.3, The scalar equation
(Tp)(z) = o(z) — (sin2nz)p(z + 1)=1

has no analytic solution on the whole line and the corresponding homoge-
neous equation has no analytic solutions except the trivial one. Indeed, if ¢
is such a solution then
¥(z) = (sin® 2mz)y(z + k).
Hence, 4 has a root of infinite order at z = 0. Being analytic, it is identically
zero. It is easy to see that the function
1
o(=) = 1 — sin2nz

is a unique meromorphic solution of the nonhomogeneous equation. There-
fore the latter has no analytic solution.

If v € A(R') is a function such that v(z) = O{z~?) as Rz — oo with
|&2z] < 1, then the function

o0
w(z) = z:(sin"c 2nz)y(z+ k)
k=0

is a real-analytic solution of the nonhomogeneous equation (T'y)(z) = (z).
Since every v € A(R') may be approximated in A(R') by a sequence {v,}
satisfying the above decay condition, the image of T is dense in A(R'). Thus
we have an operator (2) for which dim(Ker T') = dim(Coker T) = 0 and ImT
is not closed in A(R').

4.2. The case of o single hyperbolic fized point. We assume here that F
has only one fixed point z¢ and that |F'(zp)| < 1.

THEOREM 4.4. Every formal solution of (1) at xo has a positive con-
vergence radius and extends to an analytic solution on R*. The operator T
from (2} is a Fredholm operator.

Proof. The first assertion immediately follows from Theorem 2.4 and
the possibility of extending a local solution onto the entire real line using
(1} and the relation F™z — zg (n — oo0). The linear equation is normally
solvable since formal solvability implies the existence of a global solution.

To prove that dim(KerT) < oo choose m > 0 such that ||A{zo)| -
|F'(zo)|™ < 1. If 1 and o are two solutions of the homogeneous equa-
tion such that

p1(x) — pa(z) = O(lz — 2o|™),
then ¢; = 3. Hence, dim(KerT) does not exceed the dimension of the
space of all vector polynomials of degree < m, and dim(KerT') < n(m+ 1).

It remains to show that dim{Coker T}« oc. To this end we note that

the formal solvability condition may be stated as a set of linear restrictions
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imposed on derivatives of v at the fixed point. There are only a finite number
of such conditions and they are determined by the resonance relations
(13) wd* =1, o; €specA(zy), k >0.

Since |A| < 1, there are no more than pm independent relations of this type.
So dim(CokerT) < oo and T is Fredholm.

Note that there exists an explicit formula for the solution of the lin-
ear equation in this case. Namely, let m be as above. Since (2) is formally
solvable, there exists a vector polynomial wg such that

Yo(z) = ¥(z) ~ (Tpo)(z) = O(jz — =o|™) (= — T0)-
The series
w(z) = polz) + Z Alz) ... A(F*2)yo (FF+1z)
k>0

defines an analytic solution ¢ on the real line. In addition, @y depends on
v(z6),. .. ,yime1) (zo) only and may be chosen continucusly depending on .

We will see that if F' has more than one fixed point, then dim(Coker T")
= 00,

4.3. Eguations with #Fix(F) > 2. Let now a real-analytic diffeomor-
phism F : Rl — B! have several fixed points 21 < ... < &,

THEEOREM 4.5. If all fived points of F are of hyperbolic type and A(z)
is non-singular for all & € RY, then (2) is normally solvable in A(R). In
addition, the subspace Ker T is finite-dimensional and dim(Coker T') = oo.

Proof. The system of open intervals
Uy = ($k—1amk+1): k=1,...,n To=—00, Tny1 =00,
forms an open covering of R* by sets which are invariant with respect to F.
Given v € A(R'), assume that (2) is formally solvable at every fixed point
zx. Then for every m > 0 there exist polynomials oz whose degrees depend
on m but not on &k and - and such that
rYk(m) = ’7(‘7") - T(Pk(CC) = O(lm - mHM)’ T € Uk: k=1,...,n.

Following the proof of Theorem 4.4 we choose m sufficiently large and obtain
a solution of (2) in A(Uy) in the form

(14) Bu() = prl@) + @) + 3 Al)... AP Ty (FHa), Flax) <1,
g20
and

(16)  @x(z) = wi(z)
=S AT F ) AN F e (F ), Fl(a) > 1

=1
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The differences cx (z) = $p41(x) — Pi(z), k= 1,...,n~ 1, are solutions of
the homogeneous equation (2) on the sets Upy MU = [#k, Tx+1], and form
a l-cocycle corresponding to the covering {Uy}. According to Theorem 3.1,
equation (2) is solvable if and only if

Choyy () = Ppaa () — (NE

where {1}, }2_, is a set of the solutions of the homogeneous equations Ty ()
=0,z € U, £ = 1,...,n. Since the functions ¢; and - in (14) and
(15) depend continuously or v, the linear operator transforming every func-
tion v € A(RY, {Ui},T) into {cp~} is continuous. For every k the space
of solutions of Ty, = 0 is finite-dimensional, implying that Eg is finite-
dimensional and hence a closed subspace in E. We conclude that the oper-
ator © : A(R!, {Ug},T) — E/Eq defined in Section 3 is continuous and the
space ImT = Ker @ is closed in A(R?).

Tt is evident that dim(Ker T) < min dim(KerT)|y, < oo. To prove the
last statement of Theorem 4.5, we note that in the present situation the
space F of cocycles is formed by all collections C' = {egx}f; of functions
analytic in the intervals (zy, zp+1) and satisfying Tex(z) = 0. Since F has
no fixed point in Uy N Up.p1 for every k, according to Section 4.1, the space
of solutions to T(z)|y, = 0 is infinite-dimensional. On the other hand,
the space Eq is finite-dimensional and therefore the quotient space ¥/Fy
is infinite-dimensional. Since the correspondence 7y — [y] generates a lin-
ear one-to-one mapping of A(RY, {Up},T) onto E/E,, we conclude that
dirm{Coker T'} = oo, which completes the proof.

ExampLE 4.6. Consider a cohomological equation
(16) o(z) — ¢(Fz) =v(z), zeR,

where F' is as in Theorem 4.5. It has a local solution ¢, € A(Uy) if and only
if y{zg) =0, k=1,...,n, and the solution is given by the series

> y(Fra),

z € Uk, F'(zp) <1,

wr(z) =< ™%
=" F ™), €Uy, Fl{zi) > 1.
m=1
Therefore
oo
Cry(2) = Z Y F"x), x €Uy Uk,
m=—oo

and according to Theorem 3.1, equation (16) has a global solution ¢ € A(R!)
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if and only if
oo
Z Y(F™z) = const, =z &€ U NUky1-
M= - 00

4.4. Equations on the circle. Letnow X =T = {z € C: |2| = 1}. It is
known (see [N]) that if the rotation number of F is rational, then its set of
periodic points is non-empty and all these points are of the same period p.

A periodic point zg is called hyperbolic if |(F...F) (zo)| # 1.

r

THEOREM 4.7. Let F : T* — T! be an analytic diffeormorphism with
rational rotation number and with hyperbolic periodic poinits, and suppose
an analytic matriz function A(zx) is non-singular on T'. Then equation (2)
is normally solvable in A(T'), the subspace Ker T is finite-dimensional and
dim(Coker T) = 0.

Proof. Since all periodic points {z1,..., 25} are hyperbolic, their num-
ber is even. Let p > 1 be the least period for all points z1,...,2,. Then
21,...,2q are hyperbolic fixed points for F7. Denote by U;, z; € Uj, the set
of corresponding F¥-invariant arcs. The case p = 1 may be treated exactly
as in Section 4.3, and without loss of generality we assume that p > 1.

If g =2,thenp =2, U;NU; = T\ {z1,22} is a union of two non-
intersecting arcs V1 and V;, and F interchanges V4 and V5. If ¢ > 2, then
FUN Uj) NN Uj) ={.

Let Lo(z) = A(z)p(Fz). The equation (I — LP)p = - is of the type
considered in Section 4.3. Repeating the arguments from the proof of The-
orem 4.5 for the operator T, = I — ¥ we find that dim(KerT,) < oc and
hence dim(KerT) « oo, and Im7T,, is a closed subspace. Using Lemma 2.1
from [BB] we conclude that Im T is also closed.

To prove that dim(CokerT) = oo, we notice that if v+ € ImT, then
Ry=~v+..+LP vy ¢ ImT,. Let us find an infinite system of linearly
independent functions v € A(T') such that Ry & ImT}.

Since F is hyperbolic at 21, . .., 2g, every subspace Ker Iy |7, 7 = 1,..., g,
is finite~dimensional, and hence the space E; generated by I} according to
Section 4.3 is also finite-dimensional.

Let + vanish with all its derivatives ap to sufficiently high order m > 0
at z1,...,%q. Then the function

==}
H@)= Y L*Ry()
k=—o00
is well defined and analytic on T\ {21 ..., z4}. According to Theorem 3.1(i),
Ry € ImT, if and only if Hy € Ey. On the other hand, if h(z), x € U1 N Uy,
is a solution of the homogeneous equation Tph(z) = 0, then according to
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Theorem 3.1(ii), there exists I' € A(T*) such that the class [I'] € E/E,
coincides with the class generated by the cocycle

)= hiz), a=1,8=2,zcUNU;,
Cof(®) =\ g a#tlorB#2%cgUinly,

if ¢ > 2, and is equal to

M), TE T
e ={5 25

if g = 2. Since I' € A(RY, {U},T}), the equation Tpep(z) = I'(z)]u, has
a solution ¥ € A(Us) for every k. Hence the equation Tpe(x) = I'(z) is
formally solvable at every point z1,. .., z,. Therefore for each m there exists
a function ¥ € A(T!) such that all derivatives of y(z) = —Tptho(x) + I'(z)
up to order m vanish. Ti is evident that v € A(R', {Ux},Tp) and [I] = [4].
If m is sufficiently large, then the series

S ()

ke=—00

converges and its sum is {ca s(z)} + &(x) where € € Ey. Now we have

)= Y IRy

k=—o0

oC
=R Z LP () = h(z) + Répz(z), zeUinls.
k=—o0

The set {RC12(x)}, z € Uy NTUs (or z € Vi if ¢ = 2) is a finite-dimensional
subspace in A(U; N Up) (or A(V1), respectively), while h is an arbitrary
function from Ker Tp|y, ry, (or from Ker Ty v, ) which is infinite-dimensional
according to Theorem 4.2. Therefore indeed there exists an infinite system of
linearly independent functions v € A(T*) for which Ry ¢ ImT},. Hence di-
mension of the quotient space RA(T')/Im T}, is infinite and dim(Coker T') =
dim{A(TY)/ITm T) = oc.

5. Some multi-dimensional examples. Here we illustrate relations
between global solvability of {2) and its local solvability on covering sets in
the case of several variables. For simplicity we consider the cohomological
equation

17 (Tp)(z) = plz) — o(Fz) =v(z) (z€X)
Properties of the cohomeclogical-equation essentially depend on “dynam-
ical singularities” of F. For instance, let ¢ be a solution of the Abel equation

p(2) - 9(Fz) = 1.
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Then, iterating, we get
pla) ~p(F"s)=n (necZ).

Hence, if there is a periodic point, F"zy = xp, then the Abel equation has
no solutions. Moreover, it is easy to see that if F' has a non-wandering
point then there are no continuous solutions. Recall that zg € X is called
non-wandering (see [N]) if for any neighborhood U 3 g there is n # 0
such that F*{U)Y N U 5 0. As shown below in Section 5.2, the absence of
non-wandering points is not sufficient for the Abel equation to be solvable.
A dynamical criterion of solvability of the Abel equation was found in [BL)].
To formulate it let us call a compact subset K C X non-wandering if for
any neighborhood U > K there exists n % 0 such that F*({U)YNU # 0.
On the other hand, a compact set K is called wandering if there exists a
neighborhood U D K such that F*(U)NU = § for all n # 0.

THEOREM 5.1 (see [BL]). The Abel equation has ¢ solution ¢ € A(X) if
and only if all compact subsets are wandering.

5.1. Multidimensional shift. Let us start with the shift Fz = x+e, where
ec R e#0, and v € A(R*). If n = 1, then according to a classical result
of Picard, equation (17) has a solution ¢ analytic on the closed interval [0, €],
and the equation itself permits one to extend v to an analytic solution on
the entire axis R', If n > 1, then the Picard theorem. applies to (17) with
respect to one of variables, and since the dependence of v on the remaining
variables is analytic, (17) is solvable in A(R") for every v € A(R™). It is
evident that the space of solutions to the homogeneous equation {17) is
infinite-dimensional. We refer the reader to [BT2] for another approach to
the solvability of difference equations more general than {17).

5.2. A hyperbolic mapping of a cut plane. The translation ¢ — z ++ e
is the simplest diffeomorphism of B* without non-wandering points. The
following example shows that general diffeomorphisms with such properties
can lead us to more complicated situations.

Let X = R?/(~00,0] and

F(&,m) = (Nun), (EmeX, 0<A<l<y

It is easy to see that X is real-analytically diffeomorphic to R?, and F' is
non~wandering points free.
Moreover, as we show below, there exists an open F-invariant covering
X = U; UU, U Us such that the restriction 7|y, is surjective in A(Ug}.
Nevertheless the Abel equation

(18) wé,m) — e um) =1, (& eX,
has no continuous solution @(£,7n). Indeed, if (€, n) were such a solution,
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then
w(&m) — (A", p"™) =n, n=012,...,
or
w7 — (A", n) = n.

For £, > 0, we have (£, p"™n) € X, (\"£,n) € X, producing a contradiction

()0(5: 0) - (10(0’ 7?) =00
as n — co. In other words, the operator Tw(£,n) = (£,1) — w(AE, un) is
not surjective in A(X).
From the point of view of Theorem 5.1 the absence of solutions means

the existence of non-wandering compact subsets K C X. Here is an example
of such a subset:

K:{m:(&,’q):gv{—n:l’ é’gnZO}
On the other hand, the open sets

UDr={(n):n>0}, Us={{¢n:n<0}, Us=A{(&n):&>0}

form an invariant covering of X. Since Fy,, k = 1, 2, 3, is analytically conju-
gate to a shift in R2, according to Section 5.1 the operator T is surjective in
A(Ur). In particular, the following functions are solutions to (18) in A([/z):

Ingy
T (€,m) € Uy,
In |n|
= { k=1,2,3).
(,Ok(é- "7) ].nM 3 (&: T’) € U21 ( 3)
Ing
_mr (5,7}') = U3¢

Now we can explain why the Abel equation has no solution in A(X) from the
point of view of Theorem 3.1. The functions ¢ (£, n) generate the cocycle

0 (gan)eUanﬂ.*ﬁa

(1) aslen-{i e EMEBOTL 45
%‘g’l;-' - %E, (&) € U2 N,

To describe the set Ej, consider the equation

(20) p(&m) — (M, pn) =0, (& n) € Us.

The mapping

B¢, m) = (g, &Yon), Meu=1,
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is a real-analytic diffeomorphism of Uz onto R? which transforms (20) into
the equation

A(u,v) — h(u+InAv) =0
where @(£,7) = h(ln £, £1/%). Therefore the general solution of (20) has the

form
L
wlésm) = (lni,e”‘* )

where h(u,v) is an arbitrary real-analytic function, 1-periodic with respect
to u. The same arguments applied to (20) in Uy and Uz show that the
space Ep corresponding to the covering {Uk} is formed by all cocycles ¢ =
{er;(€,m)} with

0) (5aﬂ)€U10U2=@,

| g /e, ) _ Inny
cri(€,m) = s (ln)\’g ) ( 67 ) (&n) € UiNUs,
ks (Ei gl/a,’,’) _ (lnlnl,gl |o¢), (&,n) € V2N s,

where h;(u,v), i = 1,2,3, are functions analytic in R?, 1-periodic with
respect to u.

According to Theorem 3.1, if (1) has a solution in A(X), then the co-
cycle (19) belongs to Eg. This means that there exist functions h;(u,v) €
A(R?),1 = 1,2,3, such that h;(u+ 1,v) = h;(u,v) and

E—ln—"ﬁz (llzi,f”“ )—hl(hm,fn ) (6:m) € 1N Us,

InA Inp
& Il _p (28 e, in tnl
111)\_ ].I].",l. —h lnA’E - ?ﬂ } ? (Syn)eUang

However, if n = 1, £ — +0 then the first equat1on yields In&/In X = O(1),
which is impossible. Hence {c;x(€,7)} € FEp in complete accordance with
Theorem 3.1, and, once more, 1 € ImT".

If, in addition, we assume that there are no resonances, i.e., Wud =% 1,
p20,¢20,p+¢g>0, then

T(EPnT) = (1 — M uf)EPnf,

and therefore Im 7" contains all polynomials in £, vanishing at (0,0). Ac-
cording to the Runge Theorem (cf. [H]) there exists a sequence of polynomi-
als tPy, (1), converging to 1 in A(Ry.), By = (0, 00), as m — oo. Then the se-
quence (£24+n*)P,, (€2 4+n*) € Im T converges to 1 in A(X). Therefore, Im T
contains all polynomials, and TmT = A(X). In other words, the image of T'
is dense but not closed in A(X). Hence, the subspace Ker & constructed in
Section 3 is not closed either. :
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If, on the other hand,0 < A,z < 1 (or A,z > 1), then all compact sets
in X are wandering and according to Theorem 5.1 there exists an analytic
solution of the Abel equation (18). In the present situation we can give a
constructive description of the solution. To this end we note that the function

1

h(z) = {In(3*& + p>n?)ds, == (¢ n),

0

is analytic on X and the function
u+t+1
(21) Ten(w) = RO pn) = | (€% + 4%n%) ds
i1

is an analytic diffeomorphism of R*. Let (£, n) be the pre-image of 0, i.e.,
a solution to the equation o¢n,(p) = 0. It is evident that p(£,n) is ana-
Iytic with respect to (£,7) € X. Since (A%, un) is the unique solution to
h{AuttL ¥ tty) = 0, we obtain

P(F*(z)) +t = p(z),
with Ft(z) = (A%, u'n), and (£, n) is a solution to the Abel equation (18).

In addition, if 0 < A, p < 1 {or 1 < A, u), then the operator T'w(£,n) =
(&, 1) — e(AE, un) is surjective in A(X). To prove this, let

Y ={z=(n) € X :¢({n) =0}

or according to (21),
1
Y= {(E: neEX: Sln()\23£2 + u2n?) ds = 0}.
0

It is evident that Y is a real-analytic curve in X which is diffeomorphic to
RLIfF: X — Y xR is defined by

B(z) = (F*(), p(2)),
then
&(F(z)) = (F¥®) (), p(z) - 1).
In other words,® conjugates F to the shift {y,5) — (y,s —~ 1) on ¥ x R
According to Section 5.1 the cohomological equation

‘P(f:'fl) - 90()\5,#?7) = 7(6”’7)7 (5,7?) € X:
has a real-analytic solution @{£,n) for an arbitrary real-analytic function

(& ).

5.3. Source-sink on the sphere. Let X be the standard sphere S c R™+!,
and F : 5" — 8" be a diffeomorphism with two fixed points z; and zp, the
former being a source and the latter a sink. This means that F'(z)} is a
matrix function on 5™ with spectrum outside the unit disc at z = 2 and
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inside the disc at z = 2p. Two sets Uy = 5™\ {23} and Uy = §™ \ {21} form
an invariant covering of S™ with exactly one fixed point each. If v € A(X)
and (17) has a solution ¢ in A(X), then v(2) = v(22} = 0. On the other
hand, if this condition is satisfied, then the series

2] w1

Y AF¥2), 26Uy — Y {F*2), zel,

k=0 k=00
define analytic solutions to (17) in A(U3) and A(U1 ), respectively. The solu-
tions of homogeneous equations (17) in A(Uz) and A(U:) are constant, and
the following statement is valid.

THEOREM 5.2. The cohomological eguation (17) has o solution ¢ <
A(S™) if and only if v¥(z1) = y(z2) =0 and
o0
Z Y(F*z) = const  (z # 21, 22).
=00
The operator T is semi-Fredholm: its image Im T is closed, its kernel Ker T
is one-dimensional and dim(Coker T') = oo,

Proof. Thesolvability criterion follows from Theorem 3.1, and it implies
that the subspace Im 7T is closed. Evidently,

Kex T = {y € A(S™) : ¥ = const}.

According to Theorem 3.1(ii) to prove the last claim of Theorem 5.2 it is
sufficient to check that

dim(Ker T‘S“\{ZI,ZQ}) = 0.

Indeed, let g € A(S™\ {21, 22}) be a solution of the Abel equation, existing
by Theorem 5.1. Then for any 1-periodic function 7 € A(R") the function
¥(z) = 7(po(2)) is an analytic solution of the homogeneous equation on

sm \ {zl, z2}.
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Selfsimilar profiles in large time asymptotics
of solutions to damped wave equations

by

GRZEGORZ KARCH (Wroclaw)

Abstract. Large time behavior of solutions to the generalized damped wave equation
ug + Aug + vBu + F(z, t,u,1, Vu) = 0 for (z,t) € R* x [0,00) is studied. First, we
consider the linear nonhomogeneous equation, i.e. with F' = F(z, t) independent of u. We
impose conditions on the operators A and B, on F, as well as on the initial data which lead
to the selfsimilar large time asymptotics of solutions. Next, this abstract result is applied
to the equation where Aw; = g, Bu = —Au, and the nonlinear term is either Juea |97 gy
or |u|°"'1u. In this case, the asymptotic profile of solutions is given by a multiple of the
Clauss-Weierstrass kernel, Our method of proof does not require the smallness assumption
on the initial conditions.

1. Introduction. The goal of this paper is to study the large time be-
havior of solutions to the initial value problem for the generalized semilinear
wave equation with a dissipative term

(1.1} wg + Aug + vBu+ F(z,t,u,u;, Vu) =0, xe€R", >0,
(1.2) w(z,0) = ug(z), welx,0) = uz(z).

In the equation above, the pseudodifferential operators A and B are defined
via the Fourier transform by the formulae

(1.3) Au(g) = le1"0(¢) and Bu(€) = |¢15(8)

for some real constants a and b satisfying 0 < 2a < b. Moreover, » > 0
is a fixed constant, and assumptions on the nonlinear term are specified in
Section 2 below.

Our main purpose is to find conditions on the operators A and B, on
the nonlinearity F, as well as on the initial data up and wuy, which lead
to the selfsimilar large time behavior of solutions. In the first step of our
considerations, using the Fourier transform we solve the linear equation

2000 Mathematics Subject Classification: 356B40, 351,15, 35L30.
Key words and phrases: the Cauchy problem, generalized wave equation with damping,
large time behavior of solutions, selfsimilar solutions.
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