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The Heisenberg group and the group Fourier transform
of regular homogeneous distributions

by

SUSAN ELIZABETH SLOME (New York, NY)

Abstract. We calculate the group Fourler transform of regular homogeneous distri-
butions defined on the Heisenberg group, H™. All such diséributions can be written as
an infinite sum of terms of the form F(8)@T ¥ P(2), where (z,£) € C* x R, w = |z|® — i,
¢ = arg(w/w) and P{z) is an element of an orthonormal basis for the spherical harmonics.
The formulas derived give the Fourier transform of the distribution in terms of a smooth
kernel of the variable & and the Weyl correspondent of P.

1. Introduction. In this paper we derive formulas for the group Fourier
transform of regular homogeneous distributions on the Heisenberg group,
H"™. (We use coordinates (2z,1) € C" xR on H™). It can be shown that all such
distributions can be expressed as an infinite sum Y f;(§)w " P;(z). Here,
w = |2|2 — it, § = arg(W/w) and the P;(z) are elements of an orthonormal
bagis for the spherical harmonics.

The group Fourier transform is a map from L!(H") into the space of
families of bounded operators defined on a Hilbert space. In many applica-
tions the Hilbert space is taken to be LZ(R™). The domain of definition of the
transform can be extended to include tempered distributions on H". The
group Fourier transform is of interest because it extends to a unitary map
from L?(H") to the space of families of Hilbert—Schmidt operators. Also, the
group Fourier transform (which we will denote by %) behaves nicely with
respect to convolution defined by the group multiplication on H™. That is,
(f*xg)fy = Fu - Gu, where the multiplication on. the right is composition of
operators.

The group Fourier transform is closely related to the Weyl correspon-
dence. In fact, the formula we present gives the group Fourier transform of a
regular homogeneous distribution in terms of the Weyl correspondent of P;.

This correspondent will be denoted by W(F;). The set
{W(P) | P is a homogeneous harmonic polynomial}

2000 Mathematics Subjeet Classification: 46Fxx, 22830,

(251



252 8. E. Slome

is of particular interest in its own right. It was shown by D. Geller [5] that
the W(P) constitute operator analogues of spherical harmonics.
Since every regular homogeneous distribution K(t, z) expands to a sum

N ()T Pi(2),

when calculating Kp it is enough to consider terms of the form f(8)w—*P.
We will see, in the case P = 1, that the Fourier transform is a diagonal
operator with respect to the usual Hermite basis.

There is a classical analogue (9] to the result proved herein. If K is a
regular homogeneous distribution on C*, then K is an infinite sum of termns
of the form c|z|~2*P(z). The result referred to states that

F(I (k)= P(2)) = T P(S)

where F is the usual Fourier transform, and § = n + deg P — k. The calcu-
lation in our case is complicated by the presence of the function f(#) in the
expression for K.

Sections 2, 3, and 4 contain introductory definitions and results; for more
detail see (7], [8], and [9].

In Section 6, we calculate the group Fourier transform of K, homoge-
neous of degree > —2n —2 (hence, K defines a distribution). In Section 7 we
consider K homogeneous of degree < —2n — 2. In this case K no longer de-
fines a distribution; however, it is possible to define a distribution Ax which
agrees with K away from the origin. We compute the Fourier transform
of A K-

I wish to thank D. Geller for many enlightening discussions.

2. The Heisenberg group. The Heisenberg group, H", is a Lie group
with underlying manifold C* x R. For ({,t) and (n, s) in H", the multipli-
cation is given by

(1) (€.1)- (m8) = ({+mt+s+2Im(¢- 7).

Let ( = (21,..-,2n) and 2; = @; + iy;. Then the left nvariant vector
fields which agree with 8/0z;, 0/8y;, and 8/8t at the origin are, respectively,
X; = 8/0z; + 2y;0/0t,Y; = 8/8y; — 22;0/6t and T = §/8t. These vector
fields form a basis for the Lie algebra of H® and they satisfy the following
commutation relations:

Yy, Xg] = 46, T.
All other commutators are zero.

We shall be interested in a particular clags of unitary representations
of the Heisenberg group and the corresponding representations of the Lie
algebra. For all real A different from zero, define a mapping Ry from H™ to
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the group of unitary operators on L?(R") by
) [RA (G, 1)) = 2wt u/a4i/a) (g )

Here { = u+iv and f ¢ L? (R™). These representations are irreducible,
and up to unitary equivalence these are all the irreducible, infinite-dimen-~
sional representations of the Heisenberg group.

‘We now turn to the connection between the above representation and
the Weyl correspondence.

3. The Weyl correspondence. The Weyl correspondence was origi-
nally introduced in the development of quantum mechanics. Classical me-
chanics involves the study of functions dependent on 2n variables, a(p1, ...
veesPns @1, -+ -, Gn ). The quantum mechanic approach is to replace the p; and
g; variables by operators F; and @); acting on a Hilbert space H, satisfying
the commutation relations

[P, Qxl = (A/(2m))8se .
The question then arises: how, in general, is the operator

a(Py, ..., Py, Qu,...,Qn) = a(P,Q)

defined? Weyl answered the question in the following way.
First consider the function

) afp,g) = i),
Since the operator 2wi(u - @ + v - P) is skew adjoint, the operator

W(u,v) = 2w @+eP)
is unitary and this is the operator assigned to the exponential function (3).
Then by analogy with the Fourier transform and its inverse, to any function
a(p,q) assign
(4) W(a) = S 2w Q+o-Plgy v) du dv.

R xR
Here @(u, v) = {gn  gn e~ 2mil@utyvig(z, 4) da dy. The operator W(a) is called
the Weyl correspondent to a(p, q). One realization of this scheme is to take
L2(R"™) as the Hilbert space, fix A = 1, and set

(Qif)(=) = z; f(e),

and

(B (@) = e ().

2mi O
Civen this choice of H and P and @Q, we can see how W(u,v) operates on a
function f in L?(R™). Firsi observe that _
(5) W(us,vs) - W(ut,vt) = W(u(s +1),0(s + t))
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and

(6) ?lv—(us,'us) =2mi(u-Q+v- P).
ds 5=0

Now, W defined by
[W('U., ’U)f](ﬂ.’:) = e2wiz-ue7riu-vf(m + ’U)

satisfies properties (5) and (6). On the other hand, these properties uniquely
determine W.

More generally we work with operators which depend on the nonzero
real parameter A. That is, we have unbounded operators @45 and Pjy and
these in turn give rise to operators Wy (u,v) for A € R, A 5 0 defined by

(7 Wi (u,0) = it v,

and corresponding Weyl correspondent W, (a). We can view the operators
P, and @) as operators on Hilbert spaces Hj also indexed by the nonzero
real parameter. However, when convenient we may identify these Hilbert
spaces and drop the subscript. Again, if we identify the H) with L*(R"),
then the P;5 and @Q;x can be defined by

1 4f

Qj)\fz)\l'jf and PjAf:ﬂq—:EE;'

Notice that in this case, Rx{(,0) = W (u,v).

4. The group Fourier transform. The operators defined in (7) allow
us to define a mapping from L'(H") into the space of families of bounded
operators on H. We denote this space of families by B. The map is defined
as follows:

(8) Fald) = | ™™2W, (u,v) (¢, 8) dC dt.
H"

The operator fx is called the group Fourier tmnsfo'rm of f. Observe that
the following diagram commutes:

LMEM) —E . p
R TW*
Ll (jRZn)
The diagonal arrow is the Fourier transform

Filz,y) = S ez"i('“'m+”'y+t)‘/4)f(u,'v,t) du duv dt.
Hn :
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In the case where H), is identified with L?(R") and if ¢,% € L*(R"), the
operator fH is given by

(FrNe. ) = § (Ra(C D), %) £(C, 1) dC db.

H»

The group Fourier transform may also be defined in complex notation,
and for what follows, complex notation will be more convenient.

Beginning with the Weyl correspondent, we wish to assign an opera-
tor to the function f(¢ ,E) To do this we start with unbounded operators
Wise-- s Wn,\,WfR, . ..,W,;'}\ on a Hilbert space H) satisfying

Wi =Wh, W, —Wia] = 20851
The connection with the real case is given by the relation
Wy = Py +4iQ».
Then with the function e(-*C+#¢) associate the operator
Wi(z,Z) = e WA HEWs
The definition of the Weyl correspondent is analogous to (4). That is,

Walf) = | Walz,2)(F~ f)(z) V.
cr
Here F—1f is the inverse Fourier transform {, exp(z €—Z-Of(¢)dV. Now
if f € L'(H™), the group Fourier transform is given by

Fa) = | e™Wi(z,2)f (2, 8) dV.

H‘ﬂ
If we again take as our Hilbert space L*(H™), then one realization of the
operators Wi, WJT':\ is
(9) Wi = i(2Xm; + (1/2)8/8z;),
{10) w3 N = =275 + (1/2)8/0z;).

Associated with each H) there is a preferred orthonormal basis {Eqn}
where o € (Z*)". For a fixed value of A the basis of L*(H"), {Eo}, asso-
ciated with the operators Wi, WA is defined as follows. Set

Eoa() = (|\|/m)/4em ="
Then for all o € (Z)", define

@Ay~ lel/ 2l =12 (W) Bgx A >0,
Box = { 2P\ 1oV2al-/ 5§, i A< 0.

In the case A = 1/4, notice {(~8)l*E, 1/4} ave the Hermite functions.
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In general, for a fixed A, the operators W;, and WJ-T\ act as weighted
shift operators with respect to {Eqxx}. That is,
WisEox = (2040)?*Eg—e,, zero if o =0,
W Ear = 2ok + DN Borke,
for A > 0. The right sides are reversed if A < 0. Here, ) denotes (0,0,...,1,
.,0) € (Z*)™ with the 1 in the kth position.
Many of the nice properties of the usual Fourier transform have parallels
for the group Fourier transform. For example,

(f *9)%(X) = Fa(Ngu (), frge L'(H").
Here, the convolution is with respect to the group multiplication, and the
multiplication on the right is composition of operators. Also, if we set

(11) Z; = (1/2)(X; +1Y5),
(12) Z; = (1/2)(X; — i¥3),
then

(THE =—iMm,  (LHy=7FaWh,  (Zif)g=—FfaWix.
In the last three equations we assume that f is in the Schwartz space S(H™).
There is also an analog of the Plancherel theorem. Let B = {bounded
families R: for each A, R(}) is a bounded operator on Ha, || R{| =sup, [|R(A)||
< oc and for all o, § the map A = (R(A\)Eq,», Eg,) is measurable}. Then
the group Fourier transform (which henceforth we dencte by *) is a map

from LY(H™) into B and ||7]| < |||l Further, if we set
Ry = {R : for almost every A, |[R(A}|l2 < o0

and |RIZ = [ IROIBIA" d < oo}
R

(here, ||[R(A)]|2 is the Hilbert—Schmidt norm of R(A)), then * can be ex-
tended to a map from L?(H") onto Ry such that, if f € L2(H"),

1713 = (/")) F1.

There is a natural pairing of elements of B. If R, 5 € B and if

(13) b Y UR(Ea, SO Ea}(2IA])" dA < oo,
then we set
(RIS = | S (BON)Ea, SN Ea)2IA)" d).
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This pairing allows us to extend the definition of the group Fourier transform
to the space of tempered distributions 5 (H") Suppose that R is an operator
family and that (13) holds for all § = F.fes (H™). Then we say that for
F¢ 8, F = R in the sense of tempered distributions if F(f) = ¢, (R|f ) for
all f € S(H™).

5. Regular homogeneous distributions on H". Consider the follow-
ing dilations on the Heisenberg group: For r > 0, set D,({,¢) = (r(,r*t}.
Notice that D, is an automorphism of H™ whereas the usual dilation is not.

We wish to calculate the group Fourier transform of regular homogeneous
distributions on H™. Regular means that the distribution agrees with a ¢
function away from the origin. A distribution K on H" is homogeneous of
degree ! if for all ¢({,t) € 5§

(K,r 2 (r 1, r2) = ('K, ).
If K is a function, this condition is equivalent to requiring K(r(, r2t) =
rtK{¢,t). _
It can be shown [3] that every regular homogeneous distribution on H™
can be expressed in the form

(14) K(t,z) =) Kilt,|z*)Pi(#)

where {P;} form an orthonormal basis for the bigraded spherical harmeonics
and the K; are homogeneous of the appropriate degree. We can write

(15) Ki(t, 2 = fi(@yw™*

with w = w(t, 2) = |z|® —it, 8 = arg(W/w) and —2k;+deg P; = deg K’ (fi(@)
is homogeneous of degree zero).

In view of (14) and (15), when calculating the group Fourier transform
of a regular homogeneous distribution, it is enough to consider distributions
of the form

(16) HOym kP (2).

This was done in [5] for the case where K(t,2) = —kyy =Y P(z), that is, for
£(8) = €'*®. The precise result is stated below in Theorem 5.2, but first we
need to consider the Weyl correspondent of a polynomial Q(z)

The proof of the following theorem is given in [5].

THEOREM 5.1. Suppose P is a harmonic polynomial in ¢, ¢ where ¢ € C™.
If P =0, ¢CT then W(P) = 3 apy We(WH)? = T ap,(WHyTwe.

In equation (14) we stated that the P; were elements of an orthonormal
basis for the bigraded spherical harmonics. We wish now to clarify that
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terminology. Every polynomial P in the variables ¢ and { can be written in

the form
P((,0) =) am(?(™,
where the sum is taken over all multi-indices g,y € (Z7)", and a,, = 0 for
all but finitely many {g,~). Let
Pyq = {polynomials P(¢,() : agy = 0 unless o} =p, |v| =g}
Further, let A denote the Laplacian. Then
A:Ppg— Pyo19-1-
Set
Hyy = {P € Ppy: AP =0}.

The elements of Hy,, are called the (solid) bigraded spherical harmonics.
‘We are now in a position to state the main result of the paper. The proof
will be given in Section 6.

THEOREM 6.6. Given the regular homogeneous distribution K(t,z) =
FOYW*P(z), with P € Hyy, p+q=t and —2n— 2 < k— 2Rek < 0, the
group Fourier transform of K is K(A) = J()), where J is defined by

m

ﬂMEﬂzc(Sf@KMwM@MMPMm.

-7
Here M =|a| —pifA>0, M = |e|~qif A<0, and
C= (_1)qwn+121—n—nl)\|—j’

where j =n+x+1—k. The function Kys is a smooth function of 8 defined
in eguation (17) below.

The following theorem was proved in [5] as Proposition 7.1.

THEOREM 5.2. Suppese k,v € C, kK = p+ ¢. Suppose v and k — «y are
not equal to 0, —1,—2,..., and that

—2n—-2<k—2Rek <0,

or that
k21, &K£-2k=-2n-2
Define
Cry(w) = (M) (k - 7T Fw™7
and

Kiyp(u) = Gy (w(w)) P(2).
Let j=n+kr+1—k. Then f{’k.,p = Jiyp, defined by
Jinp (W) Eoy = (—1)1" 217" %¢;. ([al, VWA (P) Ban,
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where the ¢y are given as follows: Let ¢/ = p if A > 0,p = q if A <0,
V=g ifA>0,yY=k—vif A<D, ondif M =|a|—p' =0 then

eiy(lad, A) = [N TI(M 4+ ) TET(M ++ + )7

REMARKS. The hypothesis requiring that —2n — 2 < £ — 2Re k ensures
that K(u) is locally integrable and hence defines a distribution. If # 2 1,
K — 2k = ~2n — 2, then the distribution associated with K(u) is a principal
value distribution. The requirement that v and k— are not in Z~ is assumed
in order that I'(~) and I'(k — ) be defined, but this last assumption can be
dropped if in either of these cases we set

Groy(w) = (~1) Tk + (1)~ 'm" o™

and
eiy(lal, X) = =) M) (M + 5 - D= M
Here | =~y ify€Z and A >0orl=y—kifk~y€Z and A <0
Also, M must be less than or equal to I. For all other values of M and A we
have ¢;4 = 0. (v and k — < cannot simultaneously be contained in Z~ since
Rek > 0.) For details see 5], Proposition 7.2.
Consider again the functions
Gy () = Tk = 1)@ Fw " = L(NI (k= )@ /w) T,
So Gry = I(VI(k ~ 7)e"w*, where § is the argument of Wfiw. Now
Kyyp = Giy P has the form of the distribution given in (18).
We will show that there exists a function Kags;z(#) such that
™
[ Kase(0)T(k — T (1) do = Dy + M)T Gy + 5+ M)
The group Fourier transform of Kj,p may then be expressed in terms of
this kernel Ky (8). First, we need an identity proved in [5] and we recall
some properties of hypergeometric functions, the details of which are given
in [1]. |
LEMMA 5.3. Suppose v € C and Rek > 1. Then

| f0mkt00(e 1 152 dp = 20 (k — DN TR =D

DEFINITION 5.4. Set
(a)n = I'(a+n}/I(a),

ie.,
(@o=1, (a)a=afa+1)...(a+n~1), n=12,...
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If ¢ # 0,—1,—2,..., then define the hypergeometric function F' by
Fla,bic;z Z(a b)nz"[[(¢)nnl]
n=0

Ifaorb=—I,1€Z%, then (=), =
the sum is finite.

PROPOSITION 6.5. If ¢ € Z~ and Re{c ~a —b) > 0, then for z = 1,
F(a,b;¢;1) = T'(c)(c— a — b)[I'(c — a)T{c — b)] ™

THEOREM 5.6. Suppose Re~y,Re(k—-y) > 0 and M is a positive infeger.
Then

(—1)™t/(1~n)!, n <1, 50 in these cases

| Dk~ 7T (7)e"Kar (6) d6 = T(y + M)T ()T (v+ 5 + M) 71

where Ky is defined by
(17)  Kp(8) = (20r) 1ei1—#IF (18 4 qyb+s—2
X PG)I(k+3 = D] F(=M, jik+j - 1;¢¥ +1).
Proof By Definition 5.4,

T

| D(k— )T (m)e® (2m) "R (e + 1)R92P ()T (k + 5 — 1)) 7

T

x F(—M,j;k+j~1;¢" +1)dd

= § (2m)"Lr (s~ ) D) 1 1)F-2r ()

—T

1 i m
xmz_o_( Ml © T
= 71'—1 - ‘ 3 : / :
(2m) "1 (k W)F(j)l"(y)";)g(“"M)mU)mr(ker-j - 1)

ki3
« S ei(7+j+m)96i(1—(k+m+j))9(eie+1)k+m+g’—2d9

—

= (20) "I (k — )Ty wz -

o m F(k+m+3—1)

2al(k+m-+j—1)
I“('y+m+3)1"(k+m+j —(v+m+3))
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T (’Y Z L (~M)m(J)m
I(v+ J) nl (Y i)m
The second to last equality follows from Lemma 5.3.
Now, by Definition 5.4 and using Proposition 5.5 where we take a = —M,

b=3j andc='y+jweobta,in
(i) z 1 (—M)m(f)m
TH+5) cnl G+ )m
('Y)F(J) My+ )Py +3—(=M)—34) _ T'{y+MI'G)
Tiy+5) Ty+i-HT(y+i—(-M))  Ily+i+M)’
and the proof is complete.

COROLLARY 5.7. Suppose K p is defined as in Theorem 5.2. Then for
all v, k—yeC—-Z",

C( § Pk =P Kas (0) d)WA(PIBa, A >0,

—m

I?k’yPEa = x
o( { Ik - T (m)e* 1K (6) dB)WA(P)Ea, A <0,
-
where C = (—1)4x™t121-7—%|\|~J, For either v or k—y € Z~, I'(k—7)I'(7)
is replaced by (—1)' T (k+1)(1)~Y, wherel is defined in the remarks after 5.2.

Proof. The corollary follows directly from the theorem for Rey > 0
and Rek — ~ > 0 but the result holds for all 7,k — v € C by analytic
continuation. That is, both sides of the equation

| D(k— 70 (1)Ko (6) d8 = T( + MT I + 35+ M)~

1T

have analytic extensions as functions of 4’ to the entire complex plane and
since they agree for Rey’ > 0 they are equal for all 4. (Here 7' is as in
Theorem 5.2.)

6. The group Fourier transform of regular homogeneous dis-
tributions. The goal of this section is to show that functions f (8) €
Gl([~m,7]) can be approximated in C' by linear combinations over C' of
functions of the form e*'? for 4 € C. We will denote the algebra of all such
functions by A. Then the group Fourier transform of distributions of the
form given in (16) will be calculated in terms of the kernel Kaz(6).

First we need a lemma:
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LEMMA 6.1. Every polynomial p(8) can be approzimated in Ct by ele-
menis of the algebra A.

Set SN = {f € CV[-m, 7] : f®(~m) = f¥(n) for 0 < k < N} We
know that if f € SV, the Fourier series for f converges to f in cN2,
So, given p(#), it is enough to show that there exists an F' € A such that
p(d) — F(8) & S2. That is, we need an F € A such that FO) () —
F () = p™(—m) — p™(x) for 0 £ n < [+ 2. Denote the constants
p™ (—7)—p™ (1) by Cy,. Next, choose constants yo, 1, - - -, Ti+2 € C distinct
and not integers. Set

I+2

F() =) cpe™,
k=0

the ¢, to be determined. Then
1+2
F(0) =Y (i) e
k={)
Hence,
+2

F(—r) = F™(m) = Y culima)*[e™ M — &',
k=0

If we set di = cxle ™™™ — e'™"*], we have the system of equations

142
> diive) = Cn-
k=0

The matrix associated with this system is the Vandermonde matrix so the
system has a solution.

PROPOSITION 6.2. For any continuous function f(8) € C'([—=, =), there
exist functions fr(8) = ?2‘0 i€ 1%? such that fi converges to f in C'.

Proof. Notice that the algebra, A, of functions consisting of the linear
combinations of the 7%, @ € [—n, ], separates points and is closed under
complex conjugation. Hence, by the complex Stone—Weierstrass theorem
every continuous function f{#) can be uniformly approximated by functions
in this algebra.

Next, consider a function f(8) € CU. Its Ith derivative f() is continuous
and so there exists a sequence, fix € A, which converges uniformly to £,
Set Fi(f) = Sg fie(@) dp. Then the Fy(6) converge uniformly to Sg (@) de.
Thus, f4=1 = ¢+ limg_,o Fk, and the convergence is uniform, By repeated
integrations, we obtain a sequence of functions in A which converges to

F(& ” p(#) € C' so by the lemma there exists fr € A which converges to
fec. _
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PROPOSITION 6.3. The distribution K(t,z) = f(8)@*P(z) is contained
in CH(H™ — {0}) if and only if f is contained in Ct.

Proof. First, assume f € C!. Recall that § = arg(@w/w). Set 6 =
—i(ln@ — Inw), where the natural logarithm is defined on the principal
branch. (That is, Inz is analytic away from the negative real axis.)

Now w = |2|? — it, hence Rew = Re® > 0 for all z, ¢. Thus, Inw, ln%@
are smooth for all w # 0. So, K is a product and composition of functions
at least C'.

Going the other way, suppose K(t,z) € C'(H" — {0}). Now,

K(t,2)@*

Fix zp and consider
8y = —i(In{jz0|? + it) — In(|zo|* — it)).
We wish to show that f is continuous at 8o.
Suppose |zl = r. Then
8o = —i(ln(|z|? + it) — In{|z[* — 7t)),
for all |z| = r. Recall that P(z) is a basis element for the space of spherical

harmonics, so P(z) is not identically zero on the sphere [2| = r. Choose 2:
such that |z1] = r and P{z) # 0. Then

ok
stoy = KERIT

is defined and f is continuous at fp since &, 0, and P are continuous at 2z
and P(z) # 0. Similarly it can be shown that the derivatives of f through {
are continuous.

COROLLARY 6.4. For a given distribution K(t,z) = F(OYm*P(z), there
exist distributions Kn(t,2) = fa(0)W " P(z) such that fn(f) € A and
||K b K’nllC“ — 0.

Proof. This follows directly from Propositions 6.3 and 6.2.
Using Corollaries 6.4 and 5.7, we will show, for K (t,2) = f(Oym*P(2),

RE.=0( | £OKu(®) @) W(P)Ea.

T

First we need an estimate proven in [5].

Define Hilbert spaces HF, k € R, as follows. Consider vectors v =
T va By such that 3, (ol + 1)*lvaf® = llu]l? < oo. These vectors with
s norm form a Hilbert space for k € R, If k € C, set Hy = HRek,
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PROPOSITION 6.5. Suppose K is a regular homogeneous distribution of
order k and K = J. Then each J(}) has an extension as a bounded operator
from H® to HY. Purther, there exist constants ¢ and 1 such that ||J| _go <
c|Kilen. (Here, || ||-xo denotes the operator norm from H™* to H® and
| e denotes the C! norm over {1 < |u| < 2}).

THEOREM 6.6. For the regular homogeneous distribution
K(t,z) = f(O)/m"P(2),
PecHy, p+g=rond —2n—2 < k—2Rek < 0, the group Fourier
transform of K is K()) = J()\), where J is defined by
TN Ear = O | £(6)K21(8) 48} (P) B,

Here, M=|a|—p if A>0, M=|a|—q if A<0, C={-1)9gntial-n=r|}|—7
where § = n+x+1—k. The function Kps is a smooth function of 0 defined
in equation (17) above.

Proof By Propesition 6.2 and Corollary 6.4 there exist distributions
K, = f.(8)W~*P(z) such that f,.(8) — f(8) in C'[-m, 7] and K,, — K in
C'(H™ — {0}) for I arbitrarily large (since K is a regular distribution).

By Corollary 5.7, we have

RpBay = 0( § £2(0)Kc(6) 30) WA (P) Ean.
Hence, for all o, 3,

T

(RaBar, Boa) = (C (| £(0)Kar(6) d0)Wa(P)Ear, Bpn ).

However, by Proposition 6.5, K, — K in | |- (aeg &),0, but this implies
(BnEax, Epx) = (K Ea, Epy)
for all @, . So K=

7. Functions which are not locally integrable about the origin.
In the previous section, we calculated the group Fourier transform of hormo-
geneous distributions K (¢, z) = f(6)w*P(z) where & — 2Rek > —2n — 2.
This hypothesis ensured that K was locally integrable and hence defined a
distribution. We now consider K such that ks —2Rek < —2n—2. In this case
K no longer defines a distribution, but it is possible to define a distribution
which agrees with K away from 0. We will investigate the group Fourier
transform of this new class of distributions. First we need some results and
definitions given in [6].
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Recall that B is the set of families of operators R(\) where each R(A), A €
R*, is a bounded operator on Hy. Let {R,3(A)} be the matrix of R()\) with
respect to the orthonormal basis E,y; that is, R(A)Egy = 3 Rap(M) Ean.
‘We denote by @ the subset of B defined by

Q = {R(A) : Rap(r) € CF(R") for all &, 3,
and for some N € N, Rop(A) =01if ja] + [8| > N}.
PROPOSITION 7.1. For any R € Q, there exists f € S(H™) such that
F=R.

PROPOSITION 7.2, Suppose G is a homogeneous function of degree j on
H"® which is locally integrable away from (. Then there exists a number
M(G) such that for any 0 < A < B we have

S G(z)dx
A<|z|<B
M(G)(2n + 24 §)~L(BAn+a+d — Ant2H) if j# —2n—2,
= { M(G) log(B/A) if j=—2n—2.

Suppose G is a homogeneous function of degree j € C which is smoc_mh
away from 0. The preceding proposition allows us to define a distribution
Ag € & by

do@) = | (0= T #(0)K*/at)O(0)d

14393 la[SN
DY

ol SN, |l —2n—2~3

+ | ¢(Qe)d
{2 '

where N is chosen arbitrarily with N > —2n —2 — Rej — 1. Notme that,
if Rej > —2n — 2, we can choose N = —1 so Ag = G. If Rej g —2m — 2
and —j — 2n — 2 & 2+, then Ag is a distribution which agrees with G away
from 0.

THEOREM 7.3. Suppose K(t,z) = f(0)@*P(z) where k —2Rek < —2n
— 2. Further, suppose that Imk s 0 then

(@n+2+al+5)7 MG (0) /et

Gl = | ST Ear, PBar)(2N)"

where J and x are defined in Theorem 6.6, and ¢ € Q.

Proof The result holds for s —2Rek > —2n— 2 by Theorem 6.6, since
in this case Ayp = K.
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Now, fix kg such that ITm ky # 0 and & — 2Rekg < —2n — 2. Next, fix Ny
such that Ny > ~2n — 2 — (k — 2Re ko) — 1. Let Aﬁ" denote Agx with the
particular choice of N = Ny. Then A%° (¢) depends analytically on k& where
Imk#0and x —2Rek >k —2Reko—1.

For all ¢ € Q, we have Ax(¢) = cn(Ak | ¢). But for k satisfying « -
2Rek > —2n — 2,

o~ - e —~
AR218) = | D (VN Ear, $Ear)(2A))" 4N,
-0 o
where the right hand side depends analytically on k for Im#k £ 0 and « —
2Rek > & — 2Rekp — 1. Hence, by analytic continuation, the statement of
the theorem holds for all & satisfying Imk #£ 0, s~2Rek > k—2Reko—1. So
in particular the result holds for kp, but kg was an arbitrary complex number
satisfying Im kg # 0, 5 — Rekg < —2n — 2. So the theorem is proved.
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Soholev embeddings with variable exponent
by

DAVID E. EDMUNDS (Brighton) and JIRT RAKOSNIK (Praha)

Abstract. Let §2 be a bounded open subset of R* with Lipschitz boundary and
let p : 2 — {1, 00) be Lipschitz-continuous. We consider the generalised Lebesgue space

LP®) (12} and the corresponding Sobolev space whel=) (2}, consisting of all £ € 2@ ()
with first-order distributional derivatives in L?(%)(£2). Tt is shown that if 1 < p{z) < = for
all ¢ € (2, then there is a constant ¢ > 0 such that for all f € WhP(= (),

(IFilar,2 < ellfllip,a-
Here || - || 11,2 is the norm on an appropriate space of Orlicz-Musielak type and || - [[1,p,2

is the norm on WLP®) (), The inequality reduces to the usual Sobolev inequality if
supp p < n. Corresponding results are proved for the case in which p(z) > n for all
zE 2.

1. Introduction. The most common assumptions in existence theorems
for the Dirichiet houndary-value problem for the quasi-linear equation

=3 Dia(z, u(@), Vulx)) + ao(w, u(z), Vulz)) = fz), z €,
=1
where 2 is a bounded domain in R, involve the polynomial growth of
coefficients:

las(z, )| < g(z) + €™, g€ LY (),

3
> ai(@, )6 > calElf — e,
1==0
for a.a. z € £2 and all £ € R*L,
Similarly, regularity problems for variational integrals {, F(Vu(z)) dz
are solved under the assumption

alklP S FE) <al+E)! R
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