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Now, fix kg such that ITm ky # 0 and & — 2Rekg < —2n — 2. Next, fix Ny
such that Ny > ~2n — 2 — (k — 2Re ko) — 1. Let Aﬁ" denote Agx with the
particular choice of N = Ny. Then A%° (¢) depends analytically on k& where
Imk#0and x —2Rek >k —2Reko—1.

For all ¢ € Q, we have Ax(¢) = cn(Ak | ¢). But for k satisfying « -
2Rek > —2n — 2,

o~ - e —~
AR218) = | D (VN Ear, $Ear)(2A))" 4N,
-0 o
where the right hand side depends analytically on k for Im#k £ 0 and « —
2Rek > & — 2Rekp — 1. Hence, by analytic continuation, the statement of
the theorem holds for all & satisfying Imk #£ 0, s~2Rek > k—2Reko—1. So
in particular the result holds for kp, but kg was an arbitrary complex number
satisfying Im kg # 0, 5 — Rekg < —2n — 2. So the theorem is proved.
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Soholev embeddings with variable exponent
by

DAVID E. EDMUNDS (Brighton) and JIRT RAKOSNIK (Praha)

Abstract. Let §2 be a bounded open subset of R* with Lipschitz boundary and
let p : 2 — {1, 00) be Lipschitz-continuous. We consider the generalised Lebesgue space

LP®) (12} and the corresponding Sobolev space whel=) (2}, consisting of all £ € 2@ ()
with first-order distributional derivatives in L?(%)(£2). Tt is shown that if 1 < p{z) < = for
all ¢ € (2, then there is a constant ¢ > 0 such that for all f € WhP(= (),

(IFilar,2 < ellfllip,a-
Here || - || 11,2 is the norm on an appropriate space of Orlicz-Musielak type and || - [[1,p,2

is the norm on WLP®) (), The inequality reduces to the usual Sobolev inequality if
supp p < n. Corresponding results are proved for the case in which p(z) > n for all
zE 2.

1. Introduction. The most common assumptions in existence theorems
for the Dirichiet houndary-value problem for the quasi-linear equation

=3 Dia(z, u(@), Vulx)) + ao(w, u(z), Vulz)) = fz), z €,
=1
where 2 is a bounded domain in R, involve the polynomial growth of
coefficients:

las(z, )| < g(z) + €™, g€ LY (),

3
> ai(@, )6 > calElf — e,
1==0
for a.a. z € £2 and all £ € R*L,
Similarly, regularity problems for variational integrals {, F(Vu(z)) dz
are solved under the assumption

alklP S FE) <al+E)! R
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268 D. E. Edmunds and J. Rdkosnik

If p = g then the theory of Sobolev spaces W1P(12) provides a natural
and efficient way of handling such questions (cf. [LU]). The situation dra-
matically changes when p < g and then requires more careful considerations.
A particular case appears when the rate of growth of the coeflicients varies
with z € [2.

There has recently been increasing intersst in partial differential equa-
tions and variational integrals with non-standard growth. Let us mention,
for example, [G], [M1], [M2], [BMS] and [FS] for a large number of papers de-
voted to the regularity of variational problems with p < ¢. V. V. Zhikov {Zh]
considers the variational integrals |, (1 + |Vu(z)|%)*(® dz. M. Rizicka [R1],
[R2] recently studied mathematical models of electrorheological fiuids which
involved non-linear systems with coefficients of variable rate of growth.

By analogy with the standard situation, a natural tool for the problems
with variable growth of coefficients may be the theory of Sobolev spaces
WLr{#)(2) based on generalised Lebesgue spaces LP®)(£2).

Let {2 be a non-empty open bounded set in R and let p: 2 — [1,00]
be a measurable function. Set 2y = {z € {2: p(z) < co} and 2y = 2\ 124.
For every measurable function f on {2 we define

(1.1) op(f) :ma.x{ S | £ ()P da, esssup|f(:c)l}
o BENR s

and

[fllp, = inf{x > 0: gp(f/A) < 1}.
The functional g, is a conver modular, i.e. g, > 0, op(f) = 0 if, and only
if, f =0, op(—F) = 0p(f), op is convex, and | - ||, o is & norm on the set
LPE( Q) = {f : ep{f/A) < oo for some A > 0}. The set L*#(£2) endowed
with the norm || - ||, o is a Banach space called a generalised Lebesgue space.
If p is finite a.e. then LP{®)(2) is a particular case of the so-called Orlicz—
Musielak space (cf. [Mu]) L™ ({2) which consists of all measurable functions
f on £2 such that {, M(z, A|f(z)|} dz < oo for some A > 0. Here the function
M : 2x[0,00) — [0, 00) is such that M (-, ¢) is measurable for every ¢ > 0 and
for a.a. z € 12 the function M(z, -} is continuous, non-decreasing, convex and
such that M(x,0) = 0, M(z,t) > 0 for t > 0 and M(z,f) — oo as t — oc.
The norm in LM (2} is given by

1£lar.ce = s {2 > 0: § M, |F(#)]/X) dw < 1},
Q
The corresponding Soboley space W1P(2)(12) is the class of all functions
f € LP=)(12) such that all generalised derivatives D;f, ¢ =1,... , 7, belong
to LP(=)(2). Endowed with the norm

1fllue.e = Mfllg2 + 1V Flz0

it forms a Banach space.
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If p(z) = p then LP#)(2) coincides with the classical Lebesgue space
L?(£2) and the norms in both spaces are equal. Therefore there is no confu-
sion in the notation of the norm. The generalised Lebesgue space LP*)(£2)
shares numerous properties with the Lebesgue space. However, there is one
essential difference: in general, LP(*)(£2) is not invariant with respect to
translation (cf. [KR, Ex. 2.9]). This is a cause of difficulties in guestions
related to convolutions, to continuity of functions in the mean in LP(®)(12)
and to boundedness of the Hardy—Littlewood maximal operator.

All these difficulties are reflected in the theory of Sobclev spaces
WLl (7). For instance, the density of smooth functions in W) (02)
remains an open problem. It is not known whether the well known equality
H =W by N. G. Meyers and J. Serrin [MS] (see also [DL]} has a counter-
part in spaces with variable exponent p(z). A partial result for p satisfying
a certain local monotonicity condition was proved by the authors in [ER].

Another range of questions without satisfactory answer concerns the
Sobolev inequality and embedding theorems. We define the Sobolev con-
jugate exponent p* by

np(z)
n — p(z)’
0. Kovéacik and J. Rékosntk showed that, in general, the Sobolev space
WLPE)((2) is not embedded in I#"(*}(2) (see [KR, Ex. 3.2]). They also

proved the following approximate result for continuous functions p (cf. [KR,
Thm. 3.3]).

p*(z) = z € {2

THEOREM 1.1. Let £ be a bounded domain in R* (n > 1) and let p :
3 — [1,7n) be continuous. Let 0 < & < (n— 1)1 and let ¢ be a measurable
function satisfying 1 < gq(z) < p*(x) — ¢ for ¢ € (2. Then there exists a
constant ¢ > 0 such thai

Iflle.2 S ellfllipa,  f €O ().

The proof is based on the use of an approximation by step functions and
of a partition of unity; as a result, the constant ¢, in general, blows up when
£ — 0. Let us note that Example 3.2 in [KR] is based on a discontinuous
function p. A similar counterexample involving a continuous function p is
not known,

M. Riizigka recently proved another interesting result by considering the
level sets of p and using the power series expansion of the exponential func-
tion.

THEOREM 1.2 ([R1, Prop. 2.19]). Let p be such that 1 < py < p(z} <
pe < m for all z € 2 and let all the sets 2, := {z € 2 : p(z) > g},
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p1 < g < pa, have Lipschitz boundary. Moreover, let
P2

(1.2) { (@) dg < oo,
m

where c(q) is the constant of the embedding of Wh3(02g) in LY (12,), i.e.
I Flle 2, < cl@|fllt,g,2, for £ € Wh9(82y). Then there exists ¢ > 0 such
that

|f ()P s sle pi/p2
9 | et rE) e S ef1+( J U@ +19 5@ de) "]

holds for f € Whel=)( ).

Our aim in this paper is to prove inequalities of Sobolev type under the
assumption that p is a Lipschitz function. For example, we show that if 2
has a Lipschitz boundary and p € G%*(2) is such that 1 < p(z) < n for
z € £2,b> 4—1/nand wiz) = min{(n—p(z))? @, 1}, M(z,t) = t*"=w(z)
for x € {2, ¢ > 0, then there exists a constant ¢ > 0 such that the inequality

(1.4) ifllaz.e < cllfllip,e

holds for all f € Wh#(=) (2). If suppp < n, then the weight function w
is bounded below and above by positive constants and therefore can be
omitted. The inequality (1.4) then has the usual form || f|p- 2 < || fll1,5,0-
In this case also the inequality || f]lp+,2 < €|V f|lp,2 holds for all functions
f € WLelE(2) with supp f C 2. The method of proof depends upon
local estimates in sets in which the oscillation of p is small. Corresponding
results are provided for the situation in which p(z) > n for all z € £2. To
conclude, we present some examples to illustrate what may go wrong if the
assumptions are weakened.

To compare the three results mentioned above we first note that each
concerns a different class of functions p. The function p in Theorem 1.1 is
assumed only continuous but the target space is rather far from the desired
optimal case. The function p in Theorem 1.2 can be even discontinuous
but there is the logarithmic defect on the left-hand side of (1.3). On the
other hand, Lipschitz {and even C*°) functions p do not, in general, satisfy
the assumptions of Theorem 1.2 since their level sets {2, need not have a
Lipschitz boundary. If p is a Lipschitz function such that all the level sets
{24 have Lipschitz boundary and (1.2) holds then p satisfies the assumptions
of all three assertions and (1.4) gives the best result.

2. Preliminaries. Throughout the paper £2 will be a non-empty, open,
bounded subset in R”, n ¢ N, and p will be a measurable function on {2 with
values in [1, c0]. By saying that (2 has a Lipschitz boundary we mean that
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the boundary 842 is locally described by Lipschitz-continuous functions (see,
e.g., [KJF, Def. 6.2.2] and the proof of Theorem 4.1 below). For a measurable
set B C R™ the symbols |E| and xg stand for the n-dimensional Lebesgue
measure and for the characteristic function of E, respectively. By D;f,
i=1,...,n, we denote the generalised derivative of a function f with respect
to 2; and by V we denote the (generalised) gradient, V = (D1, ..., Dy). The
classes of all Lipschitz functions on {2 and of all smooth functions on R™
with compact support in £2 will be denoted by C%'(2) and by C§°(£2),
respectively. .

Let us recall some basic properties of the spaces LP(®) (2) and W1#) (£2),
defined in the Introduction, which will be frequently used in this paper. We
refer for further results to [Hu] and {KR].

Every function f € LP(®)(12) such that 0 < || f|lp,e < oo satisfies

(2.1) eo(f/Ifllp.0) <1

(cf. [KR, (2.9)]). There is equality in (2.1) if p is bounded.
If p(z) < q(z) a.e. in 2 and |2| < cc then

(2:2) £l < (21 + Dilfllga.  f € L@@

(see [KR, Thm. 2.8]).

HOLDER'S INEQUALITY [KR, Thm. 2.1]. Define the conjugate function
/

P by

P(z) = {Jgéﬂ:)/ (p(z) -.1) z‘t ;(;)pi:?_.< oo,
Then all f € LP®)(2) and g € L *)(12) satisfy the inequality
(2.3) | 1f@)g(x)] dz < 5| llp,2llgll. 2
where ’

+ 1 I + egs s ( ! - ) € [1,3]
— € o oly) ’ '
¢p =[x lloo,2 + X0 lloc,2 + eSS8UD { s = 705

Let us mention that in order to simplify some estimates we have defined
the modular g, in a way slightly different from that in [KR]. It is easy to
see that both definitions lead to equivalent norms and that the assertions
(2.1)~(2.3) have in both cases the same form. -

LemMa 2.1. Let v € L®(£2) be such that 1 £ vy(z)p(z) < oo for a.a.
z € . Let f e LP@(N), f#0. Then

(24) 118, 2 S U o S 1F 5 o 1fllmn S 1,
(2.5) 1F1%0 < 1 o0 <15 15pe ¥ Iflweo =1,
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where a = essinfzen ¥(z), B = esssup,eqn¥(x). In porticular, if vy(z) =
const then

A Nl = [ 1,0
Proof. According to (2.1), we have gyp(f/||liyp,n) £ 1, which yields
oz 1 () e
{7{z)p(w)<o0} 2
S (A 2" )”‘”’dm
 {pleh<ony VeSSSUP I [

and 88 SUD.y(2)p(z)=co |f (Z)|/ [ fll4p,2 < 1. The last inequality implies

ess sup |f(x)|"f(°”) < ESS sup “f”:;:}zs
p{e)=00

which together with (2.6) yields g,(!f|"/esssupeq || f ||$;) ) < 1. Thus
H£1 s, < esssup £33
zEN

This proves the first inequality in (2.4) and the second inequality in (2.5).
Sixailarly, (1 £17/I[|£17 lp2) < L. Hence

1> S (M)p(m)dx
{p(z) <o} Y lp.2

|#(2)] (z)p(=)
= ( : 1/«@)) dz,

framtar<sey S8R [[LFI7 lpg

and ess SUPp(g)—ao [F(2)[T®/|| [#]7 Ip,2 < 1, which yields

esssup _|f(z)| < ess sup | |f]" /26,
Y(z)pla)=o0

Thus we have g.,(|f/esssup,ep ||| f]7 /"(‘”)) <1, and

I,

Elf”'rp,n < esssup I ||1/'y(a=)

If & > 0, this proves the second inequality in (2.4) and the first one in
(2.5). fa =0 and |||f|7||p,» <1, then || f|lyp,2 € 1 by the first inequality
(2.4) and the second one in (2.4) holds trivially. If & = 0 and || |f]” lp,o > 1,
then || f||lyp,2 = 1 by the second inequality (2.5) and the first inequality in
(2.5) follows. m
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3. A Sobolev inequality
LEMMA 3.1. Let p € C%1(£2) and let g, r be such that

(3.1) 1<r <p(z) £ g<min{n,r*}, z€
Then there exisis ¢ > 0 such that
(3.2) Nl £ eV flipn

for all f € WP () with supp f C £2. The constant c satisfies the esti-
mate

(3.3) ¢ < max{1, [co(n — ¢} 7?]%}
where ¢y > 0 depends on 2|, n, p, and a = (r' —n')/{¢' —n').

Proof. Let f € WHP(=)(2) be such that supp f C 2 and ||f||1,p,2 < 1.
Since WH#{#)(2) € W™ (£2) we can assume without loss of generality that
f is absolutely continnous on almost all closed segments in 2 parallel to the
coordinate axes and that for a.a. z € {2 the classical derivatives 8f{x)/0z;,
i=1,...,n, exist and coincide with the corresponding generalised deriva-
tives D; f(z).

Following the standard idea of the proof of the Sobolev inequality we set

(5.4 L L)

Note that, by {3.1), v is a Lipschitz function satisfying

(n~1)r ! 4
N AR ANy < — —_— ———— .
(3 5) 1< - y(x} < (n 1)ma.x o < o0
Fori=1,...,n and for a.a. z € 2 we have

n{n — 1)|Dip(z)| YV

+ 7(@)|f (@[T D:f ()]

By integrating this inequality along segments in {2 parallel to the z; axis
and then over 2;, the projection of 2 onto the hyperplane z; = 0, we obtain

|Di(| £ () ") <

(36) | max (@)@ dz] < P11 0) Pl og ()| de
B w4 . (n - Q) n
+ O (@119 £(a) da

2

where @} = (y,...,%i1,Zit1, - - - » &n), L is the Lipschitz constant for p and
the supremurm is taken over all z; such that (2},:) € 12 for some z{ € £2;.
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The second term on the right-hand side of (3.6) can be estimated using
the Holder inequality (2.3):

(3.7) V@@V (@) de < cpll [ 2 [V 5.0
2

To estimate the first term on the right-hand side of (3.6) we have to
handle the disturbing logarithm. We distinguish the cases when |f(z)| <1
and {f(z})| > 1. Using the relations

sup tllogt| =e?,

supt~®logt = (eg)™, & >0,
o<t t>1

and the Holder inequality we obtain

(3.8) | i@ log | ()| dz
{If{=)<1}
= | @@ 5 (=) log| ()| | d=
{If{z}]<1}
< epe U 2Ll
(3.9) U 1@ |log | £(2)i] da
{If(z)|>1}

=

{lf{=)|>1}
< cpleg) T 2l 171151, 00
According to (3.1}, f satisfies the classical Sobolev inequality
[ £lir=,2 < e(n, )|V fllr -

Taking € = r*/g — 1 we have g(1 + £) = r* and hence, by Lemma 2.1
and (2.2),

1+ _ e

(3.10) 1A= lp = 1F i eyn < 121+ DA 0.0
< (1214 )M ee(n, r) eV £
< o1 )|V £l 4

From (3.6)—(3.9) and (3.10) we conclude that

§ max| £(2) ") d

[H@) 7 £ ()] f (@)~ [log | £ (2)]| de

< (12, m, 27, A+ 1V F 2 + IV AL AT e,
< 3C(|.Q|, n,pr, Q)” 1f|1_1zlp’,ﬂ'

Sobolev embeddings with variable exponent 275

Using the well known Gagliardo inequality we obtain

(311) §1£@)" do < § ( T] max|#(a) /) do

2 )l

. H(S I%@x|f(m)|’f(m) dmg)ll(n_”
i=1 i

< leo(n = 21 A7l

< K| |f|7m1”?’,n]"',

where ¢p > 0 depends on |£2|, 7, p, » and g, and K = max{1,co(n — ¢) "}
Setting ¢ = | f|Y~! we can rewrite the estimate (3.11) in the form

3

(3.12) | 9@ @ do < [Kljgllpr,al™"
7

If || f]lp=,2 = 1 then, by Lemma 2.1 and (3.5),

(3.13) LA Mg 2 1150 = 1,

where & = (n — 1)r/(n —r)~1=n'/(r' = n') > 0, and we use the convexity
of the modular g, to obtain

9(z) )p'(”)
T TR ) <L
ssz ([Kligllp',n]“ /e
Hence |lglly.e < K™ /9 1gI10/3 , ie. lgllyr, < K7€), Using (3.13) we
obtain

(3.14) [ £llp=,2 < K7

where o = (r' —n')/(¢ — 7).
If || filp,@ < 1, then (3.12) holds as well since K > 1 and a> 0. =

Note that the constant cp depends on ¢ and blows up when £ tends to
zero, i.e. when g tends to r*. That is why the last inequality required in
(3.1) is strict.

The assumption infp > r > 1 was important for the estimates g3.13)
and (3.14). If this condition is not satisfied we have to proceed in a slightly
different way:

LEMMA 3.2. Let p € C%(f2) and g be such that
2n
(315) 1 Sp(w) <gqg< E;—‘, x e .

Then there exists ¢ > 0 such that (3.2) holds for all f € W) (2) with
supp f C 3. The constant ¢ satisfies the estimate (3.3) where co > 0 depends



276 D. E. Edmunds and J. Rakosnik

on 12|, n, p, and

n—4q
2n—gn+1)

Proof. We repeat the proof of Lemma 3.1 up to the estimate (3.11).
Now, assume that || f||p»,» > 1. By Lemma 2.1 and (3.15),

(3.16) a=

1< A M2 < IFI5- 0
where 8= (n — 1}g/(n—q) — 1 =n'/(¢’ — ') >0, and (3.11) implies
(3.17) @)@ de < (KA1 o)
7

Using the convexity of the modular p,- and the inequality n’ < p* we obtain

p*(=)
JECRIG N
1 p*,12

ie.
(3.18)
According to the assumption (3.15) we have n'/(¢’ — n') < 1, and (3.18)
implies _

(3.19) o0 < K2,

where a satisfies (3.16). Since K > 1, the estimate (3.19) is satisfied also in
the case when |[fll;»n < 1. =

THEOREM 3.1. Let p € C%1((2) and let ¢ be such that
1<plzy<q<n, wen

Then there erists a constant ¢ > 0 such that

[ flip=.2 < ||V flpe
for all § € WhHPE)(12) with supp f C £2.

Proof. The function p can be extended to a Lipschitz-continuous func-
tion on ™ preserving the Lipschitz constant L and the upper and lower
bounds. Indeed, following the idea of E. J. McShane [McS, Theorem 1] we
define plz) = mf{p( )t Lz —y|:y e 2} for z € R* \ 2 and truncate
f)he function 5 by sup,c o p(z). We shall denote the extended function again

Y P

Let m = infocap(@) < < qu <rs < g2 < ... < Ty < Gme 1< gm =
SUPzep P(z) be such that 1/r; — 1/¢; < 1/n for j = 1,...,m. Moreover, let
q1 < 2n/(n+1) if ry = 1. There exist bounded open sets Gl, ..y Gy, such
that 2 C UL, Gy andr; < p(z) < g; forz € G;. Let {p}h, be a partition
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of unity on {2 subordinate to {G;}7L;, ie. ¢; € CF(Gy), 0 < ; < 1
Yieipi(z)=1forze Q.
Let f € W) (12) be such that supp f C 2. We extend the function f

by zero outside {2, still denote it by f and set f; = f¢,. For each f; we can
use Lemma 3.1 or 3.2 and we obtain

¥

m
(3.20) IFllp=2 <D 1155 1 [pey
:j:l F=1
< Z sup |3 (@)l [ fllLoe = ¢l 1500
j=1%

It suffices to prove that there exists ¢g > 0 independent of f such that

I flls,2 £ col|V£lip,a-

Let us assume, to the contrary, that there exists a sequence of functions
fr € WHPR) () with supp f C 2 such that

(3.21) EIV filna < ikllpe = 1.

By the Hélder inequality (cf. [KR, Corollary 2.2]), there is a constant c(p) >0
such that for every g € LP(®)(12),

(3.22) lgllp,2 < c(P)gll5 0 llglize, )

where
. p*{z) — plx) g
= inf >
H Jé‘np(x)( ") -1) ~ ng—n-+q
It follows from (3.21) that the sequence {fx} is bounded in W) (£2).
Smce Wir()(2) is embedded in W11(£2), { fr} is also bounded in
L1(12). There is a compact embedding of Wot(2) in L'(£2) and so {fx}
contams an L'-Cauchy subsequence, denoted again by {fx}. Using (3.21),
(3.22) and (3.20) we obtain

I7e = Fillp,2 < @) fs = AlE ol fo — fillge 0 < eI fi — £illT, - (4e)”.

Thus {fi} is a Cauchy sequence in LP=1(2) and converges to a function f
in L?(®)(12). Using the definition of the generalised derivative and passing to
the limit for k — oo we conclude that Vf = 0 a.e. in {2. Hence f is constant
on {2 and therefore f = 0, which contradicts (3.21). =

>0 and v>0.

4. Extension operator. Theorem 3.1 concerns functions from Sobolev
spaces WhP(=)(2) with compact support in §2, i.e. functions which can be
extended by zero outside 2. The embedding properties of Sobolev spaces on
domains strongly depend on the shape of the domain. One way of handling
this obstacle is to consider the class of so-called extension domains. These
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are domains (2 for which there exists a bounded linear extension operator
from W12(£2) to WLP(R™). We shall construct such an extension operator
for W1(=)(12) with a Lipschitz domain {2 using the reflection method due
to M. Hestenes [H]. It is natural that the case of Whp(e) also involves the
question of a proper extension of p.

LEMMA 4.1. Let —00 € a; < b; € o00,1=1,...,n—=1,0 < b, < 00,
Q+ = (a.]_,b]_) X ... X (an_l,bn_l) X (O,bn) and let p Q+ - [1,00) be
a measurable function. Let f € Wh?((Q.). Define the emtension Ef to
Q = (a1,b1) X ... X (An-1,bn—1) X (—by, bn) by

— f(xfi 513-,1,), (:1)’, "‘En) € Q 3
Ef(z)= {f(z’, —z,), (&,~z,) € 5+.

Define Ep analogously. Then Ef € Wwl.Be(z) (Q) and

1B lp < 20flprs  IVEHlpa < 20V fllnq-

Proof. Since f,D;f € LL (Q4), i =1,...,n, we know from the classi-
cal result that

Dz(Ef)zE(D'i.f)a i=1,...,n—1,

and
’ o -an(m": mn)3 (mlawn) € Q )
Dn(Ef)(m ,9.77;,) - { _an(ml, '"'mn)a (mla _m‘n) € 2—2-}"

The assertion follows immediately. m

A mapping T : R* — R" is called bi-Lipschitz if there exists a constant
L,1 <L < oo, such that

LMo~y S |T(@) ~ T < Lz —yl, =z,y€R™

To prove the extension theorem for Lipschitz domains we shall need the
following property of bi-Lipschitz mappings.

LEMMA 4.2. Let p: 2 — [0,00) be measurable. Let T': R* — R™ be a
bi-Lipschitz mapping, G = T~1(R), and let f € WPEN D). Set g= foT
and g =poT. Then g € Wha®)(3) and

I9lla6 < el fllip.0:
where ¢ > D depends only on n and on the Lipschitz constant L for T
and T7L.

Proof. Let £2/ CC 2 be a bounded subdomain and let &' = T—1(2).
Then f € WH1(2'). By the classical result (see {Z, Thm. 2.2.2]), g €
WhH(G") and

(41) VH(T(&)) - dT(0,8) = Vg(a) -¢

icm

Sobolev embeddings with variable exponent 279

forall £ € R* and a.a. z € G. Since (2’ was arbitrary we conclude that (4.1)
holds for a.a. © € G. Hence

(4.2) (Vg(z)| < LIVF(T(z))| foraa zed.
Let
(4.3) A> LYV 0.

Then (4.2) and the estimates of the Jacobian, L™ < JT(z) < L™ for
a.a. r € B”, imply

(1) e
G

< $(EATYV (T (@)D g
G

IVf(T(m))I)"(T(””

< L"(L/\‘l Vflp2 p(T(w))(
i 1V llp,2) ST

IV f(z)| )’“‘”"
i(nwnp,n do sl

ie. |[Vglge < A Since A was an arbitrary number satisfying (4.3) we con-
clude that | Vgllq,¢ < L]V f|lp,2- In a similar way we obtain the estimate
lglec < L™ fllp,2- =

THEOREM 4.1. Let {2 have o Lipschitz boundary. Then there ezists o
function g : R™ — [1, o0) and a bounded linear extension operator

g . Wl,p(m)(ﬂ) — Wls‘I(m) (Rﬂ‘)
such that ¢(z) = p(x), © € 12, supg. g = supg p, infp ¢ = info p, and
jeflsame Scllflipa,  feWHE(R).

The extension £f has compact support contained in {z € R™ : dist(x, 2)
< B} for some positive number B. If, moreover, p € C%(f2), then
g € COYR™).

Proof. Let {V;}5_, be the covering of the boundary 82 which corre-
sponds to the local description of 812. More precisely, for each 7= 1,...,k,
there is a local coordinate system (z’, z,) such that

Vi= {(m,vmﬂ) o) < d i=1,...,m—1, a;(z") =B <an < a;{z') + B},
VinR={z€V;:a;(z") <an<a;{z')+ 5}

JT(z) de

IA

(4.4) {2 eV an <alz)}N2 =0,
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where 3, § are some fixed positive numbers and a; € C1((-4§,8)"?) are
the functions describing the boundary. Define the mappings

1};@:(-5,5)”_1x(;'@7g)_.,R“, J=1,...,n,
by
Ty(',20) = (', 20 + a5 (2)).
Then the T; are bi-Lipschitz mappings. Let Vp C {2 be an open set such
that Vo C R and 2 C U?:o V;. Let {5} be a partition of unity subordinate
to {V;}, ie. g5 € CO(V;), 0< 0y <land 3o5_op5 =100 2.
Let f € W) (). We define the functions f; by

fi(®) = f@)pi(=),
Then f; € WHPEV; 1 2) and
(4.5) 1 illue,vine € el fllipa
where ¢; depends on p and on {p;}. We set G4 = (—4,6)"1 x (0,5) and
define the functions g; by

[ f(Ty(@), zeGy,
gj(“)—{of ! :elﬁ\m.

zefl, 7=0,...,k

Let j=1,...,k. Set r; = po T;. We can use Lemma 4.1 to extend gj to
Eg; € WhEri (=) (R} s0 that
(4.6) 1 Egslla,Ery m < 2llg5ll2,r;.00 -

It follows from the construction of F that supp Eg; C G.
We define the functions g;, j=1,...,k by

p{z), € {2,
5@ ={ B, sern
and extend them on R" preserving their upper and lower bounds.

Now, we define the function g by

¢(z) = min g;(z), =z &R,

1<5<k
and the function £ f by

k
Ef(@) = fole)+ Y _ Eg;(Ty (z)), = eR”,

g=1

where fy and Fg; o Tj“1 are extended by zero to the whole R,
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Clearly, £f(z) = f(z) for © € 2. Applying Lemma 4.2 for Fg; and Tt
and using the estimates (4.5), (4.6) and (2.2) we obtain

k
I€f lgmn € NEFllga+ D 1 flava

F=1
k

= || fll1p2 + Z | Eg; o Tj_lﬂl,q,vj\ﬂ
j=1

k
SN fllpe + D 1Eg; 0 T lr,g, v (Vi \ 2] + 1)
J=1 :

S ¢ ||f||1}pln’

where ¢ > 0 is a constant which depends on n, p and on the parameters of
description of the boundary 8£2.

If p € CY(2) then r; € COY(GY), g; € COH(V; U D) (cf. (4.4)) and g;
can be extended to a Lipschitz function on R™. Thus also ¢ € C%1(R"). =

5. Embedding theorems. Using the extension operator from Theo-
rem 4.1 and the Sobolev inequality from Theorem 3.1 we can easily obtain
the following embedding theorem.

THEOREM 5.1. Let 2 have a Lipschitz boundary. Let p € GO (2) and
let q be such that 1 < p(z) £ ¢ < n for all z € 2. Then there erists a
constant ¢ > 0 such that

£

lor.2 < cllfllip.n
for all f € Whel=)((),

If p = n then the classical Sobolev inequality || f|lg,2 < ¢(@)||Vf||n e and
the embedding theorem hold for every ¢ € [0, c0) while the constant c(g) is
not uniformly bounded. It is therefore natural to introduce an appropriate
weight in L#%) if p is not bounded away from n. To prove the corresponding
result we shall need the following covering lemma of Besicovitch type; the
proof uses ideas from [Gu, Lemma 1.6] and [EvR, Lemma 1].

LEMMA 5.1, Let p € COLR™) be such that 1 < p(z) < n =suppp =
supgs p for all z € 2. Let L be the Lipschitz constant for p and let &, §
satisfy 0 < 25 < §~1 < 1. Define the function o by o(z) = kL™ (n — p(x)),
x € R™. Then there exists a sequence of points z € 2 with the following
properties: :

(i) 2 < U, BY C Uy B, where By = Blak, o (xx)}, Bu = B(zx, 6o (zx));

- (i) lmg—eo plze) =1y
(iil) p(x) < n for all x € By;
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(iv) diam({J, Bx) < diam 2 + 2(n — 1)dxL™* < diam 2 4 (n — 1)L,
(v) there exists a number 8 = 8(n, L, &, 8) such that 3, x5, < 6.

Proof. According to the assumptions, for all z € £2, y € B(z, o(x)) we
have

n —p(y)
(51) 1—&5;—:—1)—(;")'514‘&,
(5.2) p(y) £ (1 - k)p(z) + kn < n.

The balls B{z,o(z)/5), © € §2, cover the bounded set {2 and the radii
o(z) are bounded. By the so-called 5r-covering lemma (see [Ma, Thm. 2.1])
there exist z) € 2 such that the balls By (zk, o(zx)/5) are pairwise disjoint
and 2 C |J,, B(wk, o{zk)). We claim that {23} is the required sequence.

The properties (i) and (ii) are obvious.

If z€ B, then |z—z3] < dxL ™ (n—p(zx)) and p(z) <p(zi)+[p(z)—p(zi))|
< p(zx) + ds(n — p(zk)) < p(zx) + 3(n — p(zx)) < n. Thus (iii) holds.

"The property (iv) follows from the estimate éo(z) < d(n — 1)xL~1.
To prove (v) we assume that z € B(zy,0(zk)) N B{@m,0(zm)). Then
B{xy,o(z)/5) C B(z,60(xi)/5) and from (5.1) we have
1-w o{zk) < 1+nk
14k " olam) ~ 1—&
Since the balls B{xzy,o(zr)/5) are pairwise disjoint, we conclude that

g < sup{ |:6M]n : B(2k, 0(2k)) N B(Zm, 0(2m)) # @}

o(Tm)
< [61J_’z]n .

THEOREM 5.2. Let §2 have a Lipschitz boundary. Let p € C%1(§2) be
such that

(5.3) 1<p(z) <n=supp, =€l
a

Let b>4—-1/n and
(54)  w(z)=min{(n - p(z))?* @) ,1}, M(z,t) = Dw(z),
zef2, t=0
Then there exists a constant ¢ > 0 such that
(5.5) Ifllsg.2 < cllfllrp.e
for all f € Whe=)(0).
Proof. According to Theorem 4.1, there exists a bounded linear ex-

tension operator £ : WP(®) (02} — W1P(=)(R") where § € CO(R") is an
extension of p on B™, with the same Lipschitz constant I and such that
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infop = infgs P, supp p = supg. p. We shall denote the function 7 again
by p.
Let & and § satisfy

(5.6) §>1, 0<n<5"1min{b—“4+1/n ! }

b+4—1/n" (n—1)(2n+ 1)
There exists a sequence of points 3 and a sequence of functions ¢y €
C§°(By) such that

2 clJBrc|JBr, Bi=Berox), By=B(ax, o),
k k

(5.1 ox=naL"'n-p), pe=plm)<n, pr—n ask— oo,

(5.8) Y xp, <0="0(n,L, k8 < 0,
k
0<pr <1lon R, >, vr=1o0n 0, and |V, < cocrgl, where ¢g > 0 is
a constant dependent on §. To show this we set F = {z € R* : p(x) = n}
and apply Lemma 5.1 for the domain 2 = {z € R*\ F : dist(z, ) <
3(n ~ 1)L~} to obtain the corresponding sequences of points =y € 2 and
balls Bj. There exist functions ¢, € C§°(By), k € N, such that ¢p(z) = 1
for x € B, |Vyr(z)| < coop for £ € R*, and a function ¢y € C§°(R™)
such that ¥g(z) = 1 if dist(z,2) > 2(n — 1)L™! and to(z) = O if
dist(z,2) < (n— 1)L~ Then ¢ = Y, ¢ € C*R*\ F) and ¢ > 1 on
R™\ F. We set p = 1xt0 ™! and consider only those k for which By N §2 # 9.
For x € B, we have

(5.9) rg = max{l, (1 + «d)pr — kdn} < p(z) < gy := (1 ~ £d)px + KéN,
which implies
n—g  n-p@) n-Tk
n—px N—pk = N—Dk
Let f € WhP()(2) be such that ||fllipe < 1. Then g = £f €
wirl=)(R™) satisfies ||g||1,pn < A where A is the norm of the extension
operator £.
As in the proof of Lemma 3.1 we can assume that g is absolutely con-
tinuous on almost all closed segments in By, parallel to coordinate axes and
that for a.a. z the classical derivatives 8g(z)/0x;, ¢ = 1,...,n, exist and

coincide with the corresponding generalised derivatives. Set gr = gy and
let v be defined by (3.4). Then gx € W) (By) and for ¢ = 1,...,n and

= 17+ Kd.

A

(5.10) 1-ké=

for a.a. z € By we have

| Di(lge(2)®)] < [ Div(@)] - lgx ()" {log lge ()|

+ (@) gr(2)] 7V gi ()|
and
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n{(n — 1}L
(511) | suplg(z)"® da} < -(;E,—:—} § lge(@) " log g (x)]| de
(Be)i *f Wk By
T -
+ L | gi(a) @Y Vg ()| de.
=gk 5
k
Using the same arguments as in the proof of Lemma 3.1 we obtain
(5.12) § loe(@)"®) log lgw(e)l| dz < cpe | lgx[" 7,54 1Lllp, 00
{lor(=)|<1}
and
(5.13) Vo lok(@)")|log |gx(z)|| d=
{lge{=)[>1}
< cp(ee) "Ml gl lp,mi | |96l 55,4
where
1/, 1—-k6 1
1 == —44 - ‘
{5.14) £ Z(bl-wcé 4+n)>0

From (5.9), (5.6) and (5.14) we derive that ¢ < ri/gx — 1 and so
(1+e)p(z) < r} for z € By.
The classical Sobolev inequality
fullremn < (P VU|rgn, u€ WL (R, suppu compact,
holds with the constant
1y e ~1/r(p . 1y1-1/F
(5.15) cfr) = ( (n 1)') nr- 1) : L
[I(n/r)C(14+n—n/r)]i/r (n—r)l-1/r
where wy, is the volume of the unit ball in R™ (cf. [Ta]). Using Lemma 2.1,
(2.2) and the Holder inequality (2.3) we obtain

(5.16)  |llgel'*Np.5,
98y 50 < Bl + 15,
< {(IBy] + 1) e(re) | Vol TS5,
< (1Be] + 1) e(re) (| Vv, by + coo Hlgllrg,3,) 1
< (1Bel -+ 1> e(r) = (| Vgl p g + coo gl pumn )2+

< [AY3(Be] + DPFMe(ri) € max{1, (oo 1)},

Wr,

Similarly,

G17) [ lge(@) @ MVe(@) do < 6!l lgxl" ™ Nl 20 IV Gkl
By

< A || |9k11M1 7,5, max{1, ‘300'1:1}-
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Moreover, {5.7), (5.10) and (5.15) yield
(5.18) op = kLTH1+ k) n—r),
where ¢ > 0 depends only on n.

From (5.11)—(5.18) we conclude that there is a constant ¢ > 0 which
depends on |£2|, p, n, J, &, b such that

e(rk) < Tn— )t

[ sup 94(2)/"%) daf < el ) BB g 1
(Br)e

As in (3.11) we obtain
§ lox (@) dz < [e(n — ) 5V mms@mm) g 7 || g, I
By

If pr > (14 Kdn)(1 + x6)~1, then (5.6), (5.9) imply that p satisfies the
assumptions of Lemma 3.1 on By and we proceed as in (3.12)-(3.14) to
obtain

(5.19) lgkllp,B, < [e(n — ri) 41/ mme=1/n)jes,
where
re—n _ (1+k8)(ax ~1)

.2 = -k = .
(5.20) e g, —n (11— kd)rg—1)
Similarly, the inequalities

1+ kén
21 < —_

(5.6) and (5.9) imply that p satisfies the assumptions of Lemma 3.2 on By,
and we proceed as in (3.17)—(3.19) to obtain (5.19) with

2n —gu(n+1)

According to {5.8), for every z € §2 at most 6 members of the sequence
{gr(z)}y are different from zero and we can write

(5.23) [ If(@)P Puwlz)de= |lg(a)lP Pwiz)de
iri

(5.22) ag

<071 | Blon(@)” Puia) da.

kB

Since (5.21) implies ox > KL~ (n — 1)(1 + &8)~! we conclude that
only a finite number of p; satisfy (5.21). Let ko € N be such that py >
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(14 rdn)(1+ k8)~! for k > ko. From (5.20), (5.9), (5.7), (5.6) and (5.14)
we have
1+ kd b b

(5.24) SIintee-im S i-ijm

e O g

Hence we can assume that

b
4—-1/n+e(2—1/n)
Let k& > kg. By (5.4) and (5.19),

(5.25) | (Blgn()))* @ w(z)dx
By

for k > kg.

gy <

_<_ SHE [Q(C(n _ Tk)-—4+1/n-—-s(2—1/n))a.k (n _ p(.’s))"’]P* (m)
€Dy

‘We use (5.10) to obtain
(5-26) o2k (n _ p(m))b(n - Tk)a.k(—»4+1/n—s(2»-1/n))

< max{l, cr:/(4—1/n)}{(]_ + K,J)(n _ ,’,.k)}b—ak(4—1/n+s{2—1/n))_
Since limyg_.co x = 1 by (5.7}, (5.9), and b — ap(d - 1/n+ (2 — 1/n)} >
1(b—4+1/n) >0 by (5.14), (5.24), we can assume ko is so large that
(5.27)  @max{1, VM1 + wb)(n — )P AT 5 1
for k > kg. Taking into account that p*(z) > n(n—1)"1 for all £ we conclude
from (5.23), (5.25)—(5.27) that

(5.28) | (@) Pu(e)de
n
ko—1

<673 aup Bleln = r) ™ E ) (gl
=]

+0-1 Z g™/ (1) SK<oo

k=i

where a;, satisfy (5.20) and (5.22) and K is a constant independent of f. If
K <1 then ||f|la,2 < 1. If K > 1 then (5.28) yields

| (1F () 2 ) Cu(e) do < 1,

a
ie., by (5.3), || flla,e < K*~1/", Hence

[1#ll2,2 < max{1, K=/}

and (5.5} follows. m
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REMARK. According to Lemma 5.1(iii), the balls By have a positive
distance from the set F' = {z € R™ : p(z) = n}. Therefore B} possibly
cross only that part of the boundary 82 which contains points z such that
p(z) < n and it is sufficient to assume that only this part of 812 satisfies
the Lipschitz condition. More precisely, let 7 > 0 and let G, = {z € k™ :
|z —y| < nforsomey € 32\ F}. Let 82N G, have a local description
by Lipschitz functions in the sense of the proof of Theorem 4.1. We can
modify this proof to obtain a bounded extension operator from W*(*)((2)
to Wh(2 U Gy,) which is sufficient for the proof of Theorem 5.1.

In particular, if p(z) = n for all z € 312 we do not need an extension of
functions from W) () since all balls By are contained in £2. Therefore,
in this case we need no assumptions on the smoothness of the boundary 852.
This result is formulated in the following theorem.

THEOREM 5.3. Let p € C%1(12) be such that

1 Sp(.’B) <n, z€, p(y) =n, yEONM.

Let b, w and M be as in Theorem 5.2. Then there exists a constant ¢ > 0

such that (5.5) holds for all f € WLrE)((),

If p(x) = p > n then the Sobolev space WP is embedded into a space
of continuous and Holder-continuous functions. An analogous result for p €
C%1(§2) is given in the following two assertions. It is natural that the degree
of Hélder-continuity of functions from W#(®)(12) depends on z € £2 and
that the behaviour of these functions for p(z) close to n is compensated with
an appropriate weight.

THEOREM 5.4. Let p be such that
plzy>n, zef

and

1 a
5.29 su - < '
( ) |y-—:n|p<cr p(ﬁ) p(y) ‘ ibg O'l

where a > 0 is independent of z and o. Define the function X : £2x(0, cc) —
(0,00) by Az, t) = t1="/P(®) and the seminorm

0 < o < min{l,dist(z,52)},

_ |f(z) — fly)|
e = :;‘;pn N —l)
ey

Then there exists o constant ¢ > 0 such that
[FIrne < cllVF]pn
for all § € WL (0) N CLHN).
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Proof. Let f € C1(f2) be such that |V flipe < 1 and let z € £2. Let
0 < ro < min{1, dist(x,82)} and set po = Infp(y ) . It follows from (5.29)
that p is continuous in 2. Thus it is bounded in B(x,rg) and there exists
r € (0,7} such that |B(z,r)| £1 and

(5.30) IV£fllp,Bzr) 11— n/po.

Let y € B(z,1/2), ¥ # =, and set o = |z — y|. For every z € B(z,0) we
have
1

£() - £(=)| = ﬁ%f(yﬂ(z —y))dt‘ <o | |Vfly+ty—2) dt.
Hence 0 ) O
f) - B | f(2)def
B{y,o)
<|Bo)™ | If(w) - f(2)ldz

B(y,o)

1
< wylel ™™ S SlVf(y+t(y—z))|dtdz
B(U:U)D

. _
=wilet ™t | |Vf(z) dzdt
0 Bly,ot)
1

< W't eV fllp B £ B dt:
0

Since |B(y, ot)| < |B(z,r)| < 1, we have
(531)  Wllp,Buen < sup |Bly,ot)[Y?') < |Bly, o)/,
zE B(y,ot)

where p; = inf p(; 25) p. Thus
(5:32) |f0)~IB@ ™ | f()dz|

B(y,a)
1
< WM ey |V fllpgy,ep0 P [P dt
0
and using (5.30) and the estimate §o ¢="/?* dt = po/(po ~ 1) < po/(po ~ )
we obtain
F@) - 1B, | f(2)de] < cln,p)o*~rw
B(y.0) |
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where ¢(n,p) = cpmax{1,w™"}. Similarly,

(5.33) |f(@) = [Bl,o)l™ | f(z)dz

B{y,o)
< [Bly,o)l™t | 1f(@) - fl2) de
B(y.e)
<2'B(w20)| 7t | 1f(z) - flz)lde
B(z,20)

< 2% e(n, p)ort " Pe,
From (5.32), (5.33) we obtain
|f(93) - (y)! < Ca_n(l/p(m)wlfp,)
Ul—n/p(w) !
where ¢ is a constant independent of f and o. It remains to observe that
the assumption (5.29) implies o'/P(*)=1/Pr < e®.
REMARK. Every function p € C%({2) such that p(z) > 1 for z € 12 also
satisfies (5.20). Indeed, if 3,y € 2, |z —y| < o £ 1, we have
- -1
1 _ L | @) —pM)l g, o Le
pz)  p) p(z)p(v) llog o|
where L is the Lipschitz constant for p.
THEOREM 5.5. Let p € C%({2) be such that p(z) > n for dll z € £2.

Then there exists a constant ¢ > 0 such that every function f € C*(£2) N
Wie@) () with supp f N {z € 812 : p(z) > n} = { satisfies the estimate

(5.34) sup | f(2)jw(z) < ¢ filip,0
&R

with the weight function given by
(5.35) w(#x) = min{p(z) — n, 1}.

Proof. If infpp = po > n then, by (2.2), the space LP) ((2) is embed-
ded in LP (12), the weight function w satisfies 0 < min{py—n,1} <w(z) <1,
¢ € 2, and thus we can use the classical embedding theorem.

Hence we can assume infpp = n. As in the proof of Theorem 3.1 we
set Pz} = inf{p(y) + Llz —y| : y € 2} for ¢ € R". Then 7 € COYR™)
is an extension of p with the same Lipschitz constant. Moreover, for all
z € R* \ {7 we have #(z) > n + Ldist(z,£2) > n and we truncate § from
above by g = supp, p. For simplicity we denote the extended function again
by p. Set F = {z € 82 : p(z) =n} and G = 82\ F. _

Let f € CH(2) N WhPE(2) be such that supp f NG
tend the function f by zero to R* \ F. Let z € {2 Fix

= (. We ex-
g, 0 < Kk <
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min{wy, /™, 1}L{g = n)7, put o = (p(z) — n)kL~! and B = B(z,0). Then
o<1, |B| <1 and for all y € B we have

ply) —n
p(z)—n
(cf. (5.1}, (5.2)). Hence BN F = § and f € C*(B). Using polar coordinates
and the Holder inequality we obtain the estimate

(537)  1f(@)| < |BI™ | If @)l dy+c(m) | l—ajffﬁ%dy
B B

< ¢l Bl 1l 5 1 fllp,5 + c(r)epllglle B [V £lls, 25

(5.36) l1-k< <l+k, ply)>n

where g{y) = lz —y[' ™™
Set pg = inf g p. Then ||1,1.8 < |B[*~1/Pe (cf. (5.31)) and thus

(5.38) 1B 1llp,5 < (wna™ P < ey{p(a) —n) /P,

where c; depends on n, p and s. Using (5.36) we cbtain
[ gy Wy < |z -yt Pody = nuw, [ t-P0~1 g
o 0

< ea(p(z) — n)F7M/ 071 < g max{(p(c) — n) 7,1},

where ¢ depends on n, p and x. We can assume that ¢z > 1. The convexity
of the modular gy then yields

(5.39) lgll.5 < calp(z) —n)~3+1/9.
From (5.35), (5.37)—(5.39) we obtain

|f(@)lw(z) < cl(plz) =)/ + (p(2) ~ ) 9lif 15,21
which yields (5.34). »

REMARKS. 1. There are two reasons for the limiting assumption on f in
Theorem 5.5. First, the balls B(x, ¢), in general, intersect the complement of
€2 and thus we need f well extendable outside 2. The second reason is more
essential. As we mentioned in the Introduction, we do not have an analogue
of the classical result on density of smooth functions in W12 (). If we
did, we could simply assume that f € Wi#(=(22) in both Theorems 5.5
and 5.6.

2. We can see from the proof of Theorem 5.5 that it is sufficient if p
is Lipschitz-continuous on the set (2 for some & > 0, where (% =
{z € 2 :p(z) < n+d}, and if infon 2, P(®) = po > n. Indeed, we set
plz) = min{p(z), po,inf o;\02,,, }, = € £2. Then § € C%(2), B(x) = p(a)
for & € £25/3, and we use the embedding of WLP(=)(2) in W) ((2),
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3. If p(z) = n for all x € 82 then the balls B(x,o) in the proof of
Theorem 5.5 are contained in {2 and we do not need an extension operator.
Thus we have the following counterpart of Theorem 5.3.

THEOREM 5.6. Let p € O%({25) and infr\ g, p > n, where § > 0 and
25 = {z € 0 dist(z,302) < §}. Let w be given by (5.35). Then (5.34)
holds for every f € CH(12) N Whelz) ().

6. Non-embedding examples. Qur aim was to present the Sobolev
inequality and embedding theorems under the agsumption that the exponent
function p is Lipschitz. The following examples show that some of the other
agsumptions cannot be improved within this frame.

ExAMPLE 1 (the Sobolev conjugate function p* in Theorems 3.1 and 5.1).
Let {2 be a non-empty open set in R". Let p € C%1(£2) and ¢ € C(£2) be
such that 1 € p(z) <n and 1 £ ¢(z) < oo for z € 2. Let ¢(zo) > p*(20) for
some g € {2. Then

W (2)\ LI®(0) # 0.
Indeed, since
11 1 1
g(wo) ~ p*(mo) plzo) n’
there exist numbers s, t and a ball B C (2 centred at zg such that

gz} =t "s n T plze) n
Since ¢ > ", there exists a function f € Wg*(B) \ L*(B). It suffices to

realize that Wl*(B) c WiP® (02} and Le®)(B) c L*(B).

EXAMPLE 2 (the Holder-continuity exponent A in Theorem 5.4). Let £2
be a non-empty open set in R* and let p € C(42) satisfy p(z) > n for z € £2.
Let 4 : £2 % (0,00) — {0, 00) be such that u(zo,t) =t for some zq € 2 and
o > 1—n/p(zo). Then there exists a sequence of functions fj € C*(£2) such
that {||V fxl|lp,«} is bounded and

Jirm, | fil w2 = 00-

To prove the assertion let us consider g, p(zo) < ¢ < 5:= n/(1-o). Since
p is continuous, there exists a ball B = B(zo,r) C {2 such that p(z) < ¢
for € B. Define the function f(z) = max{(r/2)*~"/9 — |z — zo[*~™/%,0},
x € R*. Then f € Wh9(2) and f(z) = 0 if |z — x| 2 r/2. Using the
standard mollification method we define fi(z) = k™ f = p(kz), k = 1,2,...,
where @ € C$°(B(0,7/2)), § ¢ = 1. Then fi € C*(B) and

(6.1) fo— f  in WH(92).



292 D. E. Edmunds and J. Rakosaik

Let yr € B(zq,r/2) be such that limg_..o ¥ = To- Since ¢ > n, there
is a bounded embedding of W12(B) in C(B) and (6.1) implies that {f}
contains a subsequence (we shall denote it again by {fx}) such that

sup | fi(s) = f(2)] < ellf = fllas < Lo — gl
zE .

Then
| Fu(@a) = Fulye)| 2 1f (o) — Flww)l — |Fulzo) — flzo)| — |Fulyn) — Fluw)]

> Lmg — i |9

and
[fki#,ﬂ > %ICL‘Q -—ykln(l/’q—l/a) = 0.

Using (2.2) and (6.1) we obtain

I¥ fellp,e = 1V Fills < (1Bl + DIV ellg.s < (1Bl + 1I{Vfllg.0+ 1)
for sufficiently large k and so the sequence {||V fi|p.2} is bounded.
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