Algebraic independence of polynomials

by
Ivica Gusić (Zagreb)

Let k be an algebraically closed field, let $k \subseteq K$ be a field extension and let $K(x)$ be the field of rational functions of one variable over K. The aim of this paper is to prove the following

Theorem. Let $f, g \in K[x]$ be two nonconstant polynomials. Then f, g are algebraically dependent over k if and only if there exists $h \in K[x]$ such that $f \in k[h]$ and $g \in k[h]$.

Proof. Assume first that $f, g \in k[h]$. Then $k(f, g) \subseteq k(h)$. Since $k(h) / k$ is of transcendence degree $1, f, g$ are algebraically dependent over k.

Conversely, assume that f, g are algebraically dependent over k. Then $k(f, g) / k$ is of transcendence degree 1 . Since $K \subset K(f, g) \subseteq K(x)$, we conclude, by Lüroth's theorem [1, VI, Sect. 2, Cor. 3 of Th. 2], that the field $K(f, g)$ is of genus 0 . Note that $K(f, g)$ is not algebraic over K and it is obtained from $k(f, g)$ by an extension of scalars (see [1, V, Sect. 4]). From [1, V, Sect. 6, Th. 5] we get

$$
\begin{equation*}
\operatorname{genus}(k(f, g))=\operatorname{genus}(K(f, g)) \tag{1}
\end{equation*}
$$

(note that K / k is a separable extension since k is algebraically closed). Therefore

$$
\begin{equation*}
\operatorname{genus}(k(f, g))=0 \tag{2}
\end{equation*}
$$

As k is algebraically closed, there exists $z \in K(x)$ such that

$$
\begin{equation*}
k(f, g)=k(z) \tag{3}
\end{equation*}
$$

Using the arguments from [2, proof of Lemma 2] we conclude that there exists $h \in K[x]$ such that $k(z)=k(h)$ and $f \in k[h]$. Now it is easy to see that also $g \in k[h]$.

Corollary. Let $f=a x^{n}, g=b x^{m} \in K[x]$ be two monomials, where $a, b \neq 0$ and $n, m \in \mathbb{N}$. Let $d=\operatorname{gcd}(n, m)$. Then f, g are algebraically

[^0]dependent over k if and only if $f^{m / d}, g^{n / d}$ are linearly dependent over k (or equivalently, if $a^{m / d}, b^{n / d}$ are linearly dependent over k).

Proof. Suppose that f, g are algebraically dependent over k. By the Theorem, there exist $h \in K[x]$ and $F, G \in k[T]$ such that $f=F(h)$ and $g=G(h)$. Assume that $F(T)=a_{0}+a_{1} T+\ldots+a_{r} T^{r}$, where $a_{j} \in k$. Then

$$
\begin{equation*}
a x^{n}=a_{0}+a_{1} h+\ldots+a_{r} h^{r} \tag{4}
\end{equation*}
$$

From $F(h(0))=0$, we get $h(0) \in k$; hence, after a translation, we may assume that $h(0)=0$, so $a_{0}=0$. We conclude that h is a monomial. Moreover,

$$
\begin{equation*}
a x^{n}=\omega h^{r}, \quad \omega \in k \tag{5}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
b x^{m}=w h^{s}, \quad s \in \mathbb{N}, w \in k \tag{6}
\end{equation*}
$$

By (5) and (6), $a^{m / \operatorname{deg} h}, b^{n / \operatorname{deg} h}$ are linearly dependent over k, hence $a^{m / d}$, $b^{n / d}$ are linearly dependent over k.

Remark 1. The Corollary can be proved directly. Put $n_{1}=n / d$ and $m_{1}=m / d$. If f, g are algebraically dependent over k then so are $f^{m_{1}}$ and $g^{n_{1}}$. Since $n m_{1}=m n_{1}$, there is a nontrivial homogeneous polynomial F over k such that $F\left(a^{m_{1}}, b^{n_{1}}\right)=0$. Therefore $a^{m_{1}} / b^{n_{1}}$ is algebraic over k. Since k is algebraically closed, we get

$$
\begin{equation*}
a^{m_{1}}=\mu b^{n_{1}} \quad \text { for some } \mu \in k \tag{7}
\end{equation*}
$$

Remark 2. The fact that k is algebraically closed is essentially used in (3). We will weaken this condition in a special case:

Let k be algebraically closed in K, let $f \in K[x]$ be a monomial and let $g \in K[x]$ be a nonconstant polynomial. Assume that f and any proper power in $K[x]$ are not linearly dependent over k. Then f and g are algebraically dependent over k if and only if $g \in k[f]$.

We sketch a proof. Consider first the general situation: $f=a x^{n}+f_{1}$, $\operatorname{deg} f_{1}<n$ and $g=b x^{m}+g_{1}, \operatorname{deg} g_{1}<m$. Suppose that f, g satisfy a nontrivial relation $\sum a_{i j} f^{i} g^{j}=0$, where $a_{i j} \in k$. Let M be the maximal exponent of x in the relation. Then

$$
\sum_{i n+j m=M} a_{i j}\left(a x^{n}\right)^{i}\left(b x^{m}\right)^{j}=0
$$

hence $a x^{n}$ and $b x^{m}$ are algebraically dependent over k. Now (7) follows as in Remark 1. Since m_{1} and n_{1} are relatively prime, there exist $p, q \in \mathbb{Z}$ such that $p m_{1}+q n_{1}=1$, hence $a=a^{p m_{1}+q n_{1}}=a^{p m_{1}} a^{q n_{1}}=\mu^{p}\left(b^{p} a^{q}\right)^{n_{1}}$.

From this we infer that if $f=a x^{n}$ and if f and any proper power in $K[x]$ are not linearly dependent over k, then $n_{1}=1$, so $n \mid m$. Suppose $m=n$. Then $m_{1}=n_{1}=1$, so $a=\mu b$. If f and g are algebraically dependent over k,
then so are f and $\mu g-f$. Therefore $\mu g_{1} \in K$. It is easy to see that $\mu g_{1} \in k$, so $g \in k[f]$. Now we continue by induction on m (starting with $m=n$), using the fact that k-algebraic dependence of f and g implies k-algebraic dependence of f and $g-\alpha f^{s}$ for every $\alpha \in k$ and $s \in \mathbb{N}$.

Acknowledgements. The author wishes to thank the referee for helpful comments and suggestions, and especially for pointing out several mistakes and a direct proof of the Corollary.

References

[1] C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, Amer. Math. Soc., Providence, 1951.
[2] A. Schinzel, Reducibility of polynomials in several variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 633-638.

Faculty of Chemical Engineering
and Technology
University of Zagreb
Marulićev $\operatorname{trg} 19$, p.p. 177
10000 Zagreb, Croatia
E-mail: igusic@pierre.fkit.hr

[^0]: 1991 Mathematics Subject Classification: 12E05, 12F99.

