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Algebraic independence of polynomials
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Let k be an algebraically closed field, let k ⊆ K be a field extension and
let K(x) be the field of rational functions of one variable over K. The aim
of this paper is to prove the following

Theorem. Let f, g ∈ K[x] be two nonconstant polynomials. Then f, g
are algebraically dependent over k if and only if there exists h ∈ K[x] such
that f ∈ k[h] and g ∈ k[h].

P r o o f. Assume first that f, g ∈ k[h]. Then k(f, g) ⊆ k(h). Since k(h)/k
is of transcendence degree 1, f, g are algebraically dependent over k.

Conversely, assume that f , g are algebraically dependent over k. Then
k(f, g)/k is of transcendence degree 1. Since K ⊂ K(f, g) ⊆ K(x), we
conclude, by Lüroth’s theorem [1, VI, Sect. 2, Cor. 3 of Th. 2], that the field
K(f, g) is of genus 0. Note that K(f, g) is not algebraic over K and it is
obtained from k(f, g) by an extension of scalars (see [1, V, Sect. 4]). From
[1, V, Sect. 6, Th. 5] we get

(1) genus(k(f, g)) = genus(K(f, g))

(note that K/k is a separable extension since k is algebraically closed).
Therefore

(2) genus(k(f, g)) = 0.

As k is algebraically closed, there exists z ∈ K(x) such that

(3) k(f, g) = k(z).

Using the arguments from [2, proof of Lemma 2] we conclude that there
exists h ∈ K[x] such that k(z) = k(h) and f ∈ k[h]. Now it is easy to see
that also g ∈ k[h].

Corollary. Let f = axn, g = bxm ∈ K[x] be two monomials, where
a, b 6= 0 and n,m ∈ N. Let d = gcd(n,m). Then f, g are algebraically
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dependent over k if and only if fm/d, gn/d are linearly dependent over k (or
equivalently , if am/d, bn/d are linearly dependent over k).

P r o o f. Suppose that f, g are algebraically dependent over k. By the
Theorem, there exist h ∈ K[x] and F,G ∈ k[T ] such that f = F (h) and
g = G(h). Assume that F (T ) = a0 + a1T + . . .+ arT

r, where aj ∈ k. Then

(4) axn = a0 + a1h+ . . .+ arh
r.

From F (h(0)) = 0, we get h(0) ∈ k; hence, after a translation, we may as-
sume that h(0) = 0, so a0 = 0. We conclude that h is a monomial. Moreover,

(5) axn = ωhr, ω ∈ k.
Similarly, we get

(6) bxm = whs, s ∈ N, w ∈ k.
By (5) and (6), am/deg h, bn/deg h are linearly dependent over k, hence am/d,
bn/d are linearly dependent over k.

Remark 1. The Corollary can be proved directly. Put n1 = n/d and
m1 = m/d. If f , g are algebraically dependent over k then so are fm1 and
gn1 . Since nm1 = mn1, there is a nontrivial homogeneous polynomial F
over k such that F (am1 , bn1) = 0. Therefore am1/bn1 is algebraic over k.
Since k is algebraically closed, we get

(7) am1 = µbn1 for some µ ∈ k.
Remark 2. The fact that k is algebraically closed is essentially used in

(3). We will weaken this condition in a special case:

Let k be algebraically closed in K, let f ∈ K[x] be a monomial and let
g ∈ K[x] be a nonconstant polynomial. Assume that f and any proper power
in K[x] are not linearly dependent over k. Then f and g are algebraically
dependent over k if and only if g ∈ k[f ].

We sketch a proof. Consider first the general situation: f = axn + f1,
deg f1 < n and g = bxm + g1, deg g1 < m. Suppose that f , g satisfy a
nontrivial relation

∑
aijf

igj = 0, where aij ∈ k. Let M be the maximal
exponent of x in the relation. Then∑

in+jm=M

aij(axn)i(bxm)j = 0,

hence axn and bxm are algebraically dependent over k. Now (7) follows as
in Remark 1. Since m1 and n1 are relatively prime, there exist p, q ∈ Z such
that pm1 + qn1 = 1, hence a = apm1+qn1 = apm1aqn1 = µp(bpaq)n1 .

From this we infer that if f = axn and if f and any proper power in K[x]
are not linearly dependent over k, then n1 = 1, so n |m. Suppose m = n.
Then m1 = n1 = 1, so a = µb. If f and g are algebraically dependent over k,
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then so are f and µg− f . Therefore µg1 ∈ K. It is easy to see that µg1 ∈ k,
so g ∈ k[f ]. Now we continue by induction on m (starting with m = n),
using the fact that k-algebraic dependence of f and g implies k-algebraic
dependence of f and g − αfs for every α ∈ k and s ∈ N.
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