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1. Introduction and results. In 1952 Piatetski-Shapiro [7] considered
the following analogue of the Goldbach–Waring problem: Assume that c > 1
is not an integer and let ε be a small positive number. Let H(c) denote the
smallest natural number r such that the inequality

(1.1) |pc1 + . . .+ pcr −N | < ε

is solvable in prime numbers p1, . . . , pr for sufficiently large N. Then it is
proved in [7] that

lim sup
c→∞

H(c)
c log c

≤ 4.

Piatetski-Shapiro also proved that H(c) ≤ 5 for 1 < c < 3/2. In [8] Tolev
first improved this result for c close to one. More precisely, he proved that
if 1 < c < 15/14, then the inequality

(1.2) |pc1 + pc2 + pc3 −N | < ε(N)

has prime solutions p1, p2, p3 for large N, where

ε(N) = N−(1/c)(15/14−c) log9N.

This result was improved by several authors (see [1, 4, 5]).
In [9] Tolev first studied the system of two inequalities with primes

(1.3)
|pc1 + . . .+ pc5 −N1| < ε1(N1),

|pd1 + . . .+ pd5 −N2| < ε2(N2),

where 1 < d < c < 2 are different numbers and ε1(N1) and ε2(N2) tend to
zero as N1 and N2 tend to infinity. Tolev proved that if c, d, α, β are real
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numbers satisfying

1 < d < c < 35/34,(1.4)

1 < α < β < 51−d/c,(1.5)

then there exist numbers N (0)
1 , N

(0)
2 , depending on c, d, α, β, such that for

all real numbers N1, N2 satisfying N1 > N
(0)
1 , N2 > N

(0)
2 and

(1.6) α ≤ N2/N
d/c
1 ≤ β,

the system (1.3) has prime solutions p1, . . . , p5 for

ε1(N1) = N
−(1/c)(35/34−c)
1 log12N1, ε2(N2) = N

−(1/d)(35/34−d)
2 log12N2.

In this paper we shall prove

Theorem. Suppose c and d are real numbers such that

(1.7) 1 < d < c < 25/24,

and α and β are real numbers satisfying (1.5). Then for all real numbers
N1, N2 satisfying (1.6), the system (1.3) has prime solutions p1, . . . , p5 for

ε1(N1) = N
−(1/c)(25/24−c)
1 log335N1,

ε2(N2) = N
−(1/d)(25/24−d)
2 log335N2.

A short proof, which follows the argument of Tolev [9], will be given in
Section 2. The main difficulty is to prove the Proposition of Section 2, which
improves Lemma 13 of Tolev [9] and is the key to our result. In Section 3,
some preliminary lemmas are given. A detailed proof of the Proposition is
given in Section 4. The new idea of the proof combines elementary methods
and van der Corput’s classical estimates.

Notations. Throughout, c and d are real numbers satisfying (1.7), α
and β are real numbers satisfying (1.5), and λ denotes a sufficiently small
positive number determined precisely by Lemma 1 of Tolev [9], depend-
ing on c, d, α, β. N1 and N2 are large numbers satisfying (1.6). X = N

1/c
1 ,

ε1(N1) = N
−(1/c)(25/24−c)
1 log335N1, ε2(N2) = N

−(1/d)(25/24−d)
2 log335N2,

K1 = ε−1
1 logX, K2 = ε−1

2 logX, η is a sufficiently small positive number in
terms of c and d, τ1 = X3/4−c−η, τ2 = X3/4−d−η, e(t) = e2πit, ϕ(t) = e−πt,
ϕδ(t) = δϕ(δt), and χ(t) is the characteristic function of the interval [−1, 1].
We set

B =
∑

λX<p1,...,p5<X

log p1 . . . log p5χ

(
pc1 + . . .+ pc5 −N1

ε1 logX

)

× χ
(
pd1 + . . .+ pd5 −N2

ε2 logX

)
,
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S(x, y) =
∑

λX<p<X

(log p)e(xpc + ypd),

D =
∞\
−∞

∞\
−∞

S5(x, y)e(−N1x−N2y)ϕε1(x)ϕε2(y) dx dy,

Ω1 = {(x, y) | max(|x|/τ1, |y|/τ2) < 1},
Ω2 = {(x, y) | max(|x|/τ1, |y|/τ2) ≥ 1, max(|x|/K1, |y|/K2) ≤ 1},
Ω3 = {(x, y) | max(|x|/K1, |y|/K2) > 1}.

2. A short proof of the Theorem. The Theorem follows if we can
show that B tends to infinity as X tends to infinity. By Lemma 3 of Tolev
[9], it is sufficient to show that D tends to infinity as X tends to infinity.
Write

(2.1) D = D1 +D2 +D3,

where

(2.2) Di =
\ \
Ωi

S5(x, y)e(−N1x−N2y)ϕε1(x)ϕε2(y) dx dy.

By the same arguments as in Section 4 of Tolev [9], we have

(2.3) D1 � ε1ε2X
5−c−d.

By Lemma 4 of Tolev [9], we have

(2.4) D3 � 1.

So now the Theorem follows from (2.1)–(2.4) and the estimate

(2.5) D2 � ε1ε2X
5−c−d(logX)−1.

By Lemma 14 of Tolev [9] we have

(2.6)
∞\
−∞

∞\
−∞
|S4(x, y)|ϕε1(x)ϕε2(y) dx dy � X2 log6X.

It suffices to prove the following

Proposition. Uniformly for (x, y) ∈ Ω2, we have

(2.7) S(x, y)� X11/12 log660X.

3. Some preliminary lemmas. In order to prove the Proposition, we
need the following lemmas. Lemma 1 is Theorem 2.2 of Min [6]. Lemma 2
is Lemma 2.5 of Graham and Kolesnik [2]. Lemma 3 is contained in Lemma
2.8 of Krätzel [3]. Lemma 4 is well known (see Graham and Kolesnik [2], for
example).
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Lemma 1. Suppose f(x) and g(x) are algebraic functions in [a, b] and

|f ′′(x)| ∼ 1/R, |f ′′′(x)| � 1/(RU),

|g(x)| � G, |g′(x)| � GU−1
1 , U, U1 ≥ 1.

Then
∑

a<n≤b
g(n)e(f(n)) =

∑

α<u≤β
bu

g(nu)√
|f ′′(nu)|e(f(nu)− unu + 1/8)

+O(G log(β − α+ 2) +G(b− a+R)(U−1 + U−1
1 ))

+O(Gmin(
√
R, 1/〈α〉) +Gmin(

√
R, 1/〈β〉)),

where [α, β] is the image of [a, b] under the mapping y = f ′(x), nu is the
solution of the equation f ′(x) = u,

bu =
{

1 for α < u < β,
1/2 for u = α ∈ Z or u = β ∈ Z,

and the function 〈t〉 is defined as follows:

〈t〉 =
{ ‖t‖ if t is not an integer ,
β − α otherwise,

where ‖t‖ = minn∈Z{|t− n|}.
Lemma 2. Suppose z(n) is any complex number and 1 ≤ Q ≤ N . Then
∣∣∣

∑

N<n≤CN
z(n)

∣∣∣
2
� N

Q

∑

0≤q≤Q

(
1− q

Q

)
Re

∑

N<n≤CN−q
z(n)z(n+ q).

Lemma 3. Suppose f(x)� P and f ′(x)� ∆ for x ∼ N . Then
∑

n∼N
min

(
D,

1
‖f(n)‖

)
� (P + 1)(D +∆−1) log(2 +∆−1).

Lemma 4. Suppose 5 < A < B ≤ 2A and f ′′(x) is continuous on [A,B].
If 0 < c1λ1 ≤ |f ′(x)| ≤ c2λ1 ≤ 1/2, then

∑

A<n≤B
e(f(n))� λ−1

1 .

If 0 < c3λ2 ≤ |f ′′(x)| ≤ c4λ2, then
∑

A<n≤B
e(f(n))� Aλ

1/2
2 + λ

−1/2
2 .

Now we prove the following two lemmas, which are important in the
proof of the Proposition. Let

S = S(M,a, b, γ1, γ2) =
∑

M<m≤M1

e(amγ1 + bmγ2),
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where M and M1 are positive numbers such that 5 ≤M < M1 ≤ 2M, a and
b are real numbers such that ab 6= 0, and γ1 and γ2 are real numbers such
that 1 < γ1, γ2 < 2, γ1 6= γ2. Let R = |a|Mγ1 + |b|Mγ2 .

Lemma 5. If RM−1 ≤ 1/8, then

S �MR−1/2.

P r o o f. Suppose R > 100; otherwise Lemma 5 is trivial. Let

f(m) = amγ1 + bmγ2 .

Then

f ′(m) = γ1am
γ1−1 + γ2bm

γ2−1.

If ab > 0, then R/M ≤ |f ′(m)| ≤ 4R/M ≤ 1/2, hence the assertion
follows from Lemma 4.

Now suppose ab < 0. Let

I = {t ∈ [M,M1] | |f ′(t)| ≤ R1/2M−1},
J = {t ∈ [M,M1] | |f ′(t)| > R1/2M−1}.

By the definition we see that if m ∈ J , then

R1/2/M ≤ |f ′(m)| ≤ 4R/M ≤ 1/2;

thus by Lemma 4,

(3.1)
∑

m∈J
e(f(m))�MR−1/2.

We only need to estimate |I|. If t ∈ I, then

γ1at
γ1 = −γ2bt

γ2 +O(R1/2) = −γ2bt
γ2(1 +O(R−1/2)),

tγ1−γ2 =
−γ2b

γ1a
(1 +O(R−1/2)),

which implies that

t =
(−γ2b

γ1a

)1/(γ1−γ2)

(1 +O(R−1/2))1/(γ1−γ2)(3.2)

=
(−γ2b

γ1a

)1/(γ1−γ2)

(1 +O(R−1/2))

=
(−γ2b

γ1a

)1/(γ1−γ2)

+O(MR−1/2).

So

(3.3) |I| �MR−1/2.

Now the conclusion follows from (3.1) and (3.3).
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Lemma 6. If M � R�M2, then

S � R1/2 +MR−1/3.

P r o o f. We have

f ′′(m) = γ1(γ1 − 1)amγ1−2 + γ2(γ2 − 1)bmγ2−2.

If ab > 0, then |f ′′(m)| ∼ RM−2, and by Lemma 4 we get S � R1/2 +
MR−1/2.

Now suppose ab < 0. Let ∆0 = R2/3M−2. Define

I0 = {t ∈ [M,M1] | |f ′′(t)| ≤ ∆0},
Ij = {t ∈ [M,M1] | 2j−1∆0 < |f ′′(t)| ≤ 2j∆0 ≤ 2R/M2},

1 ≤ j ≤ log
(

2R
M2∆0

)

log 2
= J0.

If I0 is not empty, then by the same argument as in Lemma 5 we get
|I0| �MR−1/3. Thus Lemma 4 yields

∑

M<m≤M1

e(f(m)) =
∑

m∈I0
e(f(m)) +

∑

1≤j≤J0

∑

m∈Ij
e(f(m))(3.4)

�MR−1/3 +
∑

1≤j≤J0

{M(2j∆0)1/2 + (2j∆0)−1/2}

�MR−1/3 +R1/2.

This completes the proof.

4. Proof of the Proposition. In this section we shall estimate S(x, y)
for (x, y) ∈ Ω2. Suppose 1 < d < c < 25/24 and fix (x, y) ∈ Ω2. Let
R = |x|Xc + |y|Xd. Obviously, X3/4−η � R � X25/24 log−300X. Without
loss of generality, we suppose xy 6= 0. For the case x = 0 or y = 0, previous
methods yield better results (see [1, 5]).

Lemma 7. Suppose a(m) are complex numbers such that
∑

m∼M
|a(m)|2 �M log2AM, A > 0.

Then for M � min(X2/3, X19/12R−1), MN ∼ X, we have

(4.1) SI =
∑

m∼M
a(m)

∑

n∼N
e(x(mn)c + y(mn)d)� X11/12 logA+1X.

P r o o f. If M � X11/12R−1/2, then by Lemma 6 we get

(4.2) SI �M(R1/2 +NR−1/3) logAX � X11/12 logAX.
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From now on we always suppose M � X11/12R−1/2. Let Q = [X1/6].
By Cauchy’s inequality and Lemma 2 we have

|SI|2 �
∑

m∼M
|a(m)|2

∑

m∼M

∣∣∣
∑

n∼N
e(x(mn)c + y(mn)d)

∣∣∣
2

(4.3)

� X2Q−1 log2AX +XQ−1 log2AX

Q∑
q=1

|Eq|,

where

Eq =
∑

m∼M

∑

N<n≤2N−q
e(xmc∆(n, q; c) + ymd∆(n, q; d)),

∆(n, q; t) = (n+ q)t − nt.
Now the problem is reduced to showing that

(4.4)
Q∑
q=1

|Eq| � X log2X.

For each fixed 1 ≤ q ≤ Q, let

f(m,n) = xmc∆(n, q; c) + ymd∆(n, q; d).

We first consider several simple cases.

Case 0: A special case. For constants a, b > 0, let N(a, b) denote the
solution of the inequality

(4.5) |ax(mn)c + by(mn)d| ≤ R

Q1/2 logX
, m ∼M, n ∼ N.

Suppose 0 < σ < 1 is a positive constant small enough. Then we can prove
that uniformly for a, b ∈ [σ, 1/σ], we have

(4.6) N(a, b)�σ X
11/12.

If xy > 0, then N(a, b) = 0; so suppose xy < 0. If (m,n) satisfies the
inequality (4.5), then

ax(mn)c = −by(mn)d +O

(
R

Q1/2 logX

)

= −by(mn)d(1 +O(Q−1/2 log−1X)),

which implies that
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mn =
(−by
ax

)1/(c−d)

(1 +O(Q−1/2 log−1X))1/(c−d)

=
(−by
ax

)1/(c−d)

(1 +O(Q−1/2 log−1X))

=
(−by
ax

)1/(c−d)

+O(XQ−1/2 log−1X).

Thus (4.5) follows from a divisor argument. Why we study this case will be
explained later.

Case 1: |∂f/∂m| ≤ 500−1. It is obvious that

|xmc∆(n, q; c)| ∼ q|x|mcnc−1 ∼ q|x|XcN−1,

|ymd∆(n, q; d)| ∼ q|y|mdnd−1 ∼ q|y|XdN−1,

thus

|xmc∆(n, q; c)|+ |ymd∆(n, q; d)| ∼ qRN−1.

We use Lemma 5 to estimate the sum over m and get

Eq � NM(qRN−1)−1/2 �MN3/2q−1/2R−1/2.

Summing over q we find that (4.4) holds if noticing M � X11/12R−1/2 and
R� X25/24.

Case 2: |∂f/∂n| ≤ 500−1. For fixed m, we estimate the sum over n.
Since

∂f/∂n = cxmc∆(n, q; c− 1) + dymd∆(n, q; d− 1),

∆(n, q; c− 1) = (c− 1)qnc−2 +O(q2N c−3),

∆(n, q; d− 1) = (d− 1)qnd−2 +O(q2Nd−3),

we get

∂f/∂n = c(c− 1)xqmcnc−2 + d(d− 1)yqmdnd−2 +O(q2RN−3).

If xy > 0, then

c1qRN
−2 < |∂f/∂n| ≤ c2qRN−2 < 1/2

for some constants c1, c2 > 0. Thus by Lemma 4 we get

Eq �MN2q−1R−1.

Now suppose xy < 0, 0 < δ = o(qRN−2) is a parameter to be deter-
mined. Define

I = {t ∈ [N, 2N − q] | |∂f/∂t| ≤ δ},
J = {t ∈ [N, 2N − q] | |∂f/∂t| > δ}.
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If n ∈ I, then we have

c(c− 1)xqmcnc−2 = −d(d− 1)yqmdnd−2 +O(δ + q2RN−3)

= −d(d− 1)yqmdnd−2(1 +O(δN2(qR)−1 + qN−1)),

which gives

n =
(−d(d− 1)ymd

c(c− 1)xmc

)1/(c−d)

(1 +O(δN2(qR)−1 + qN−1))1/(c−d)

=
(−d(d− 1)ymd

c(c− 1)xmc

)1/(c−d)

(1 +O(δN2(qR)−1 + qN−1))

=
(−d(d− 1)ymd

c(c− 1)xmc

)1/(c−d)

+ (q + δN3q−1R−1).

Thus

(4.7) |I| � q + δN3q−1R−1.

By Lemma 4 we get

(4.8)
∑

n∈J, |∂f/∂n|≤500−1

e(f(m,n))� δ−1.

Thus we get

(4.9)
∑

n∼N, |∂f/∂n|≤500−1

e(f(m,n))� q +N3/2(qR)−1/2,

by choosing δ = (qR)1/2N−3/2.

Combining the above, we get

(4.10)
∑

(m,n)
|∂f/∂n|≤500−1

e(f(m,n))�Mq +MN3/2(qR)−1/2 +MN2(qR)−1.

Summing over q we find

(4.11)
∑
q

∑

(m,n)
|∂f/∂n|≤500−1

e(f(m,n))

�MQ2 +MN3/2Q1/2R−1/2 +MN2R−1 logQ� X logX,

if we recall X11/12R−1/2 �M � X2/3.

Case 3: For some i and j, 2 ≤ i+ j ≤ 3,

(∗)
∣∣∣∣
∂i+jf

∂mi∂nj

∣∣∣∣ ≤
qR logX
QM iN j+1 .
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Let c(γ, 0) = 1, c(γ, n) = γ(γ − 1) . . . (γ − n+ 1) for n 6= 0. Then

∂i+jf

∂mi∂nj
= c(c, i)c(c, j)xmc−i∆(n, q; c− j)

+ c(d, i)c(d, j)ymd−i∆(n, q; d− j).
Since c(c, i)c(c, j) and c(d, i)c(d, j) always have the same sign, we may sup-
pose xy < 0; otherwise there is no (m,n) satisfying (∗).

If (m,n) satisfies (∗), then

c(c, i)c(c, j)xmc−i∆(n, q; c− j)
= −c(d, i)c(d, j)ymd−i∆(n, q; d− j) +O

(
qR logX
QM iN j+1

)

= −c(d, i)c(d, j)ymd−i∆(n, q; d− j)
(

1 +O

(
logX
Q

))
,

which implies that

m =
(−c(d, i)c(d, j)y∆(n, q; d− j)

c(c, i)c(c, j)x∆(n, q; c− j)
)1/(c−d)(

1 +O

(
logX
Q

))1/(c−d)

=
(−c(d, i)c(d, j)y∆(n, q; d− j)

c(c, i)c(c, j)x∆(n, q; c− j)
)1/(c−d)(

1 +O

(
logX
Q

))

=
(−c(d, i)c(d, j)y∆(n, q; d− j)

c(c, i)c(c, j)x∆(n, q; c− j)
)1/(c−d)

+O

(
M logX

Q

)
.

Thus
∑

(m,n), (∗)
e(f(m,n))� X logX

Q

and

(4.12)
∑
q

∑

(m,n), (∗)
e(f(m,n))� X logX.

Now we turn to the most difficult part. We suppose that none of the
conditions from Cases 0 to 3 holds. Without loss of generality, we suppose
∂f/∂n > 0. For any fixed 0 ≤ j ≤ (log 10Q)/log 2, let Ij denote the subin-
terval of [N, 2N − q] in which

2jqR
QN3 <

∣∣∣∣
∂2f

∂n2

∣∣∣∣ ≤
2j+1qR

QN3 .

We suppose Ij = [Aj , Bj ], say; Aj and Bj may depend on m, but this does
not affect our final result.
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By Lemma 1 we get

(4.13)
∑

n∈Ij
e(f(m,n)) = e(1/8)

∑

v1(m)<v≤v2(m)

bve(s(m, v))√
|G(m, v)| +O(R(m, q, j)),

where

fn(m, g(m, v)) = v,

s(m, v) = f(m, g(m, v))− vg(m, v),

G(m, v) = fnn(m, g(m, v)),

R(m, q, j) = logX +
QN2

2jqR
+ min

(
Q1/2N3/2

2j/2q1/2R1/2
,

1
‖v1(m)‖

)

+ min
(

Q1/2N3/2

2j/2q1/2R1/2
,

1
‖v2(m)‖

)
,

qR

QN2 � v1(m), v2(m)� qR

N2 .

Since

qRN−2 � 1,

v′1(m) =
∂2f

∂n∂m
(m,Bj)� qRQ−1M−1N−2,

v′2(m) =
∂2f

∂n∂m
(m,Aj)� qRQ−1M−1N−2,

by Lemma 3 we get

(4.14)
∑

1≤q≤Q

∑

j≥0

∑
m

R(m, q, j)

�
∑

1≤q≤Q

∑

j≥0

(
M logX +

QMN2

2jqR
+
qR

N2 ·
Q1/2N3/2

2j/2q1/2R1/2
+
qR

N2 ·
QMN2

qR

)

�MQ2 log2X +QMN2R−1 logX +Q2R1/2N−1/2

� X log2X.

Let v1 = min v1(m), v2 = max v2(m). Then

(4.15)
∑

M<m≤2M

∑

v1(m)<v≤v2(m)

bve(s(m, v))√
|G(m, v)| �

∑

v1≤v≤v2

∣∣∣∣
∑

m∈Iv

e(s(m, v))√
|G(m, v)|

∣∣∣∣,

where Iv is a subinterval of [M, 2M ].
Now the problem is reduced to estimating the sum over m. We first

prove that |G(m, v)|−1/2 is monotonic. Let g = g(m, v). Differentiating the
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equation fn(m, g(m, v)) = v over m we get

(4.16) gm(m, v) = −fnm(m, g)
fnn(m, g)

.

Thus

(4.17) Gm(m, v) = fmnn + fnnngm =
fnnmfnn − fnnnfnm

fnn
.

We only need to consider fnnmfnn−fnnnfnm, since fnn always has the same
sign. Here we remark that we actually consider subintervals of [M, 2M ] such
that fnn is always positive or negative. This is so for other derivatives.

We now compute the corresponding derivatives. We have

fnm = c2xmc−1∆(g, q; c− 1) + d2ymd−1∆(g, q; d− 1)

= c2(c− 1)xqmc−1gc−2 + d2(d− 1)yqmd−1gd−2 +O

(
q2R

MN3

)
.

Since |fnm| > (qR logX)/(QMN2), we have

fnm = (c2(c− 1)xqmc−1gc−2 + d2(d− 1)yqmd−1gd−2)
(

1 +O

(
Q2

N logX

))
.

Similarly,

fnn = (c(c− 1)(c− 2)xqmcgc−3 + d(d− 1)(d− 2)yqmdgd−3)

×
(

1 +O

(
Q2

N logX

))
,

fnnm = (c2(c− 1)(c− 2)xqmc−1gc−3 + d2(d− 1)(d− 2)yqmd−1gd−3)

×
(

1 +O

(
Q2

N logX

))
,

fnnn = (D(c)xqmcgc−4 +D(d)yqmdgd−4)
(

1 +O

(
Q2

N logX

))
,

where D(γ) = γ(γ − 1)(γ − 2)(γ − 3).
For simplicity, we write s = xmcgc, t = ymdgd. Then we get

(4.18) fnnfnnm − fnmfnnn
= m−1g−6(As2 + 2Bst+ Ct2)

(
1 +O

(
Q2

N logX

))
,

where
A = c3(c− 2)2(c− 2) < 0,

B = c(c− 1)d(d− 1)(3cd− c2 − d2 − c− d) < 0,

C = d3(d− 2)2(d− 2) < 0.
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We only need to show that

(4.19) As2 + 2Bst+ Ct2 6= 0.

If xy > 0, (4.19) is obvious. Now suppose xy < 0. It is easy to show that

B2 −AC = c2(c− 1)2d2(d− 1)2(c− d)2(2c+ 2d+ 1 + c2 + d2 − 4cd) > 0.

Thus there exist constants a1, a2, b1, b2 such that

As2 + 2Bst+ Ct2 = (a1s+ b1t)(a2s+ b2t).

Since A < 0, B < 0, C < 0, it can be easily seen that a1b1 > 0, a2b2 > 0.
Now we recall that s and t do not satisfy the condition of Case 0. Taking
σ = 1

2 min(|a1|, |a2|, |b1|−1, |b2|−1) in Case 0, we obtain

|a1s+ b1t| > R

Q1/2 logX
, |a2s+ b2t| > R

Q1/2 logX
.

Thus

|As2 + 2Bst+ Ct2| ≥ R2

Q log2X
.

This is the reason why we consider Case 0.
By the above discussion we know that |G(m, v)| is monotonic in m. So

is |G(m, v)|−1/2.
Now we compute smm(m, v). We have

sm(m, v) = fm(m, g) + fn(m, g)gm − vgm = fm(m, g),(4.20)

smm(m, v) = fmm(m, g) + fmn(m, g)gm = (fmmfnn − f2
mn)/fnn.

Similar to Gm, we have

fmmfnn − f2
mn = − 2q2

m2n4 (A1s
2 +B1st+ C1t

2)
(

1 +O

(
Q2

N logX

))
,

where A1 = c3(c − 1)2, B1 = c(c − 1)d(d − 1)(c + d), C1 = d3(d − 1)2,
B2

1 − 4A1C1 > 0. Now if xy > 0, we immediately get

|fmmfnn − f2
mn| �

q2R2

M2N4 ;

if xy < 0, then similar to Gm, we have

|A1s
2 +B1st+ C1t

2| � R2

Q log2X
,

which implies

|fmmfnn − f2
mn| �

q2R2

QM2N4 log2X
.

Combining the above, we get

(4.21) |smm| � qR

QM2N log2X
.
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On the other hand, we trivially have

(4.22) |smm| � |fmm|+ |fmngm| � qR

M2N
+

qR

N2M
· N
M
� qR

M2N
.

Now let

Iv,l =
{
m ∈ Iv

∣∣∣∣
2lqR

QM2N log2X
< |smm| ≤ 2l+1qR

QM2N log2X

}
,

0 ≤ l ≤ log(Q logX)/log 2.

Then by partial summation and Lemma 4 we get

(4.23)
Q∑
q=1

∑

j≥0

v2∑
v=v1

∣∣∣∣
∑

m∈Iv

e(s(m, v))√
|G(m, v)|

∣∣∣∣

�
Q∑
q=1

∑

j≥0

v2∑
v=v1

∑

l≥0

∣∣∣∣
∑

m∈Iv,l

e(s(m, v))√
|G(m, v)|

∣∣∣∣

�
Q∑
q=1

∑

j≥0

v2∑
v=v1

∑

l≥0

(
QN3

qR

)1/2

×
(
M

(
2lqR

QM2N log2X

)1/2

+
(
QM2N log2X

2lqR

)1/2)

�
Q∑
q=1

∑

j≥0

v2∑
v=v1

(
QN3

qR

)1/2( (qR)1/2

N1/2
+
M(QN log2X)1/2

(qR)1/2

)

�
Q∑
q=1

∑

j≥0

qR

N2

(
QN3

qR

)1/2( (qR)1/2

N1/2
+
M(QN log2X)1/2

(qR)1/2

)

� Q5/2RN−1 log2X +MQ2 log2X

� X log2X,

if we recall the condition M � min(x2/3, x19/12R−1). This completes the
proof of Lemma 7.

Lemma 8. Suppose am and bn are complex numbers such that
∑

m∼M
|am|2 �M log2AM,

∑

n∼N
|bn|2 � N log2AN, A > 0, B > 0.

Then for X1/6 � N � min(X3/2R−1, RX−1/3), we have

(4.24) SII =
∑

m∼M

∑

n∼N
ambne(x(mn)c + y(mn)d)� X11/12 logA+B+1X.
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P r o o f. Take Q = [X1/6 log−1X] = o(N). Then by Cauchy’s inequality
and Lemma 2 again we get

|SII|2 � X2 log2A+2B X

Q
(4.25)

+
X log2AX

Q

Q∑
q=1

∑
n

|bnbn+q|
∣∣∣
∑

m∼M
e(f(m,n))

∣∣∣,

where f(m,n) is defined as in the proof of Lemma 7.
By Lemma 6 we get

(4.26)
∑

m∼M
e(f(m,n))� q1/2R1/2N−1/2 +MN1/3q−1/3R−1/3.

Notice that for fixed q, we have

(4.27)
∑
n

|bnbn+q| �
∑
n

|bn|2 +
∑
n

|bn+q|2 � N log2B N.

The conclusion follows from the above three estimates.

Now we prove our Proposition. Let

D = min(X2/3, X19/12R−1), E = min(X3/2R−1, RX−1/3), F = X1/6.

Then it is easy to check that under our assumptions we have

DE > X, X/D > (2X)1/13, F 2 < E.

Using Heath-Brown’s identity (k = 13) we know that S(x, y) can be written
as O(log26X) exponential sums of the form

T =
∑

n1∼N1

. . .
∑

n26∼N26

a1(n1) . . . a26(n26)e(x(n1 . . . n26)c + y(n1 . . . n26)d),

where

Ni < ni ≤ 2Ni (i = 1, . . . , 26), X � N1 . . . N26 � X,

Ni ≤ (2X)1/13 (i = 14, . . . , 26),

a1(n1) = log n1, ai(ni) = 1 (i = 2, . . . , 13),

ai(ni) = µ(ni) (i = 14, . . . , 26).

Some ni may only take value 1. It suffices to show that for each T we have

(4.28) T � X11/12 log630X.

We consider three cases.

Case 1: There is an Nj such that Nj ≥ X/D. Since X/D > X1/13,
it follows that 1 ≤ j ≤ 13. Without loss of generality, suppose j = 1. Let
m = n2n3 . . . n26, am =

∑
m=n2n3...n26

µ(n14) . . . µ(n26) � d25(m), n = n1.
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Then T is a sum of type I. By partial summation, Lemma 7 and a divisor
argument we get

T � X11/12 log630X.

Case 2: There is an Nj such that F ≤ Nj < X/D ≤ E. In this case
we take n = nj , m =

∏
i 6=j ni. Then T forms a sum of type II and (4.28)

follows from Lemma 8.

Case 3: Nj < F (j = 1, . . . , 26). Without loss of generality, we suppose
N1 ≥ . . . ≥ N26. Let 1 ≤ l ≤ 26 be an integer such that

N1 . . . Nl−1 ≤ F, N1 . . . Nl > F.

It is easy to check that 3 ≤ l ≤ 23. We have

F < N1 . . . Nl = (N1 . . . Nl−1)Nl < F 2 < E.

Let n = n1 . . . nl, m = nl+1 . . . n26, an =
∏l
i=1 ai(ni), bm =

∏26
i=l+1 ai(ni).

Then T forms a sum of type II and (4.28) follows from Lemma 8.
Now the Proposition follows from the above three cases.
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