The exceptional set of Goldbach numbers (II)

by
Hongze Li (Jinan)

1. Introduction. A positive number which is a sum of two odd primes is called a Goldbach number. Let $E(x)$ denote the number of even numbers not exceeding x which cannot be written as a sum of two odd primes. Then the Goldbach conjecture is equivalent to proving that

$$
E(x)=2 \quad \text { for every } x \geq 4
$$

$E(x)$ is usually called the exceptional set of Goldbach numbers. In [8] H. L. Montgomery and R. C. Vaughan proved that $E(x)=O\left(x^{1-\Delta}\right)$ for some positive constant $\Delta>0$. In [3] Chen and Pan proved that one can take $\Delta>0.01$. In [6], we proved that $E(x)=O\left(x^{0.921}\right)$. In this paper we prove the following result.

Theorem. For sufficiently large x,

$$
E(x)=O\left(x^{0.914}\right)
$$

Throughout this paper, ε always denotes a sufficiently small positive number that may be different at each occurrence. A is assumed to be sufficiently large, $A<Y$, and $D=Y^{1+\varepsilon}$.
2. Some lemmas. Let $A<q \leq Y$ and χ_{q} be a non-principal character $\bmod q$. Write $\alpha=1-\lambda / \log D$, and assume

$$
\begin{equation*}
\alpha \leq \sigma \leq 1, \quad|t| \leq D / q \tag{2.1}
\end{equation*}
$$

Let $\chi(\bmod q)$ and $\chi_{0}(\bmod q)$ be a character and a principal character $\bmod q$, and $\mathcal{L}=\log D$.

[^0]Lemma 1. Let χ be a non-principal character modulo q, and let $\phi=3 / 8$. Then for any $\varepsilon>0$ there exists a $\delta=\delta(\varepsilon)>0$ such that

$$
-\Re \frac{L^{\prime}}{L}(s, \chi) \leq-\sum_{|1+i t-\varrho| \leq \delta} \Re \frac{1}{s-\varrho}+\left(\frac{\phi}{2}+\varepsilon\right) H
$$

uniformly for

$$
1+\frac{1}{H \log H} \leq \sigma \leq 1+\frac{\log H}{H}
$$

providing that q is sufficiently large; here $H=\log q(|t|+2)$.
This is Lemma 2.4 of [5].
Lemma 2. Suppose Y is sufficiently large. Then no function $L(s, \chi)$ with χ primitive modulo $q \leq Y$, except for a possible exceptional one only, has a zero in the region

$$
\sigma \geq 1-\frac{0.239}{\log Y}, \quad q(|t|+1) \leq Y^{1+\varepsilon}
$$

If the exceptional function exists, say $L(s, \widetilde{\chi})$, then $\widetilde{\chi}$ must be a real primitive character modulo $\widetilde{q} \leq Y$, and $L(s, \widetilde{\chi})$ has a real simple zero $\widetilde{\beta}$ satisfying

$$
1-\frac{0.239}{\log Y} \leq \widetilde{\beta} \leq 1-\frac{c}{\widetilde{q}^{10^{-8}}}
$$

This is Lemma 2.3 of [6].
For a real number a, let $a^{*}=a \mathcal{L}^{-1}$, and let $\varrho_{j}=1-\lambda_{j}^{*}+i \gamma_{j}^{*}, j=1,2, \ldots$, denote the non-trivial zeros of $L(s, \chi)$ in (2.1), with λ_{j} in increasing order.

Lemma 3. Suppose χ is a real non-principal character $\bmod q \leq Y$, and ϱ_{1} is real. Then $\lambda_{2}>0.8$.

Proof. Apply Lemma 3.2 of [5].
When $\chi^{2}=\chi_{0}$ and ϱ_{1} is complex, or $\chi^{3}=\chi_{0}$, we follow Lemma 9.1 of [4]. Let a, k, ε be positive constants, and let $\phi=3 / 8, P(x)=x+x^{2}+\frac{2}{3} x^{3}$. Then

$$
\left(k^{2}+\frac{1}{2}\right)\left\{P\left(\frac{a+\lambda_{1}}{a}\right)-P\left(\frac{a+\lambda_{1}}{a+\lambda_{2}}\right)\right\}-2 k P(1)+\left(a+\lambda_{1}\right)(\psi+\varepsilon) \geq 0
$$

where

$$
\psi=\frac{\phi}{2}\left(k^{2}+3 k+\frac{3}{2}\right)
$$

providing that

$$
k_{0}\left(a+\lambda_{1}\right)^{-3}+\left(a+\lambda_{2}\right)^{-3} \geq a^{-3} \quad \text { with } \quad k_{0}=\min \left(k+\frac{3}{4 k}, 4 k\right)
$$

Taking $a=2.4, k=0.88$, we see that if $\lambda_{1} \leq 0.618$, then $\lambda_{2}>0.618$.

Now suppose χ does not have order 2 or 3 . Let

$$
\begin{equation*}
\mathcal{L}^{-1} \sum_{k} a_{k} \frac{(a+0.239)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \Lambda(n) \Re\left(\frac{\chi(n)}{n^{s}}\right)\left(\frac{\log n}{\mathcal{L}}\right)^{k-1}=\Sigma(s, \chi) . \tag{2.2}
\end{equation*}
$$

Again we follow Lemma 9.1 of [4] with a, k, ε, ϕ and $P(x)$ as above. Then

$$
\begin{aligned}
& \left(k^{2}+\frac{1}{2}\right)\left\{P\left(\frac{a+0.239}{a}\right)-P\left(\frac{a+0.239}{a+\lambda_{2}}\right)\right\} \\
& -2 k P\left(\frac{a+0.239}{a+\lambda_{1}}\right)+(a+0.239)(\psi+\varepsilon) \geq 0 .
\end{aligned}
$$

Taking $a=2.21, k=0.89$, we see that if $\lambda_{1} \leq 0.575$, then $\lambda_{2}>0.575$.
Now we consider λ_{3}. Our starting point is the inequality

$$
\begin{equation*}
\prod_{j=1}^{3}\left(1+\Re\left(\chi(n) n^{-i \gamma_{j}^{*}}\right)\right) \geq 0 \tag{2.3}
\end{equation*}
$$

Let $P(x)=\sum a_{k} x^{k}=x+x^{2}+\frac{2}{3} x^{3}$ and

$$
\begin{equation*}
\mathcal{L}^{-1} \sum_{k} a_{k} \frac{a^{k}}{(k-1)!} \sum_{n=1}^{\infty} \Lambda(n) \Re\left(\frac{\chi(n)}{n^{s}}\right)\left(\frac{\log n}{\mathcal{L}}\right)^{k-1}=\Sigma(s, \chi) . \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Sigma\left(\sigma, \chi_{0}\right)+\sum_{j=1}^{3} \Sigma\left(\sigma+i \gamma_{j}^{*}, \chi\right)+\frac{1}{2} \sum_{2}+\frac{1}{4} \sum_{3} \geq 0 \tag{2.5}
\end{equation*}
$$

with

$$
\sum_{2}=\sum_{1 \leq j<k \leq 3}\left\{\Sigma\left(\sigma+i \gamma_{j}^{*}+i \gamma_{k}^{*}, \chi^{2}\right)+\Sigma\left(\sigma+i \gamma_{j}^{*}-i \gamma_{k}^{*}, \chi_{0}\right)\right\}
$$

and

$$
\begin{aligned}
\sum_{3}= & \Sigma\left(\sigma+i \gamma_{1}^{*}+i \gamma_{2}^{*}+i \gamma_{3}^{*}, \chi^{3}\right)+\Sigma\left(\sigma+i \gamma_{1}^{*}+i \gamma_{2}^{*}-i \gamma_{3}^{*}, \chi\right) \\
& +\Sigma\left(\sigma+i \gamma_{1}^{*}-i \gamma_{2}^{*}+i \gamma_{3}^{*}, \chi\right)+\Sigma\left(\sigma+i \gamma_{1}^{*}-i \gamma_{2}^{*}-i \gamma_{3}^{*}, \widetilde{\chi}\right)
\end{aligned}
$$

Let $s=\sigma+i t, \sigma=1+a \mathcal{L}^{-1}$. We now observe that

$$
\Re\left(P\left(\frac{a}{(s-\varrho) \mathcal{L}}\right)\right) \geq 0
$$

for all zeros ϱ, since $\Re P(1 / z) \geq 0$ for $\Re z \geq 1$. Moreover, if $|1+i t-\varrho| \geq \delta$, then

$$
\Re\left(P\left(\frac{a}{(s-\varrho) \mathcal{L}}\right)\right)=O\left(\mathcal{L}^{-1}\right) .
$$

Here we follow Lemma 8.3 of [4]. Thus

$$
\Sigma\left(\sigma, \chi_{0}\right) \leq P(1)+\varepsilon,
$$

$$
\begin{gathered}
\sum_{1 \leq j<k \leq 3} \Sigma\left(\sigma+i \gamma_{j}^{*}-i \gamma_{k}^{*}, \chi_{0}\right) \leq \sum_{1 \leq j<k \leq 3} \Re\left\{P\left(\frac{a}{a+i\left(\gamma_{j}-\gamma_{k}\right)}\right)\right\}+\varepsilon, \\
\Sigma\left(\sigma+i \gamma_{1}^{*}, \chi\right) \leq-P\left(\frac{a}{a+\lambda_{1}}\right)-\Re\left\{P\left(\frac{a}{a+\lambda_{2}+i\left(\gamma_{1}-\gamma_{2}\right)}\right)\right\} \\
-\Re\left\{P\left(\frac{a}{a+\lambda_{3}+i\left(\gamma_{1}-\gamma_{3}\right)}\right)\right\}+a\left(\frac{\phi}{2}+\varepsilon\right), \\
\Sigma\left(\sigma+i \gamma_{2}^{*}, \chi\right) \leq-P\left(\frac{a}{a+\lambda_{2}}\right)-\Re\left\{P\left(\frac{a}{a+\lambda_{3}+i\left(\gamma_{2}-\gamma_{3}\right)}\right)\right\}+a\left(\frac{\phi}{2}+\varepsilon\right), \\
\Sigma\left(\sigma+i \gamma_{3}^{*}, \chi\right) \leq-P\left(\frac{a}{a+\lambda_{3}}\right)+a\left(\frac{\phi}{2}+\varepsilon\right), \\
\sum_{1 \leq j<k \leq 3} \Sigma\left(\sigma+i \gamma_{j}^{*}-i \gamma_{k}^{*}, \chi^{2}\right) \leq a\left(\frac{3}{2} \phi+\varepsilon\right), \\
\Sigma\left(\sigma+i \gamma_{1}^{*}+i \gamma_{2}^{*}-i \gamma_{3}^{*}, \chi\right) \leq-\Re\left\{P\left(\frac{a}{a+\lambda_{1}+i\left(\gamma_{2}-\gamma_{3}\right)}\right)\right\} \\
\quad-\Re\left\{P\left(\frac{a}{a+\lambda_{2}+i\left(\gamma_{1}-\gamma_{3}\right)}\right)\right\}+a\left(\frac{\phi}{2}+\varepsilon\right), \\
\Sigma\left(\sigma+i \gamma_{1}^{*}-i \gamma_{2}^{*}+i \gamma_{3}^{*}, \chi\right) \leq-\Re\left\{P\left(\frac{a}{a+\lambda_{3}+i\left(\gamma_{1}-\gamma_{2}\right)}\right)\right\}+a\left(\frac{\phi}{2}+\varepsilon\right), \\
\Sigma\left(\sigma+i \gamma_{1}^{*}+i \gamma_{2}^{*}+i \gamma_{3}^{*}, \chi^{3}\right) \leq a(\phi / 2+\varepsilon), \\
\Sigma\left(\sigma+i \gamma_{1}^{*}-i \gamma_{2}^{*}-i \gamma_{3}^{*}, \widetilde{\chi}\right) \leq a(\phi / 2+\varepsilon) .
\end{gathered}
$$

Hence

$$
\begin{aligned}
P(1)-P\left(\frac{a}{a+\lambda_{1}}\right) & -P\left(\frac{a}{a+\lambda_{2}}\right)-P\left(\frac{a}{a+\lambda_{3}}\right)+a\left(\frac{11}{4} \phi+\varepsilon\right) \\
& +\frac{1}{2} \Re\left\{P\left(\frac{a}{a+i\left(\gamma_{1}-\gamma_{2}\right)}\right)-2 P\left(\frac{a}{a+\lambda_{2}+i\left(\gamma_{1}-\gamma_{2}\right)}\right)\right. \\
& \left.-\frac{1}{2} P\left(\frac{a}{a+\lambda_{3}+i\left(\gamma_{1}-\gamma_{2}\right)}\right)\right\} \\
& +\frac{1}{2} \Re\left\{P\left(\frac{a}{a+i\left(\gamma_{1}-\gamma_{3}\right)}\right)-2 P\left(\frac{a}{a+\lambda_{3}+i\left(\gamma_{1}-\gamma_{3}\right)}\right)\right. \\
& \left.-\frac{1}{2} P\left(\frac{a}{a+\lambda_{2}+i\left(\gamma_{1}-\gamma_{3}\right)}\right)\right\} \\
& +\frac{1}{2} \Re\left\{P\left(\frac{a}{a+i\left(\gamma_{2}-\gamma_{3}\right)}\right)-2 P\left(\frac{a}{a+\lambda_{3}+i\left(\gamma_{2}-\gamma_{3}\right)}\right)\right. \\
& \left.-\frac{1}{2} P\left(\frac{a}{a+\lambda_{1}+i\left(\gamma_{2}-\gamma_{3}\right)}\right)\right\} \geq 0 .
\end{aligned}
$$

Providing that

$$
a^{-3} \leq \frac{5}{2}\left(a+\lambda_{3}\right)^{-3}
$$

we have

$$
P(1)-P\left(\frac{a}{a+\lambda_{1}}\right)-P\left(\frac{a}{a+\lambda_{2}}\right)-P\left(\frac{a}{a+\lambda_{3}}\right)+a\left(\frac{11}{4} \phi+\varepsilon\right) \geq 0
$$

Taking $a=2$, we have $\lambda_{3} \geq 0.68$.
Lemma 4. Suppose χ is a non-principal character $\bmod q \leq Y$, and $\varrho_{1}, \varrho_{2}, \varrho_{3}$ are the zeros of $L(s, \chi)$. Then

$$
\lambda_{2}>0.575, \quad \lambda_{3}>0.618
$$

Lemma 5. Suppose $\chi \neq \chi_{0}$ is a character $\bmod q \leq Y$. Let n_{0}, n_{1}, n_{2} denote the numbers of zeros of $L(s, \chi)$ in the rectangles

$$
\begin{aligned}
& R_{0}: 1-\mathcal{L}^{-1} \leq \sigma \leq 1,\left|t-t_{0}\right| \leq 5.8 \mathcal{L}^{-1} \\
& R_{1}: 1-5 \mathcal{L}^{-1} \leq \sigma \leq 1,\left|t-t_{1}\right| \leq 23.4 \mathcal{L}^{-1} \\
& R_{2}: 1-\lambda_{+} \mathcal{L}^{-1} \leq \sigma \leq 1,\left|t-t_{2}\right| \leq 23.4 \mathcal{L}^{-1}
\end{aligned}
$$

where t_{0}, t_{1}, t_{2} are real numbers satisfying $\left|t_{i}\right| \leq T$, and $5<\lambda_{+} \leq \log \log \mathcal{L}$. Then

$$
n_{0} \leq 3, \quad n_{1} \leq 10, \quad n_{2} \leq 0.2292\left(\lambda_{+}+42.9\right)
$$

Proof. It is well known that

$$
-\frac{\zeta^{\prime}}{\zeta}(\sigma)-\Re \frac{L^{\prime}}{L}(s, \chi) \geq 0
$$

here $\sigma=\Re s$.
(i) We consider the rectangle R_{0}. Let $s=\sigma+i t_{0}, \sigma=1+8.4 \mathcal{L}^{-1}$, and denote by $\varrho=1-\lambda^{*}+i \gamma$ the zero of $L(s, \chi)$ in R_{0}, hence $0 \leq \lambda \leq 1,\left|\gamma-t_{0}\right| \leq$ $5.8 \mathcal{L}^{-1}$, and

$$
-\Re \frac{1}{s-\varrho}=-\mathcal{L} \frac{8.4+\lambda}{(8.4+\lambda)^{2}+\left(\left(\gamma-t_{0}\right) \mathcal{L}\right)^{2}} \leq-\mathcal{L} \frac{9.4}{9.4^{2}+5.8^{2}}
$$

By Lemma 1,

$$
-\Re \frac{L^{\prime}}{L}(s, \chi) \leq-\sum_{\left|1+i t_{0}-\varrho\right| \leq \delta} \Re \frac{1}{s-\varrho}+0.18751 \mathcal{L}
$$

If $\left|1+i t_{0}-\varrho\right|>\delta$ then $\Re \frac{1}{s-\varrho}=O(1)$. So

$$
-\Re \frac{L^{\prime}}{L}(s, \chi) \leq \mathcal{L}\left(0.18751-\frac{9.4 n_{0}}{9.4^{2}+5.8^{2}}\right)
$$

Since $-\frac{\zeta^{\prime}}{\zeta}(\sigma) \leq \frac{1}{\sigma-1}+A$, where A is an absolute constant, we have

$$
\frac{9.4 n_{0}}{9.4^{2}+5.8^{2}} \leq \frac{1}{8.4}+0.18752, \quad n_{0} \leq 3
$$

(ii) The rectangles R_{1} and R_{2} are treated as R_{0} in (i) but with $\sigma=$ $1+24 \mathcal{L}^{-1}$. Thus $n_{1} \leq 10, n_{2} \leq 0.2292\left(\lambda_{+}+42.9\right)$.

3. The zero density estimate of the Dirichlet L-function near

 the line $\sigma=1$. Let $A<q \leq Y$ and χ_{q} be a non-principal character mod q. Write $\alpha=1-\lambda / \log D$, and assume$$
\begin{equation*}
\alpha \leq \sigma \leq 1, \quad|t| \leq D / q \tag{3.1}
\end{equation*}
$$

Let $S_{j q}=\left\{\chi_{q}: L\left(s, \chi_{q}\right)\right.$ has only j zeros in the region (3.1) \}. Suppose $A<q_{0} \leq Y$ and define

$$
\begin{align*}
& N_{1}^{*}(\alpha, Y)=N_{1}^{*}(\lambda, Y)=\sum_{\substack{A<q \leq Y \\
\left[q, q_{0}\right] \leq D^{\varepsilon}\left(q, q_{0}\right)}} \sum_{j \geq 1} \sum_{\chi \in S_{j q}}^{*} j, \tag{3.2}\\
& N^{*}(\alpha, Y)=N^{*}(\lambda, Y)=\sum_{A<q \leq Y} \sum_{j \geq 1} \sum_{\chi \in S_{j q}}^{*} j \tag{3.3}
\end{align*}
$$

where \sum^{*} indicates that the sum is over primitive characters. In this section we will prove the following lemma which improves Lemma 2.1 of [6].

Lemma 6. Suppose $A<q_{0} \leq Y$ and $0<\lambda \leq \varepsilon \log D$. Then

$$
\begin{gathered}
N_{1}^{*}(\alpha, Y)=N_{1}^{*}(\lambda, Y) \leq \begin{cases}4.356 C_{1}(\lambda) e^{4.064 \lambda}, & 0.517<\lambda \leq 0.575 \\
8.46 C_{2}(\lambda) e^{4.12 \lambda}, & 0.575<\lambda \leq 0.618 \\
14.3 C_{3}(\lambda) e^{4.5 \lambda}, & 0.618<\lambda \leq 1 \\
104.1 C_{4}(\lambda) e^{3.42 \lambda}, & 1<\lambda \leq 5 \\
268.6 e^{2.16 \lambda}, & 5<\lambda \leq \varepsilon \log D\end{cases} \\
N^{*}(\alpha, Y)=N^{*}(\lambda, Y) \leq \begin{cases}3.632 C_{5}(\lambda) e^{5.2 \lambda}, & 0.334<\lambda \leq 0.517 \\
4.338 C_{6}(\lambda) e^{4.82 \lambda}, & 0.517<\lambda \leq 0.575 \\
10.42 C_{7}(\lambda) e^{4.5 \lambda}, & 0.575<\lambda \leq 0.618 \\
14.91 C_{8}(\lambda) e^{5.2 \lambda}, & 0.618<\lambda \leq 1 \\
104.8 C_{9}(\lambda) e^{4.16 \lambda}, & 1<\lambda \leq 5 \\
279.7 e^{2.9 \lambda}, & 5<\lambda \leq \varepsilon \log D\end{cases}
\end{gathered}
$$

where

$$
\begin{aligned}
& C_{1}(\lambda)=\lambda^{-1}\left(1-e^{-4.064 \lambda} \frac{e^{2.808 \lambda}-e^{1.76 \lambda}}{1.048 \lambda}\right) \\
& C_{2}(\lambda)=\lambda^{-1}\left(1-e^{-4.12 \lambda} \frac{e^{2.855 \lambda}-e^{1.78 \lambda}}{1.075 \lambda}\right) \\
& C_{3}(\lambda)=\lambda^{-1}\left(1-e^{-4.5 \lambda} \frac{e^{3.198 \lambda}-e^{2.013 \lambda}}{1.185 \lambda}\right) \\
& C_{4}(\lambda)=\lambda^{-1}\left(1-e^{-3.42 \lambda} \frac{e^{2.358 \lambda}-e^{1.64 \lambda}}{0.718 \lambda}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C_{5}(\lambda)=\lambda^{-1}\left(1-e^{-5.2 \lambda} \frac{e^{3.866 \lambda}-e^{2.668 \lambda}}{1.198 \lambda}\right) \\
& C_{6}(\lambda)=\lambda^{-1}\left(1-e^{-4.82 \lambda} \frac{e^{3.565 \lambda}-e^{2.51 \lambda}}{1.055 \lambda}\right) \\
& C_{7}(\lambda)=\lambda^{-1}\left(1-e^{-4.5 \lambda} \frac{e^{3.32 \lambda}-e^{2.36 \lambda}}{0.96 \lambda}\right) \\
& C_{8}(\lambda)=\lambda^{-1}\left(1-e^{-5.2 \lambda} \frac{e^{3.928 \lambda}-e^{2.7312 \lambda}}{1.1968 \lambda}\right) \\
& C_{9}(\lambda)=\lambda^{-1}\left(1-e^{-4.16 \lambda} \frac{e^{3.104 \lambda}-e^{2.38 \lambda}}{0.724 \lambda}\right)
\end{aligned}
$$

Proof. We use the method of Section 3 of [7]. For $1 \leq j \leq 4$, let h_{j} denote positive constants which satisfy

$$
\begin{equation*}
h_{1}<h_{2}<h_{3}, \quad h_{2}+h_{4}+3 / 8<h_{3}, \quad 2 h_{4}+3 / 8<h_{1} \tag{3.4}
\end{equation*}
$$

when we consider $N_{1}^{*}(\alpha, Y)$, and

$$
\begin{equation*}
h_{1}<h_{2}<h_{3}, \quad h_{2}+h_{4}+3 / 8<h_{3}, \quad 2 h_{4}+3 / 4<h_{1} \tag{3.5}
\end{equation*}
$$

when we consider $N^{*}(\alpha, Y)$.
Let

$$
\begin{equation*}
z_{j}:=D^{h_{j}}, \quad \alpha:=1-\lambda \mathcal{L}^{-1}, \quad \lambda \leq \varepsilon \mathcal{L} . \tag{3.6}
\end{equation*}
$$

For positive δ_{1}, δ_{3}, let

$$
\begin{align*}
\kappa(s):= & s^{-2}\left\{\left(e^{-\left(1-\delta_{1}\right)\left(\log z_{1}\right) s}-e^{-\left(\log z_{1}\right) s}\right) \delta_{3}\left(\log z_{3}\right)\right. \tag{3.7}\\
& \left.-\left(e^{-\left(\log z_{3}\right) s}-e^{-\left(1+\delta_{3}\right)\left(\log z_{3}\right) s}\right) \delta_{1}\left(\log z_{1}\right)\right\}
\end{align*}
$$

For a zero $\varrho_{0} \in D$, let

$$
\begin{equation*}
M\left(\varrho_{0}\right):=\sum_{\varrho(\chi)}\left|\kappa\left(\varrho(\chi)+\bar{\varrho}_{0}-2 \alpha\right)\right|, \tag{3.8}
\end{equation*}
$$

where the sum is over the zeros of $L(s, \chi)$ in (3.1). Then if $2 h_{4}+3 / 8<$ $\left(1-\delta_{1}\right) h_{1}$, then as in (3.17) of [7] we have

$$
\begin{align*}
N_{1}^{*}(\alpha, Y) \leq & \frac{(1+\delta) \max _{\varrho_{0}} M\left(\varrho_{0}\right)}{2(1-\alpha)\left(h_{2}-h_{1}\right) \delta_{1} \delta_{3} h_{1} h_{3} h_{4} \mathcal{L}^{4}} \tag{3.9}\\
& \times\left(D^{2 h_{3}(1-\alpha)}-\frac{(2 \alpha-1)\left(D^{2 h_{2}(1-\alpha)}-D^{2 h_{1}(1-\alpha)}\right)}{2(1-\alpha)\left(h_{2}-h_{1}\right) \mathcal{L}}\right) \\
\leq & \frac{(1+\delta) \max _{\varrho_{0}} M\left(\varrho_{0}\right)}{2 \lambda\left(h_{2}-h_{1}\right) \delta_{1} \delta_{3} h_{1} h_{3} h_{4} \mathcal{L}^{3}}\left(e^{2 h_{3} \lambda}-\frac{e^{2 h_{2} \lambda}-e^{2 h_{1} \lambda}}{2 \lambda\left(h_{2}-h_{1}\right)}\right)
\end{align*}
$$

If $2 h_{4}+3 / 4<\left(1-\delta_{1}\right) h_{1}$, then as in (3.17) of [7] we have

$$
\begin{align*}
N^{*}(\alpha, Y) \leq & \frac{(1+\delta) \max _{\varrho_{0}} M\left(\varrho_{0}\right)}{2(1-\alpha)\left(h_{2}-h_{1}\right) \delta_{1} \delta_{3} h_{1} h_{3} h_{4} \mathcal{L}^{4}} \tag{3.10}\\
& \times\left(D^{2 h_{3}(1-\alpha)}-\frac{(2 \alpha-1)\left(D^{2 h_{2}(1-\alpha)}-D^{2 h_{1}(1-\alpha)}\right)}{2(1-\alpha)\left(h_{2}-h_{1}\right) \mathcal{L}}\right) \\
\leq & \frac{(1+\delta) \max _{\varrho_{0}} M\left(\varrho_{0}\right)}{2 \lambda\left(h_{2}-h_{1}\right) \delta_{1} \delta_{3} h_{1} h_{3} h_{4} \mathcal{L}^{3}}\left(e^{2 h_{3} \lambda}-\frac{e^{2 h_{2} \lambda}-e^{2 h_{1} \lambda}}{2 \lambda\left(h_{2}-h_{1}\right)}\right) .
\end{align*}
$$

(i) If $5<\lambda \leq \varepsilon \mathcal{L}$, let $\Delta=23.4 \mathcal{L}^{-1}$. As in [7], by Lemma 5 we have

$$
\begin{aligned}
M\left(\varrho_{0}\right) \leq & 0.2292(\lambda+42.9) \mathcal{L}^{3}(1 / 2) \\
& \times\left\{\left(\delta_{1} h_{1}\left(2 \delta_{3}+\delta_{3}^{2}\right) h_{3}^{2}-\delta_{3} h_{3}\left(2 \delta_{1}-\delta_{1}^{2}\right) h_{1}^{2}\right)\right. \\
& \left.+(\pi / 23.4)^{2}\left(\delta_{1} h_{1}+\delta_{3} h_{3}\right)\right\} .
\end{aligned}
$$

Choose $h_{1}=0.58, h_{2}=0.669, h_{3}=1.08, h_{4}=0.0353, \delta_{1} h_{1}=\delta_{3} h_{3}=$ $\pi / 23.4$. By (3.9) we have

$$
N_{1}^{*}(\alpha, Y) \leq 268.6 e^{2.16 \lambda}
$$

Choose $h_{1}=0.95, h_{2}=1.042, h_{3}=1.45, h_{4}=0.0328, \delta_{1} h_{1}=\delta_{3} h_{3}=$ $\pi / 23.4$. By (3.10) we have

$$
N^{*}(\alpha, Y) \leq 279.7 e^{2.9 \lambda} .
$$

(ii) If $1<\lambda \leq 5$, then as in [7], by Lemma $5\left(n_{1} \leq 10\right)$ we have

$$
\begin{aligned}
M\left(\varrho_{0}\right) \leq & (10 / 2) \mathcal{L}^{3} \\
& \times\left\{\left(\delta_{1} h_{1}\left(2 \delta_{3}+\delta_{3}^{2}\right) h_{3}^{2}-\delta_{3} h_{3}\left(2 \delta_{1}-\delta_{1}^{2}\right) h_{1}^{2}\right)\right. \\
& \left.+(\pi / 23.4)^{2}\left(\delta_{1} h_{1}+\delta_{3} h_{3}\right)\right\} .
\end{aligned}
$$

Choose $h_{1}=0.82, h_{2}=1.179, h_{3}=1.71, h_{4}=0.155, \delta_{1} h_{1}=\delta_{3} h_{3}=\pi / 23.4$.
By (3.9) we have

$$
N_{1}^{*}(\alpha, Y) \leq 104.1 C_{4}(\lambda) e^{3.42 \lambda}
$$

Choose $h_{1}=1.19, h_{2}=1.552, h_{3}=2.08, h_{4}=0.1528, \delta_{1} h_{1}=\delta_{3} h_{3}=$ $\pi / 23.4$. By (3.10) we have

$$
N^{*}(\alpha, Y) \leq 104.8 C_{9}(\lambda) e^{4.16 \lambda}
$$

(iii) If $0.618<\lambda \leq 1$, then as in [7], by Lemma 5 we have

$$
\begin{aligned}
& \left(\frac{1}{a}-\frac{1}{a+1}-\frac{2(a+1)}{(a+1)^{2}+5.8^{2}}+0.1876\right) \\
& \quad \times \max \left\{\frac{a+1}{5.8^{2}}+\frac{1}{a+1}, \frac{a+0.618}{5.8^{2}}+\frac{1}{a+0.618}\right\} \leq 0.014621 .
\end{aligned}
$$

For $a=6.3$,

$$
\begin{aligned}
M\left(\varrho_{0}\right) \leq & \left\{1.5\left(\delta_{1} h_{1}\left(2 \delta_{3}+\delta_{3}^{2}\right) h_{3}^{2}-\delta_{3} h_{3}\left(2 \delta_{1}-\delta_{1}^{2}\right) h_{1}^{2}\right)\right. \\
& \left.+2 \cdot 0.014621 \cdot\left(\delta_{1} h_{1}+\delta_{3} h_{3}\right)\right\} \mathcal{L}^{3}
\end{aligned}
$$

Choose $h_{1}=1.0065, h_{2}=1.599, h_{3}=2.25, h_{4}=0.2759, \delta_{1}=0.079$, $\delta_{3}=0.094$. By (3.9) we have

$$
N_{1}^{*}(\alpha, Y) \leq 14.3 C_{3}(\lambda) e^{4.5 \lambda}
$$

Choose $h_{1}=1.3656, h_{2}=1.964, h_{3}=2.6, h_{4}=0.26, \delta_{1}=0.07, \delta_{3}=0.094$. By (3.10) we have

$$
N^{*}(\alpha, Y) \leq 14.91 C_{8}(\lambda) e^{5.2 \lambda}
$$

(iv) If $0.575<\lambda \leq 0.618$, then by Lemma 4 there are at most two zeros satisfying $\varrho=1-\beta / \mathcal{L}-i \gamma / \mathcal{L}, \beta<0.618$. Then, as in (v) of [7], when (3.4) holds we have

$$
\begin{align*}
N_{1}^{*}(\alpha, Y) \leq & \frac{(1+\delta) \widetilde{M}}{2(1-\alpha)\left(h_{2}-h_{1}\right) h_{4} \mathcal{L}^{2}} \tag{3.11}\\
& \times\left(D^{2 h_{3}(1-\alpha)}-\frac{(2 \alpha-1)\left(D^{2 h_{2}(1-\alpha)}-D^{2 h_{1}(1-\alpha)}\right)}{2(1-\alpha)\left(h_{2}-h_{1}\right) \mathcal{L}}\right) \\
\leq & \frac{(1+\delta) \widetilde{M}}{2 \lambda\left(h_{2}-h_{1}\right) h_{4} \mathcal{L}}\left(e^{2 h_{3} \lambda}-\frac{e^{2 h_{2} \lambda}-e^{2 h_{1} \lambda}}{2 \lambda\left(h_{2}-h_{1}\right)}\right)
\end{align*}
$$

Similarly, when (3.5) holds we have

$$
\begin{equation*}
N^{*}(\alpha, Y) \leq \frac{(1+\delta) \widetilde{M}}{2 \lambda\left(h_{2}-h_{1}\right) h_{4} \mathcal{L}}\left(e^{2 h_{3} \lambda}-\frac{e^{2 h_{2} \lambda}-e^{2 h_{1} \lambda}}{2 \lambda\left(h_{2}-h_{1}\right)}\right) \tag{3.12}
\end{equation*}
$$

where

$$
\widetilde{M}:=\max _{\chi \bmod q}^{q \leq Y} \max _{1 \leq j \leq 2} \frac{1}{j} \int_{\log z_{1}}^{\log z_{3}}\left|\sum_{l=1}^{j} e^{-(\varrho(l, \chi)-\alpha) x}\right|^{2} d x
$$

We have

$$
\begin{array}{r}
\int_{\log z_{1}}^{\log z_{3}}\left|e^{-(\varrho(\chi)-\alpha) x}\right|^{2} d x \leq\left(h_{3}-h_{1}\right) \mathcal{L} \\
\frac{1}{2} \int_{\log z_{1}}^{\log z_{3}}\left|\sum_{l=1}^{2} e^{-(\varrho(l, \chi)-\alpha) x}\right|^{2} d x \leq 2\left(h_{3}-h_{1}\right) \mathcal{L}
\end{array}
$$

Choose $h_{1}=0.89, h_{2}=1.4275, h_{3}=2.06, h_{4}=0.2574$. By (3.11) we have

$$
N_{1}^{*}(\alpha, Y) \leq 8.46 C_{2}(\lambda) e^{4.12 \lambda}
$$

Choose $h_{1}=1.18, h_{2}=1.66, h_{3}=2.25, h_{4}=0.214$. By (3.12) we have

$$
N^{*}(\alpha, Y) \leq 10.42 C_{7}(\lambda) e^{4.5 \lambda}
$$

(v) If $0.517<\lambda \leq 0.575$, then by Lemma 4 there is at most one zero satisfying $\varrho=1-\beta / \mathcal{L}-i \gamma / \mathcal{L}, \beta<0.575$. Then, as in (v) of [7], when (3.4) holds we have

$$
\begin{align*}
N_{1}^{*}(\alpha, Y) \leq & \frac{(1+\delta)\left(h_{3}-h_{1}\right)}{2(1-\alpha)\left(h_{2}-h_{1}\right) h_{4} \mathcal{L}} \tag{3.13}\\
& \times\left(D^{2 h_{3}(1-\alpha)}-\frac{(2 \alpha-1)\left(D^{2 h_{2}(1-\alpha)}-D^{2 h_{1}(1-\alpha)}\right)}{2(1-\alpha)\left(h_{2}-h_{1}\right) \mathcal{L}}\right) \\
\leq & \frac{(1+\delta)\left(h_{3}-h_{1}\right)}{2 \lambda\left(h_{2}-h_{1}\right) h_{4}}\left(e^{2 h_{3} \lambda}-\frac{e^{2 h_{2} \lambda}-e^{2 h_{1} \lambda}}{2 \lambda\left(h_{2}-h_{1}\right)}\right)
\end{align*}
$$

When (3.5) holds we have

$$
\begin{equation*}
N^{*}(\alpha, Y) \leq \frac{(1+\delta)\left(h_{3}-h_{1}\right)}{2 \lambda\left(h_{2}-h_{1}\right) h_{4}}\left(e^{2 h_{3} \lambda}-\frac{e^{2 h_{2} \lambda}-e^{2 h_{1} \lambda}}{2 \lambda\left(h_{2}-h_{1}\right)}\right) \tag{3.14}
\end{equation*}
$$

Choose $h_{1}=0.88, h_{2}=1.404, h_{3}=2.032, h_{4}=0.2524$. By (3.13) we have

$$
N_{1}^{*}(\alpha, Y) \leq 4.356 C_{1}(\lambda) e^{4.064 \lambda}
$$

Choose $h_{1}=1.255, h_{2}=1.7825, h_{3}=2.41, h_{4}=0.2524$. By (3.14) we have

$$
N^{*}(\alpha, Y) \leq 4.338 C_{6}(\lambda) e^{4.82 \lambda}
$$

(vi) If $0.334<\lambda \leq 0.517$, then as above, when (3.5) holds we have

$$
\begin{equation*}
N^{*}(\alpha, Y) \leq \frac{(1+\delta)\left(h_{3}-h_{1}\right)}{2 \lambda\left(h_{2}-h_{1}\right) h_{4}}\left(e^{2 h_{3} \lambda}-\frac{e^{2 h_{2} \lambda}-e^{2 h_{1} \lambda}}{2 \lambda\left(h_{2}-h_{1}\right)}\right) \tag{3.15}
\end{equation*}
$$

Choose $h_{1}=1.334, h_{2}=1.933, h_{3}=2.6, h_{4}=0.291$. By (3.15) we have

$$
N^{*}(\alpha, Y) \leq 3.632 C_{5}(\lambda) e^{5.2 \lambda}
$$

If $q_{1}, q_{2} \leq Y$, we consider the zeros of $L\left(s, \chi_{q_{1}}\right)$ and $L\left(s, \chi_{q_{2}}\right)$ for nonprincipal characters $\chi_{q_{1}}$ and $\chi_{q_{2}}$. If $\varrho_{1}=\beta_{1}+i \gamma_{1}=1-\lambda_{1} / \log Y+i \gamma_{1}$ is a zero of $L\left(s, \chi_{q_{1}}\right)$ satisfying $q_{1}\left(\left|\gamma_{1}\right|+1\right) \leq Y^{1+\varepsilon}$ and $\varrho_{2}=\beta_{2}+i \gamma_{2}=$ $1-\lambda_{2} / \log Y+i \gamma_{2}$ is a zero of $L\left(s, \chi_{q_{2}}\right)$ satisfying $q_{2}\left(\left|\gamma_{2}\right|+1\right) \leq Y^{1+\varepsilon}$, then we have the lower bounds for λ_{2} given in Table 1. If $\left[q_{1}, q_{2}\right] \leq Y^{\varepsilon}\left(q_{1}, q_{2}\right)$, then we have the lower bounds for λ_{2} given in Table 2 .

Table 1. The lower bounds for λ_{2}

λ_{1}	λ_{2}
0.24	0.444
0.26	0.418
0.28	0.393
0.30	0.37
0.32	0.349
0.334	0.334

Table 2. The lower bounds for λ_{2}

λ_{1}	λ_{2}	λ_{1}	λ_{2}
0.22	1.189	0.38	0.745
0.24	1.116	0.40	0.706
0.26	1.050	0.42	0.669
0.28	0.989	0.44	0.634
0.30	0.933	0.46	0.601
0.32	0.881	0.48	0.570
0.34	0.832	0.50	0.541
0.36	0.787	0.517	0.517

In each table, following the convention of [6], the entries indicate that if λ_{1} does not exceed the first entry, then λ_{2} is no smaller than the second entry.
4. The circle method. Suppose x is a sufficiently large positive number, and $Y=x^{\lambda}$ where $\lambda=0.0862$. Let

$$
S(\alpha)=\sum_{Y<p \leq x} \log p e(\alpha p), \quad D(n)=D(n ; x, Y)=\sum_{\substack{n=p_{1}+p_{2} \\ Y<p_{1}, p_{2} \leq x}} \log p_{1} \log p_{2} .
$$

Then

$$
\begin{equation*}
D(n)=\int_{0}^{1} S^{2}(\alpha) e(-\alpha n) d \alpha . \tag{4.1}
\end{equation*}
$$

Trivially, $D(n)=0$ if $n \leq 2 Y$ or $n>2 x$, and n is a Goldbach number if $D(n)>0$.

Let $Q=x^{1-\lambda}, \tau=Q^{-1}$ and

$$
E_{1}=\bigcup_{1 \leq q \leq Y} \bigcup_{\substack{1 \leq a \leq q \\(a, q)=1}} I(a, q), \quad E_{2}=(-\tau, 1-\tau] \backslash E_{1}
$$

where

$$
I(a, q)=\left[\frac{a}{q}-\frac{1}{q Q}, \frac{a}{q}+\frac{1}{q Q}\right] .
$$

Then

$$
\begin{align*}
D(n) & =\int_{-\tau}^{1-\tau} S^{2}(\alpha) e(-\alpha n) d \alpha \tag{4.2}\\
& =\int_{E_{1}} S^{2}(\alpha) e(-\alpha n) d \alpha+\int_{E_{2}} S^{2}(\alpha) e(-\alpha n) d \alpha \\
& =D_{1}(n)+D_{2}(n) .
\end{align*}
$$

Lemma 7. Let $M(x)$ denote the number of integers $n \in[(1-\varepsilon) x, x]$ for which

$$
\left|D_{2}(n)\right|>0.5 x^{1-10^{-5} \lambda} .
$$

Then

$$
M(x) \ll x^{1-\left(1-10^{-4}\right) \lambda} .
$$

Proof. Apply Lemma 8 of [3].
Now we consider the integral on the major arcs. For $\alpha \in I(a, q) \subset E_{1}$, we write $\alpha=a / q+\theta,(a, q)=1, q \leq Y,|\theta| \leq 1 /(q Q)$. Moreover, suppose that \widetilde{q}, $\widetilde{\chi}$ and $\widetilde{\beta}$ are the possible modulus, primitive character and zero respectively,
with $\widetilde{q} \leq Y$. Let

$$
\begin{align*}
T(\theta) & =\sum_{Y<m \leq x} e(m \theta), \tag{4.3}\\
\widetilde{T}(\theta) & =-\sum_{Y<m \leq x} m^{\widetilde{\beta}-1} e(m \theta), \tag{4.4}\\
\widehat{S}(\theta, \chi) & =\sum_{Y<p \leq x} \chi(p) \log p e(p \theta), \tag{4.5}
\end{align*}
$$

χ being a character modulo $q, q \leq Y$, and

$$
\left\{\begin{align*}
\widehat{S}\left(\theta, \chi_{q}^{0}\right) & =T(\theta)+W\left(\theta, \chi_{q}^{0}\right) & & \tag{4.6}\\
\widehat{S}\left(\theta, \chi_{q}^{0} \widetilde{\chi}\right) & =\widetilde{T}(\theta)+W\left(\theta, \chi_{q}^{0} \widetilde{\chi}\right) & & \text { if } \widetilde{q} \mid q \\
\widehat{S}\left(\theta, \chi_{q}\right) & =W\left(\theta, \chi_{q}\right) & & \text { otherwise. }
\end{align*}\right.
$$

Then if the exceptional character exists we have

$$
\begin{equation*}
D_{1}(n)=\sum_{q \leq Y} \sum_{\substack{a \leq q \\(a, q)=1}}^{a / q+1 /(q Q)} \int_{a / /(q Q)}^{a / 2} S^{2}(\alpha) e(-\alpha n) d \alpha=\sum_{j=1}^{6} D_{1 j}(n) . \tag{4.7}
\end{equation*}
$$

Otherwise we have

$$
\begin{equation*}
D_{1}(n)=\sum_{j=1}^{3} D_{1 j}(n) \tag{4.8}
\end{equation*}
$$

For the definitions of $D_{1 j}(n)$, see [3]. By the method of [8] one has

$$
\begin{align*}
& D_{11}(n)=n C(n)+O\left(x^{1+\varepsilon} Y^{-1}\right), \tag{4.9}\\
& D_{14}(n)=\widetilde{C}(n) \widetilde{I}(n)+O\left((n, \widetilde{q}) x^{1+\varepsilon} Y^{-1}\right),
\end{align*}
$$

where

$$
\begin{equation*}
C(n)=\sum_{q=1}^{\infty} \frac{\mu^{2}(q)}{\phi^{2}(q)} C_{q}(-n)=\frac{n}{\phi(n)} \prod_{p \nmid n}\left(1-\frac{1}{(p-1)^{2}}\right), \tag{4.11}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{C}(n)=\sum_{\substack{q=1 \\ \widetilde{q} \mid q}}^{\infty} \frac{\tau^{2}\left(\chi_{q}^{0} \widetilde{\chi}\right)}{\phi^{2}(q)} C_{q}(-n)=\widetilde{\chi}(-1) \mu\left(\frac{\widetilde{q}}{(\widetilde{q}, n)}\right) \prod_{\substack{p \mid \tilde{q} \\ p \nmid n}}\left(\frac{1}{p-2}\right) C(n), \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{I}(n)=\sum_{Y<m \leq n-Y}(m(n-m))^{\widetilde{\beta}-1} \leq x^{(1-\varepsilon)(\widetilde{\beta}-1)} n^{\widetilde{\beta}} \tag{4.13}
\end{equation*}
$$

with

$$
\tau(\chi)=\sum_{h=1}^{q} \chi(h) e\left(\frac{h}{q}\right), \quad C_{q}(m)=\sum_{\substack{h \leq q \\(h, q)=1}} e\left(\frac{m h}{q}\right) .
$$

Let

$$
\begin{equation*}
W\left(\chi_{d}\right)=\left(\int_{-1 /(d Q)}^{1 /(d Q)}\left|W\left(\theta, \chi_{d}\right)\right|^{2} d \theta\right)^{1 / 2} \tag{4.14}
\end{equation*}
$$

Then by (20) of [3] one has

$$
\begin{equation*}
D_{12}(n) \leq \frac{n}{\phi(n)}\left\{8 x^{1 / 2} W\left(\log ^{10} x\right)+O\left(\frac{x^{1 / 2} W(Y)}{\log ^{6} x}\right)\right\} \tag{4.15}
\end{equation*}
$$

where

$$
\begin{equation*}
W(Y)=\sum_{d \leq Y} \sum_{\chi_{d}}^{*} W\left(\chi_{d}\right) \tag{4.16}
\end{equation*}
$$

the $*$ denoting that the sum is over primitive characters χ_{d}. We have

$$
\begin{equation*}
D_{15}(n) \ll \widetilde{\chi}^{2}(n) \frac{\widetilde{q}}{\phi^{2}(\widetilde{q})} \cdot \frac{n}{\phi(n)} x \tag{4.17}
\end{equation*}
$$

From $\prod_{p \geq 5}\left(1+1 /(p-1)^{2}\right) \leq 1.132$, by the method of [1], we have
where

$$
\begin{align*}
& \text { (4.18) } \quad D_{16}(n) \leq 4.1594 \frac{n}{\phi(n)} x^{1 / 2} W(Y, \widetilde{q})+\frac{n}{\phi(n)} W(Y) x^{(1-\varepsilon) / 2} \\
& \text { (4.19) } \quad D_{13}(n) \leq 2.0797 \frac{n}{\phi(n)} W(Y) W^{\prime}(Y) \tag{4.18}
\end{align*}
$$

$$
\begin{align*}
W(Y, \widetilde{q}) & =\sum_{\substack{d \leq Y \\
[d, \widetilde{q}] \leq x^{\varepsilon}}} \sum_{\chi_{d}}^{*} W\left(\chi_{d}\right) \tag{4.20}\\
W^{\prime}(Y) & =\max \sum_{\substack{d \leq Y \\
\left[d_{1}, d\right] \leq x^{\varepsilon}\left(d_{1}, d\right)}} \sum_{\chi_{d}}^{*} W\left(\chi_{d}\right) \tag{4.21}
\end{align*}
$$

Here the max is over $A<d_{1} \leq Y$.
5. The estimation of $W^{\prime}(Y), W(Y)$ and $W(Y, \widetilde{q})$. By Section III of [2] we have

$$
\begin{align*}
W\left(\chi_{d}\right) \leq & \left(1+2 \cdot 10^{-5}\right) x^{1 / 2} \sum_{\substack{\beta \geq 1 / 4 \\
\left|\gamma_{\chi_{d}}\right| \leq Y^{1+\varepsilon} d^{-1}}}^{\prime} x^{(1-\varepsilon)(\beta-1)} \tag{5.1}\\
& +O\left(x^{1 / 2-\varepsilon} \sum_{\substack{\beta \geq 1 / 4 \\
\left|\gamma_{\chi_{d}}\right| \leq Y^{1.01} d^{-1}}}^{\prime} x^{\beta-1}\right) \\
& +O\left(x^{1 / 2-0.01 \lambda} \sum_{\substack{\beta \geq 1 / 4 \\
\left|\gamma_{\chi_{d}}\right| \leq Y^{2.01}}}^{\prime} x^{\beta-1}\right)+O\left(x^{1 / 2-1.01 \lambda+\varepsilon} d^{-1}\right)
\end{align*}
$$

where \sum^{\prime} indicates that the sum does not contain the exceptional zero $\widetilde{\beta}$.
By the same methods as in [1] we have

$$
\begin{array}{r}
\sum_{\substack{d \leq Y \\
\left[d_{1}, d\right] \leq Y^{\varepsilon}\left(d_{1}, d\right)}} \sum_{\chi_{d}}^{*} \sum_{\substack{\beta \geq 1 / 4 \\
\left|\gamma_{\chi_{d}}\right| \leq Y^{2.01}}}^{\prime} x^{\beta-1} \ll x^{0.7 \varepsilon}, \tag{5.2}\\
\sum_{d \leq Y} \sum_{\chi_{d}}^{*} \sum_{\substack{\beta \geq 1 / 4 \\
\left|\gamma_{\chi_{d}}\right| \leq Y^{2.01}}}^{\prime \prime} x^{\beta-1} \ll x^{0.7 \varepsilon} .
\end{array}
$$

Let

$$
\begin{align*}
I_{1} & =\sum_{\substack{d \leq Y \\
\left[d_{1}, d\right] \leq Y^{\varepsilon}\left(d_{1}, d\right)}} \sum_{\chi_{d}}^{*} \sum_{\substack{\beta \geq 1 / 4 \\
\left|\gamma_{X_{d}}\right| \leq Y^{1+\varepsilon} d^{-1}}}^{\prime} x^{(1-\varepsilon)(\beta-1)}, \\
I_{2}= & \sum_{d \leq Y} \sum_{\chi_{d}}^{*} \sum_{\substack{\beta \geq 1 / 4 \\
\left|\gamma_{\chi_{d}}\right| \leq Y^{1+\varepsilon} d^{-1}}}^{*} x^{(1-\varepsilon)(\beta-1)} . \tag{5.3}
\end{align*}
$$

Suppose $\varrho_{\chi_{d}}=\beta_{\chi_{d}}+i \gamma_{\chi_{d}},\left|\gamma_{\chi_{d}}\right| \leq Y^{1+\varepsilon} d^{-1}$, is a zero of $L\left(s, \chi_{d}\right)$. Let $\mathcal{L}=(1+\varepsilon) \log Y$.

1) If $1-0.24 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.239 / \mathcal{L}$, then by Lemma 6 and Tables 1 and 2 we have

$$
\begin{aligned}
& I_{1} \leq 2 e^{-0.239 /(\lambda+\varepsilon)}+\frac{1}{\lambda+\varepsilon} \int_{1.116}^{\infty} e^{-(1-\varepsilon) t /(\lambda+\varepsilon)} N_{1}^{*}(t, Y) d t \leq 0.136, \\
& I_{2} \leq 2 e^{-0.239 /(\lambda+\varepsilon)}+\frac{1}{\lambda+\varepsilon} \int_{0.444}^{\infty} e^{-(1-\varepsilon) t /(\lambda+\varepsilon)} N^{*}(t, Y) d t \leq 1.009 .
\end{aligned}
$$

2) If $1-0.26 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.24 / \mathcal{L}$, we have $I_{1} \leq 0.143, I_{2} \leq 1.098$.
3) If $1-0.28 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.26 / \mathcal{L}$, we have $I_{1} \leq 0.129, I_{2} \leq 1.177$.
4) If $1-0.30 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.28 / \mathcal{L}$, we have $I_{1} \leq 0.118, I_{2} \leq 1.271$.
5) If $1-0.32 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.30 / \mathcal{L}$, we have $I_{1} \leq 0.114, I_{2} \leq 1.377$.
6) If $1-0.34 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.32 / \mathcal{L}$, we have $I_{1} \leq 0.118, I_{2} \leq 1.464$.
7) If $1-0.36 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.34 / \mathcal{L}$, we have $I_{1} \leq 0.131, I_{2} \leq 1.374$.
8) If $1-0.38 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.36 / \mathcal{L}$, we have $I_{1} \leq 0.153, I_{2} \leq 1.249$.
9) If $1-0.40 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.38 / \mathcal{L}$, we have $I_{1} \leq 0.185, I_{2} \leq 1.141$.
10) If $1-0.42 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.40 / \mathcal{L}$, we have $I_{1} \leq 0.229, I_{2} \leq 1.047$.
11) If $1-0.44 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.42 / \mathcal{L}$, we have $I_{1} \leq 0.287, I_{2} \leq 0.967$.
12) If $1-0.46 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.44 / \mathcal{L}$, we have $I_{1} \leq 0.337, I_{2} \leq 0.897$.
13) If $1-0.48 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.46 / \mathcal{L}$, we have $I_{1} \leq 0.372, I_{2} \leq 0.835$.
14) If $1-0.50 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.48 / \mathcal{L}$, we have $I_{1} \leq 0.395, I_{2} \leq 0.784$.
15) If $1-0.517 / \mathcal{L} \leq \beta_{\chi_{d}} \leq 1-0.50 / \mathcal{L}$, we have $I_{1} \leq 0.420, I_{2} \leq 0.738$.
16) If $1-0.517 / \mathcal{L} \geq \beta_{\chi_{d}}$, we have $I_{1} \leq 0.414, I_{2} \leq 0.704$.

Hence in all cases we have

$$
\begin{equation*}
I_{1} I_{2} \leq 0.311 \tag{5.4}
\end{equation*}
$$

LEMMA 8. Let χ_{1} be a real non-principal character $\bmod q, \beta_{1}=1-\delta_{1} a$ real zero of $L\left(s, \chi_{1}\right)$, χ a character $\bmod q$, and $\varrho=\beta+i \gamma=1-\delta+i \gamma$ a zero of $L(s, \chi)$ with $\delta<1 / 6, \beta \leq \beta_{1}$. Suppose that $D=q(|\gamma|+1)$ is sufficiently large, that is, $D \geq D_{0}(\varepsilon)$. Then

$$
\delta_{1} \geq(2 / 3-\varepsilon)(1-6 \delta) D^{-(3 / 2+\varepsilon) \delta /(1-6 \delta)} / \log D
$$

This is Theorem 2 of [9].
Lemma 9. If the exceptional primitive real character $\widetilde{\chi}(\bmod \widetilde{q})$ exists, and the unique exceptional zero $\widetilde{\beta}$ of $L(s, \widetilde{\chi})$ satisfies $\widetilde{\delta}(\lambda+\varepsilon) \log x \leq 0.239$ where $\widetilde{\delta}=1-\widetilde{\beta}$, let χ_{q} be a primitive character $\bmod q$, and $\varrho=\beta+i \gamma=$ $1-\delta+i \gamma$ a zero of $L\left(s, \chi_{q}\right)$ with $0<\delta<\varepsilon$. Suppose that $D_{1}=[q, \widetilde{q}](|\gamma|+1)$ is sufficiently large, that is, $D_{1} \geq D_{1}(\varepsilon)$. Then

$$
\widetilde{\delta} \geq(2 / 3-\varepsilon)(1-6 \delta) D_{1}^{-(3 / 2+\varepsilon) \delta /(1-6 \delta)} / \log D_{1}
$$

Proof. This follows by Lemma 8 and the method of Lemma 15 of [1].
By (26) of [1] we have

$$
\begin{equation*}
W\left((\log x)^{10}\right) \leq 10^{-10} x^{1 / 2} \tag{5.5}
\end{equation*}
$$

By (5.1)-(5.4) and definitions of $W(Y)$ and $W^{\prime}(Y)$ we have

$$
\begin{equation*}
W(Y) W^{\prime}(Y) \leq 0.311 x \tag{5.6}
\end{equation*}
$$

Now we suppose that the exceptional primitive real character $\widetilde{\chi}(\bmod \widetilde{q})$ exists, and the unique exceptional real zero $\widetilde{\beta}$ of $L(s, \widetilde{\chi})$ satisfies $\widetilde{\delta}(\lambda+\varepsilon) \log x \leq 0.239$ where $\widetilde{\delta}=1-\widetilde{\beta}$. In this case, as above we have

$$
\begin{equation*}
W(Y, \widetilde{q}) \leq W^{\prime}(Y) \leq 0.0107 x^{1 / 2}, \quad W(Y) \leq 0.884 x^{1 / 2} \tag{5.7}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
W(Y) W^{\prime}(Y) \leq 0.0095 x \tag{5.8}
\end{equation*}
$$

We suppose, as we may, that $\widetilde{q} \leq Y, q \leq Y,[q, \widetilde{q}] \leq x^{\varepsilon}(q, \widetilde{q})$ and $|\gamma| \leq$ ${\underset{\sim}{Y}}^{1+\varepsilon} q^{-1}$, and then we may take $\bar{D}_{1}=x^{\overline{\lambda+2 \varepsilon}}$ in Lemma 9. Therefore if $\widetilde{\delta}(\lambda+\varepsilon) \log x \leq 0.005$ and $\delta \leq \varepsilon$, then we have

$$
\begin{equation*}
\delta \geq \frac{3.26}{\lambda \log x} \tag{5.9}
\end{equation*}
$$

If $\widetilde{\delta}(\lambda+\varepsilon) \log x \geq 0.005, \widetilde{\delta} \geq(2 / 3-\varepsilon)\left(D_{1}^{1.501 \varepsilon} \log D_{1}\right)^{-1}, \delta \leq \varepsilon$, then as above, by Lemma 9 one has

$$
\begin{equation*}
\delta \geq-\frac{\log \left(1.501 \widetilde{\delta} \log D_{1}\right)}{1.501 \log D_{1}} \tag{5.10}
\end{equation*}
$$

By Lemma 6 we have

$$
\begin{align*}
& \sum_{\substack{d \leq Y \\
\left[d_{1}, d\right] \leq Y^{\varepsilon}\left(d_{1}, d\right)}} \sum_{\chi_{d}}^{*} \sum_{\substack{\beta \geq 1 / 4 \\
\left|\gamma_{\chi_{d}}\right| \leq Y^{1.01} \\
d^{-1}}}^{\prime} x^{(1-\varepsilon)(\beta-1)} \tag{5.11}\\
\leq & \frac{1}{\lambda+\varepsilon} \int_{-\left(\log \left(1.501 \widetilde{\delta} \log D_{1}\right)\right) / 1.501}^{\infty} e^{-(1-\varepsilon) t /(\lambda+\varepsilon)} N_{1}^{*}(t, Y) d t+O\left(x^{-\varepsilon}\right) \\
\leq & 10^{-8}(\widetilde{\delta} \log x)+O\left(x^{-\varepsilon}\right) .
\end{align*}
$$

Hence

$$
\begin{equation*}
W^{\prime}(Y) \leq 10^{-8}(\widetilde{\delta} \log x) x^{1 / 2}+O\left(x^{1 / 2-\varepsilon}\right) \tag{5.12}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
W\left((\log x)^{10}\right), W(Y, \widetilde{q}) \leq 10^{-8}(\widetilde{\delta} \log x) x^{1 / 2}+O\left(x^{1 / 2-\varepsilon}\right) \tag{5.13}
\end{equation*}
$$

If $x^{-\lambda / 10^{5}} \leq \widetilde{\delta} \leq(2 / 3-\varepsilon)\left(D_{1}^{1.501 \varepsilon} \log D_{1}\right)^{-1}$, then as above, by Lemma 9 one has

$$
\begin{equation*}
W\left((\log x)^{10}\right), W(Y, \widetilde{q}), W^{\prime}(Y) \leq \varepsilon(\widetilde{\delta} \log x) x^{1 / 2}+O\left(x^{1 / 2-0.01}\right) \tag{5.14}
\end{equation*}
$$

6. Proof of the Theorem. First of all, we suppose that there is no exceptional character. When $(1-\varepsilon) x \leq n \leq x$, by (4.8), (4.9), (4.15) and (4.19) we have

$$
\begin{aligned}
D_{1}(n) \geq & n C(n)-\frac{n}{\phi(n)}\left\{8 x^{1 / 2} W\left((\log x)^{10}\right)\right. \\
& \left.+2.0797 W(Y) W^{\prime}(Y)+O\left(\frac{x^{1 / 2} W(Y)}{(\log x)^{6}}\right)\right\}+O\left(x^{1-\lambda+\varepsilon}\right)
\end{aligned}
$$

Since $\lambda=0.0862, \prod_{p \geq 3}\left(1-1 /(p-1)^{2}\right) \geq 0.6601$, by (5.5) and (5.6) it follows that

$$
D_{1}(n) \geq \frac{n x}{\phi(n)}\left\{\prod_{p \geq 3}\left(1-\frac{1}{(p-1)^{2}}\right)-2.0797 \cdot 0.311-10^{-9}\right\} \geq 0.01 x
$$

which proves the assertion.
Now we suppose the exceptional character occurs, and $(1-\varepsilon) x \leq n \leq x$.
By Section 4 we have

$$
\begin{align*}
D_{1}(n) \geq & n C(n)+\widetilde{I}(n) \widetilde{C}(n) \tag{6.1}\\
& -\frac{n}{\phi(n)}\left\{8 x^{1 / 2} W\left((\log x)^{10}\right)+2.0797 W(Y) W^{\prime}(Y)\right. \\
& \left.+4.1594 W(Y, \widetilde{q})+W(Y) x^{(1-\varepsilon) / 2}\right\} \\
& +O\left(\frac{x^{1 / 2} W(Y)}{(\log x)^{6}}\right)+O\left(\widetilde{\chi}^{2}(n) \frac{\widetilde{q}}{\phi^{2}(\widetilde{q})} \cdot \frac{n}{\phi(n)} x\right) \\
& +O\left(x^{1-\lambda+\varepsilon}(n, \widetilde{q})\right) .
\end{align*}
$$

1) When $(n, \widetilde{q})=1$ or $(n, \widetilde{q}) \leq x^{\left(1-10^{-4}\right) \lambda}$ and $\prod_{p \mid \widetilde{q}, p \nmid n}(p-2) \geq 1 / \varepsilon$ we follow the argument of [1]. Thus by (5.7) and (5.8) we have

$$
\left.\begin{array}{r}
D_{1}(n) \geq \frac{n}{\phi(n)}\left\{x \prod_{p \geq 3}\left(1-\frac{1}{(p-1)^{2}}\right)\right. \tag{6.2}
\end{array}\right)-2.0797 W(Y) W^{\prime}(Y)-10^{-8} x .
$$

2) When $(n, \widetilde{q})>x^{\left(1-10^{-4}\right) \lambda}$ we have

$$
\begin{equation*}
\sum_{\substack{n \leq x \\>x^{\left(1-10^{-4}\right) \lambda}}} 1 \leq x^{1-\left(1-10^{-4}\right) \lambda+\varepsilon} . \tag{6.3}
\end{equation*}
$$

3) When $1<(n, \widetilde{q}) \leq x^{\left(1-10^{-4}\right) \lambda}$ and $\prod_{p \mid \widetilde{q}, p \nmid n}(p-2) \leq 1 / \varepsilon$, we notice that $\widetilde{\chi}(n)=0$, and from Lemma 5.1 of $[8]$ we have $\mu(\widetilde{q} /(4, \widetilde{q}))=0$ hence $16 \nmid \widetilde{q}, p^{2} \nmid \widetilde{q}(p \geq 3)$. Since $\prod_{p \mid \widetilde{q}, p \nmid n}(p-2) \leq 1 / \varepsilon$, there exists $\widetilde{q} \leq$ $16(n, \widetilde{q}) / \varepsilon^{2} \leq x^{\left(1-10^{-4}\right) \lambda+\varepsilon}$. By (4.12) and (4.13) we have

$$
\begin{equation*}
n C(n)-|\widetilde{I}(n) \widetilde{C}(n)| \geq\left(n-x^{(1-\varepsilon)(\widetilde{\beta}-1)} n^{\widetilde{\beta}}\right) C(n) . \tag{6.4}
\end{equation*}
$$

When $1-\frac{0.239}{(\lambda+\varepsilon) \log x} \leq \widetilde{\beta} \leq 1-\frac{0.005}{(\lambda+\varepsilon) \log x}$, we have

$$
x^{(1-\varepsilon)(\widetilde{\beta}-1)} n^{\widetilde{\beta}} \leq 0.8905 n .
$$

By (5.7) and (5.8) we have

$$
\begin{align*}
D_{1}(n) \geq \frac{n x}{\phi(n)}\left\{0.1095 \prod_{p \geq 3}(\right. & \left.1-\frac{1}{(p-1)^{2}}\right)-2.0797 \cdot 0.0095 \tag{6.5}\\
& \left.-10^{-8}-4.1594 \cdot 0.0107\right\} \geq 0.007 x
\end{align*}
$$

When $1-\frac{0.005}{(\lambda+\varepsilon) \log x} \leq \widetilde{\beta} \leq 1-\left(\frac{2}{3}-\varepsilon\right) \frac{x^{-1.501 \varepsilon \lambda}}{\lambda \log x}$, as in (48) of [1] we have

$$
n C(n)-|\widetilde{I}(n) \widetilde{C}(n)| \geq 0.62 \frac{\widetilde{\delta} n x \log n}{\phi(n)}
$$

By (5.12) and (5.13) we have

$$
\begin{align*}
D_{1}(n) & \geq \frac{\widetilde{\delta} n x \log n}{\phi(n)}\left\{0.62-2.0797 \cdot 10^{-7}-(8+4.1594) \cdot 10^{-8}\right\} \tag{6.6}\\
& \geq 0.6 x^{1-\varepsilon} .
\end{align*}
$$

When $\widetilde{\beta} \geq 1-\left(\frac{2}{3}-\varepsilon\right) \frac{x^{-1.501 \varepsilon \lambda}}{\lambda \log x}$, by $\widetilde{q} \leq x^{\lambda}$ and Lemma 2 we have

$$
x^{-10^{-5} \lambda} \leq \widetilde{\delta} \leq\left(\frac{2}{3}-\varepsilon\right) \frac{x^{-1.501 \varepsilon \lambda}}{\lambda \log x},
$$

and by (5.14) we have

$$
\begin{equation*}
D_{1}(n) \geq \frac{\widetilde{\delta} n x \log n}{\phi(n)}\{0.62-20 \varepsilon\} \geq 0.6 x^{1-10^{-5} \lambda} \tag{6.7}
\end{equation*}
$$

By (6.1)-(6.7) and Lemma 7 the assertion follows.

References

[1] J. R. Chen, The exceptional set of Goldbach numbers (II), Sci. Sinica 26 (1983), 714-731.
[2] J. R. Chen and J. M. Liu, The exceptional set of Goldbach numbers (III), Chinese Quart. J. Math. 4 (1989), 1-15.
[3] J. R. Chen and C. D. Pan, The exceptional set of Goldbach numbers, Sci. Sinica 23 (1980), 416-430.
[4] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265-338.
[5] H. Z. Li, Zero-free regions for Dirichlet L-functions, Quart. J. Math. Oxford Ser. (2) 50 (1999), 13-23.
[6] -, The exceptional set of Goldbach numbers, ibid. 50 (1999).
[7] J. Y. Liu, M. C. Liu and T. Z. Wang, The number of powers of 2 in a representation of large even integers (II), Sci. China Ser. A 41 (1998), 1255-1271.
[8] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370.
[9] W. Wang, On zero distribution of Dirichlet's L-functions, J. Shandong Univ. 21 (1986), 1-13 (in Chinese).

Department of Mathematics
Shandong University
Jinan Shandong
P.R. China

E-mail: lihz@sdu.edu.cn

[^0]: 1991 Mathematics Subject Classification: 11P32, 11P55.
 This work was supported by the National Natural Science Foundation of China (Grant no 19671051).

