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On the restricted Waring problem over F2n [t]

by

Luis Gallardo (Brest)

1. Introduction. The Waring problem for polynomial cubes over a finite
field F of characteristic 2 consists in finding the minimal integer m ≥ 0 such
that every sum of cubes in F [t] is a sum of m cubes. It is known that for F
distinct from F2,F4,F16, each polynomial in F [t] is a sum of three cubes of
polynomials (see [3]).

If a polynomial P ∈ F [t] is a sum of n cubes of polynomials in F [t] such
that each cube A3 appearing in the decomposition has degree < deg(P )+3,
we say that P is a restricted sum of n cubes.

The restricted Waring problem for polynomial cubes consists in finding
the minimal integer m ≥ 0 such that each sum of cubes S in F [t] is a
restricted sum of m cubes.

The best known result for the above problem is that every polynomial in
F2n [t] of sufficiently high degree that is a sum of cubes, is a restricted sum
of eleven cubes. This result was obtained by the circle method in [1].

Here we improve this result using elementary methods. Let F be a finite
field of characteristic 2, distinct from F2,F4,F16. In Theorem 7, we prove
that every polynomial in F [t] is a restricted sum of at most nine cubes, and
that every polynomial in F16[t] is a restricted sum of at most ten cubes.

We also prove, in Theorem 9, that by adding to a given P ∈ F2n [t] some
squareB2 with deg(B2) < deg(P )+2, the resulting polynomial is a restricted
sum of at most four cubes, for all n 6= 2.

2. Sums of cubes. We consider a polynomial P ∈ F [t] with F a field
of characteristic 2. We want to write P as a restricted sum of cubes. In
Lemma 5 we approach P by a sum of two cubes A3 +B3. This requires that
F be distinct from F4. Applying two more times the same reduction we are
reduced to writing a polynomial of degree < deg(P )/3+1 as a sum of cubes.
Specializing F to a finite field distinct from F2,F4,F16, we obtain Theorem 6,
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using the Serre Identity (see Lemma 2). For F = F16 a specific identity is
used. The reduction requires that P has degree higher than some constant
integer n. We finish the reduction in Theorem 7, proving in a case by case
manner the result for all polynomials of degree less than this constant n.

Lemma 1. Let F be a finite field of characteristic 2, F 6= F4 and g ∈
F, g 6= 0. There exist a, b ∈ F, a 6= 0, such that g = a3 + b3.

P r o o f. See [2].

Lemma 2 (Serre Identity). Let F be a finite field of characteristic 2,
distinct from F2,F4,F16. Every polynomial P ∈ F [t] is a sum of three cubes,
say P = A3 +B3 + C3, with A,B,C ∈ F [t], deg(A) = deg(B) = deg(C) =
deg(P ).

P r o o f. This follows from the Serre formula

(1) b6 + a6 + abc3t = (at+ b2)3 + (bt+ a2)3 + (ct)3

where a, b, c are nonzero elements in F such that a3 + b3 + c3 = 0. See [3].

Corollary 3. Let F be a finite field of characteristic 2, distinct from
F2,F4,F16. There exist three linear polynomials A,B,C ∈ F [t] such that
t2 = A3 +B3 + C3.

P r o o f. By a specialization of variables in formula (1) we obtain t =
U3 + V 3 +W 3, where U, V,W ∈ F [t] and deg(U) = deg(V ) = deg(W ) = 1.
Replace t by 1/t in this last formula, and then multiply both sides by t3.

Lemma 4. Let F 6= F4 be a field of characteristic 2. Let n ≥ 1 be an
integer , and P ∈ F [t] a polynomial with deg(P ) ∈ {3n+ 3, 3n+ 2, 3n+ 1}.
There exist polynomials A,B,Q ∈ F [t] such that P = A3+B3+Q. Moreover
deg(A) = n+ 1, deg(B) ≤ n+ 1, deg(Q) ≤ 2n+ 1.

P r o o f. Set P =
∑3n+3
j=0 pjt

j , d = deg(P ), S =
∑n
j=0 sjt

j , A= atn+1 +S,
B = αtn+1 + βtn + γtn−1, where the {sj}j=0,...,n, and a, α, β, γ ∈ F are to
be determined. If d = 3n + 3, then we set β = 0, γ = 0. If d = 3n + 2,
then we set sn = 0, a = 1, α = 1, γ = 0. If d = 3n + 1, then we set
sn = 0, sn−1 = 0, a = 1, α = 1, β = 0. Set Q = P + A3 + B3. For j
from 2n + 2 to 3n + 3, we force all coefficients qj of Q to be 0, as follows.
From the equations q3n+3 = a3 + α3 + p3n+3 = 0, q3n+2 = a2sn + βα2 +
p3n+2 = 0, q3n+1 = a2sn−1 + β2α + as2

n + α2γ + p3n+1 = 0, we obtain
the missing values of α, a, β, γ, sn, sn−1. More precisely, if d = 3n+ 3, then
we get a 6= 0 from Lemma 1, α from the equation q3n+3 = 0, sn from the
equation q3n+2 = 0, and sn−1 from the equation q3n+1 = 0; if d = 3n + 2,
then we get β from the equation q3n+2 = 0, and sn−1 from the equation
q3n+1 = 0; if d = 3n+ 1, then we get γ from the equation q3n+1 = 0. So the
proof is finished for n = 1, and we now take n ≥ 2. Given an integer k such
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that 1 ≤ k ≤ n− 1, suppose that we have determined sn to sn−k from the
equations q3n+3 = 0 to q3n−k+2 = 0. We can then determine sn−k−1 from
the equation q3n−k+1 = 0 = a2sn−k−1 + p3n−k+1 + R, where R is a cubic
form in a, α, β, γ, and the {sj}n−k≤j≤n.

We now show the result of our reduction applied to a polynomial P ∈
F [t], where F is a finite field of characteristic 2, distinct from F4:

Lemma 5. Let F be a finite field of characteristic 2, F 6= F4, and let P ∈
F [t] be a polynomial of degree d ≥ 4. There exist polynomials A,B,Q ∈ F [t]
such that P = A3 + B3 + Q. Moreover deg(A3) < d + 3, deg(B3) < d + 3,
deg(Q3) ≤ 2d + e, where e = −3 if d ≡ 0 mod 3; e = −1 if d ≡ 2 mod 3;
e = 1 if d ≡ 1 mod 3.

P r o o f. This follows from Lemma 4.

Theorem 6. Let F be a finite field of characteristic 2, distinct from
F2,F4,F16. Every polynomial P ∈ F [t] with deg(P ) > 6 is a restricted sum
of at most nine cubes. Every polynomial P ∈ F16[t] with deg(P ) > 6 is a
restricted sum of at most ten cubes.

P r o o f. Suppose F 6= F2,F4,F16. If deg(P ) > 9, we apply Lemma 5
three times and Lemma 2 once. If 7 ≤ deg(P ) ≤ 9, we apply Lemma 5 twice
and Lemma 2 once. For F = F16 the proof is the same, upon replacing the
Serre formula in Lemma 2 by the identity

(2) t = (tr + s)3 + (tr + s+ 1)3 + (t+ sr2)3 + (t+ (1 + s)r2)3,

where r ∈ F16 satisfies r4 = r + 1, and s = r5.

Theorem 7. Let F be a finite field of characteristic 2, distinct from
F2,F4,F16. Every polynomial P ∈ F [t] is a restricted sum of at most nine
cubes. Every polynomial P ∈ F16[t] is a restricted sum of at most ten cubes.

P r o o f. From Theorem 6, we can assume that deg(P ) ≤ 6. Suppose
F 6= F16. If deg(P ) ≤ 1 the result follows from the Serre identity in Lemma 2.
Suppose deg(P ) = 2 and write P = a2t

2 +a1t+a0. From Corollary 3, a2t
2 =

(a1/2
2 t)2 is a sum of 3 cubes of polynomials of degree 1, but deg(P+a2t

2) ≤ 1,
so P = (P+a2t

2)+a2t
2 is a sum of at most 6 cubes, each of degree ≤ 1. Sup-

pose deg(P ) = 3 and write P = a3t
3 + P2 with deg(P2) ≤ 2. By Lemma 1,

a3 = a3 + b3 with some a, b ∈ F ; so a3t
3 = (at)3 + (bt)3; it follows that P is

a sum of at most 8 cubes, each of degree ≤ 1. Suppose deg(P ) = 4 and write
P = t3P1+P2 with deg(P1) = 1 and deg(P2) = 2. Apply Lemma 2 to P1 and
P2. We deduce that P is a sum of at most 6 cubes, each of degree ≤ 2. Sup-
pose deg(P ) = 5. By Lemma 4, P = A3+B3+P3 with deg(A) ≤ 2,deg(B) ≤
2 and deg(P3) ≤ 3. By Lemma 1, P3 = (ct)3 + (dt)3 +P2 with some c, d ∈ F
and deg(P2) ≤ 2; so that by Lemma 2, P2 is a sum of at most 3 cubes, each of
degree ≤ 2. Hence P is a sum of at most 7 cubes, each of degree ≤ 2. Suppose
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deg(P ) = 6. By Lemma 4, P = A3 +B3 + P4 with deg(A) ≤ 2, deg(B) ≤ 2
and deg(P4) ≤ 4. So P is a sum of at most 8 cubes, each of degree ≤ 2. The
proof is similar when F = F16, with the appeal to Lemma 2 replaced by
the identity (2), and Corollary 3 replaced by a similar result obtained after
replacing t by 1/t and multiplying both sides of (2) by t3.

3. Allowing a square. We consider a polynomial P ∈ F [t], where F
is a perfect field of characteristic 2. We approach the square root S of the
derivative of P relative to t by a sum of at most two polynomials, say U, V,
of the form A2B+ tB3. The reduced polynomial Q = S+U +V is of degree
close to deg(S)/3 (see Lemma 8). This reduction requires that every element
in F is a sum of at most two cubes. So we specialize F to a finite field other
than F4, and we apply the identity T = (T + 1)3 + T 3 + (T + 1)2 to the
polynomial tW 2. The main result is Theorem 9.

Lemma 8. Let F be a perfect field of characteristic 2 such that every
element in F is a sum of at most two cubes. Let n ≥ 0 be an integer , and
S ∈ F [t] be a polynomial with deg(S) ∈ {3n + 2, 3n + 1, 3n}. There exist
polynomials A,B,C,D,Q ∈ F [t] such that

S = A2B + tB3 + C2D + tD3 +Q,

where deg(B) = n, deg(C) ≤ n, deg(D) ≤ n, deg(Q) < n − 1. Moreover , if
deg(S) ∈ {3n, 3n+ 1} then deg(A) ≤ n; if deg(S) = 3n+ 2 then deg(A) =
n+ 1.

P r o o f. Suppose that n ≥ 1. Set S =
∑3n+3
j=0 p3n+3−j t3n+3−j , A =

atn+1 +
∑n
k=0 akt

k, B = ctn, C =
∑n
k=0 ckt

k, D = dtn + tn−1. If p3n+1 = 0,
then we set c = d = 1. If p3n+1 6= 0, then by hypothesis we obtain c, d ∈ F ,
c 6= 0, such that p3n+1 = c3+d3. If p3n+2 = 0, then we take a = 0. If p3n+2 6=
0, then we take c 6= 0 from ca2 = p3n+2.We now determine the {ck, ak}0≤k≤n
such that all monomials {rsts}n≤s≤3n of S+A2B+ tB3 +C2D+ tD3 are 0,
as follows. From the linear equation r3n−1 = c2n + d+ p3n−1 = 0, we obtain
cn, then from the linear equation r3n = ca2

n + d2 + c2nd+ p3n = 0, we obtain
an. From the linear equation r3n−3 = c2n−1 + p3n−3 = 0, we obtain cn−1,
then from the linear equation r3n−2 = ca2

n−1 + 1 + c2n−1d + p3n−2 = 0, we
obtain an−1. This finishes the proof for n = 1, and so we now take n ≥ 2.
From the linear equation r3n−5 = c2n−2 + p3n−5 = 0, we obtain cn−2, then
from the linear equation r3n−4 = ca2

n−2 + c2n−2d + p3n−4 = 0, we obtain
an−2, . . . Finally, we obtain c0 from the linear equation rn−1 = c20 + pn−1 =
0, and a0 from the linear equation rn = ca2

0 + dc20 = 0. So the resulting
polynomial Q = S + A2B + tB3 + C2D + tD3 is of degree less than or
equal to n− 2, finishing the proof. The proof for n = 0 is similar by setting
A = at+ a0, B = c, C = c0, D = d.
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Theorem 9. Let F be a finite field of characteristic 2, distinct from F4,
and let P ∈ F [t]. There exists a square B2 in F [t] with deg(B2) < deg(P )+2
such that P +B2 is a restricted sum of at most four cubes.

P r o o f. For any H ∈ F [t] we write H ′ for the derivative of H relative to
t. Put P ′ = S2, and d = deg(S) ∈ {3n+2, 3n+1, 3n} for some integer n ≥ 0.
Now P = (tP )′+ tP ′, where (tP )′ is a square in F [t] of degree < deg(P )+2.
So it suffices to prove the result for tP ′. Applying Lemmas 1 and 8 to S we get

(3) (tP ′)′ = S2 = K2K ′ + L2L′ +Q2

with K = A2 + tB2, L = C2 + tD2. Then deg(L) ≤ 2n+ 1. Also deg(K) =
2n + 1 if d ≡ 0 or 1 mod 3; deg(K) = 2n + 2 if d ≡ 2 mod 3. Furthermore,
deg(Q) < n− 1. Integrating (3) over t, we get

R2 + tP ′ = K3 + L3 + tQ2

for some R ∈ F [t]. We have deg(L3) ≤ 6n + 3 < 6n + 4 ≤ deg(tP ′) + 3. If
d ≡ 0 mod 3 or d ≡ 1 mod 3 then deg(K3) ≤ 6n+3 < 6n+4 ≤ deg(tP ′)+3.
If d ≡ 2 mod 3 then deg(K3) = 6n + 6 < 6n + 8 ≤ deg(tP ′) + 3. Now
deg((tQ2)2) ≤ deg((tQ2)3) < 6n − 3 < deg(tP ′) + 2 < deg(tP ′) + 3. If
d ≡ 0 mod 3 or d ≡ 1 mod 3 then, using R2 = tP ′ + K3 + L3 + tQ2, we
obtain deg(R2) ≤ 6n + 3; i.e. deg(R2) < 6n + 3 ≤ deg(tP ′) + 2. Similarly,
deg(R2) ≤ 6n + 6 < 6n + 7 ≤ deg(tP ′) + 2 when d ≡ 2 mod 3. From the
identity T = (T + 1)3 + T 3 + (T + 1)2, we obtain

tP ′ = K3 + L3 + (tQ2 + 1)3 + (tQ2)3 + (R+ tQ2 + 1)2.

This establishes the result.
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