On the factors $\Phi^{(j \delta / m)}$ of the period polynomial for finite fields

by
S. Gurak (San Diego, CA)

1. Introduction. Let $q=p^{a}$ be a power of a prime, and e and f positive integers such that $e f+1=q$. Let \mathbb{F}_{q} denote the field of q elements, \mathbb{F}_{q}^{*} its multiplicative group and g a fixed generator of \mathbb{F}_{q}^{*}. Let $\operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ be the usual trace map and set $\zeta_{m}=\exp (2 \pi i / m)$ for any positive integer m. Put

$$
\delta=\operatorname{gcd}\left(\frac{q-1}{p-1}, e\right) \quad \text { and } \quad R=\frac{q-1}{\delta(p-1)}=\frac{f}{\operatorname{gcd}(p-1, f)}
$$

and let C_{e} denote the group of e th powers in \mathbb{F}_{q}^{*}. The Gauss periods are

$$
\begin{equation*}
\eta_{j}=\sum_{x \in C_{e}} \zeta_{p}^{\operatorname{Tr} g^{j} x} \quad(1 \leq j \leq e) \tag{1}
\end{equation*}
$$

and satisfy the period polynomial

$$
\begin{equation*}
\Phi(x)=\prod_{j=1}^{e}\left(x-\eta_{j}\right) \tag{2}
\end{equation*}
$$

G. Myerson [8] showed that $\Phi(x)$ splits over \mathbb{Q} into δ factors

$$
\begin{equation*}
\Phi(x)=\prod_{w=1}^{\delta} \Phi^{(w)}(x) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi^{(w)}(x)=\prod_{k=0}^{e / \delta-1}\left(x-\eta_{w+k \delta}\right) \quad(1 \leq w \leq \delta) \tag{4}
\end{equation*}
$$

The coefficients $a_{r}=a_{r}(w)$ of the factor

$$
\begin{equation*}
\Phi^{(w)}(x)=x^{e / \delta}+a_{1} x^{e / \delta-1}+\ldots+a_{e / \delta} \tag{5}
\end{equation*}
$$

2000 Mathematics Subject Classification: Primary 11T22, 11T24.
or equivalently of

$$
\begin{equation*}
F^{(w)}(X)=X^{e / \delta} \Phi^{(w)}\left(X^{-1}\right)=1+a_{1} X+\ldots+a_{e / \delta} X^{e / \delta} \tag{6}
\end{equation*}
$$

are expressed in terms of the symmetric power sums

$$
\begin{equation*}
S_{n}=S_{n}(w)=\sum_{k=0}^{e / \delta-1}\left(\eta_{w+k \delta}\right)^{n} \quad(n \geq 0) \tag{7}
\end{equation*}
$$

through Newton's identities

$$
\begin{equation*}
S_{r}+a_{1} S_{r-1}+\ldots+a_{r-1} S_{1}+r a_{r}=0 \quad(1 \leq r \leq e / \delta) \tag{8}
\end{equation*}
$$

If $t_{w}(n)$ counts the number of n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in C_{e}(1 \leq i \leq n)$ for which $\operatorname{Tr}\left(g^{w}\left(x_{1}+\ldots+x_{n}\right)\right)=0$, then $S_{n}(w)$ can be computed using

$$
\begin{equation*}
S_{n}(w)=\left(p t_{w}(n)-f^{n}\right) / \operatorname{gcd}(p-1, f) \tag{9}
\end{equation*}
$$

In the classical case $q=p$ (so $\delta=1$), Gauss showed that $\Phi(x)$ is irreducible over \mathbb{Q} and determined the polynomial for small values of e and f. For $f=2$, he showed (see [3]) that the coefficients of $\Phi(x)=\Phi^{(\delta)}(x)$ in (5) are given by

$$
\begin{equation*}
a_{v}=(-1)^{[v / 2]}\binom{[(p-1-v) / 2]}{[v / 2]} \quad(1 \leq v \leq e=(p-1) / 2) \tag{10}
\end{equation*}
$$

In 1982 I determined [3] how to compute the beginning coefficients for the classical case when $f>2$ is fixed. (See also [2].) In later work [5] I studied the last factor $\Phi^{(\delta)}(x)$ when f is fixed, and showed that the beginning coefficients of the factor $\Phi^{(\delta)}(x)$ can be computed in a fashion similar to those of the period polynomial in the classical case $q=p$. Recently [7] I found similar results for the middle factor $\Phi^{(\delta / 2)}(x)$ when δ is even. The goal of this current paper is to describe analogous results concerning the factors $\Phi^{(w)}(x)$, where $w=j \delta / m$ for $m \mid \delta, 1 \leq j \leq m$ and $\operatorname{gcd}(j, m)=1$. This is done in the next section. Later in Sections 3 and 4, I give some explicit formulas for the factors $\Phi^{(j \delta / m)}(x)$ and certain related counting functions.
2. The factors $\Phi^{(j \delta / m)}(x)$. Throughout the paper $f>1$ is fixed with specified odd reduced residue r modulo f, say with $\operatorname{ord}_{f} r=b$. Also fix an integer $m>0$, together with a specified reduced residue s modulo m satisfying $s \equiv r(\bmod \operatorname{gcd}(f, m))$, say with $\operatorname{ord}_{m} s=c$. In addition to considering primes $p \equiv r(\bmod f)$ and finite fields \mathbb{F}_{q} with $q=p^{a}$, I shall also require that $p \equiv s(\bmod m)$ and $m \mid \delta$. All such primes p have common decomposition fields K in $\mathbb{Q}\left(\zeta_{f}\right)$ and k in $\mathbb{Q}\left(\zeta_{m}\right)$. (The field K is that subfield of $\mathbb{Q}\left(\zeta_{f}\right)$ fixed by the action $\zeta_{f} \rightarrow \zeta_{f}^{r}$; similarly the field k is that subfield of $\mathbb{Q}\left(\zeta_{m}\right)$ fixed by the action $\zeta_{m} \rightarrow \zeta_{m}^{s}$.) My goal here is to study the factors $\Phi^{(j \delta / m)}(x)$ of the period polynomial $\Phi(x)$ in (3) with $1 \leq j \leq m$ and $\operatorname{gcd}(j, m)=1$. While the relative order of the factors $\Phi^{(w)}(x)$ in (3)
depends on the choice of a generator g for \mathbb{F}_{q}^{*}, a different choice always permutes the factors $\Phi^{(j \delta / m)}(x)$ among themselves. In addition, certain duplication among the factors is predicted by Proposition 5 of [4]; namely, $\Phi^{(s j \delta / m)}(x)=\Phi^{(j \delta / m)}(x)$ since $p j \delta / m \equiv s j \delta / m(\bmod \delta)$. (Here I identify $\Phi^{(w)}(x)$ with $\Phi^{(\bar{w})}(x)$ where $w \equiv \bar{w}(\bmod \delta)$ for $1 \leq \bar{w} \leq \delta$.)

Now write $R=R_{1} m_{1}$ where $\operatorname{gcd}\left(R_{1}, m\right)=1$ and $m_{1} \mid m^{n}$ for sufficiently large n. The factor R_{1} is the largest factor of R which is prime to m. There are m_{1} distinct reduced residues s_{1} modulo M, where $M=m m_{1}$, satisfying $s_{1} \equiv s(\bmod m)$. Select one such s_{1}, say with $\operatorname{ord}_{M} s_{1}=c_{1}$, and let k^{\prime} be the subfield of $\mathbb{Q}\left(\zeta_{M}\right)$ fixed by the action $\zeta_{M} \rightarrow \zeta_{M}^{s_{1}}$. Fixing j, with $1 \leq j \leq m$ and $\operatorname{gcd}(j, m)=1$, I now consider the factor $\Phi^{(j \delta / m)}(x)$ (relative to the ordering determined by the chosen generator g for \mathbb{F}_{q}^{*}) for the finite fields \mathbb{F}_{q} with $q=p^{a}, p \equiv r(\bmod f), p \equiv s_{1}(\bmod M)$ and $m \mid \delta$. First note that $\delta R=1+p+\ldots+p^{a-1} \equiv 0(\bmod M)$, so $l=\operatorname{lcm}(b, c)$ must divide a. (In fact, $\operatorname{lcm}\left(b, c_{1}\right) \mid a$.) Since $1+p+\ldots+p^{b-1} \equiv 0(\bmod R)$, one may write

$$
\begin{equation*}
1+s_{1}+\ldots+s_{1}^{l-1}=\mu m m_{1} / d \tag{11}
\end{equation*}
$$

where $\operatorname{gcd}(\mu, d)=1$ and $d \mid m$ with $d>0$. Then set

$$
\begin{equation*}
x_{i}=\frac{s_{1}^{l i}-1}{s_{1}-1}=\frac{s_{1}^{l}-1}{s_{1}-1}\left(1+s_{1}^{l}+\ldots+s_{1}^{l(i-1)}\right) \quad(i>0) . \tag{12}
\end{equation*}
$$

The expression (11) uniquely determines d. Since $s_{1}^{l} \equiv 1(\bmod m)$, from (11) one sees that $x_{i} \equiv i x_{1} \equiv i \mu m_{1} m / d \equiv 0(\bmod M)$ if and only if $d \mid i$. In particular, as $M \mid \delta R$ one finds that $l d \mid a$.

Next note that since R_{1} is relatively prime to both e / δ and M, one can express $R_{1} v+(e / \delta) M u=1$ for integers v and u. Thus $g^{j \delta / m}=g^{j \delta R v / M+e j u m_{1}}$, so the values $\operatorname{Tr} g^{j \delta / m} x\left(x \in C_{e}\right)$ have the form

$$
\begin{aligned}
y_{\alpha}= & \operatorname{Tr} g^{j \delta R v / M+e \alpha} \\
= & g^{j \delta R v / M+e \alpha}+g^{j \delta R v p / M+p e \alpha}+\ldots+g^{j \delta R v p^{a-1} / M+p^{a-1} e \alpha} \\
= & h^{\delta R / M}\left(g^{e \alpha}+h^{\delta R(p-1) / M} g^{p e \alpha}+\ldots+h^{\delta R\left(p^{a-1}-1\right) / M} g^{p^{a-1} e \alpha}\right) \\
= & h^{\delta R / M}\left(g^{e \alpha}+h^{(q-1) / M} g^{p e \alpha}+h^{(q-1)(1+p) / M} g^{p^{2} e \alpha}\right. \\
& \left.+\ldots+h^{(q-1)\left(1+p+\ldots+p^{a-2}\right) / M} g^{p^{a-1} e \alpha}\right)
\end{aligned}
$$

for $0 \leq \alpha<f$, where $h=g^{j v}$. Since $h^{\delta R / M} \neq 0$, the function $t_{j \delta / m}(n)$ in (9) also counts the number of times a sum $z_{\alpha_{1}}+\ldots+z_{\alpha_{n}}$ equals zero for $0 \leq \alpha_{i}<f$, where

$$
\begin{equation*}
z_{\alpha}=g^{e \alpha}+g^{j v(q-1) / M} g^{p e \alpha}+\ldots+g^{j v(q-1)\left(1+p+\ldots+p^{a-2}\right) / M} g^{p^{a-1} e \alpha} . \tag{13}
\end{equation*}
$$

The following proposition completely determines $\Phi^{(j \delta / m)}(x)$ when $d>1$, and generalizes the result of Proposition 1 of [7].

Proposition 1. If $d>1$ then $\Phi^{(j \delta / m)}(x)=(x-f)^{e / \delta}$.

Proof. I assert that each z_{α} is 0 in (13) so that $t_{j \delta / m}(n)=f^{n}$ for any $n>0$, and hence $\Phi^{(j \delta / m)}(x)=(x-f)^{e / \delta}$ from relations (8) and (9). Since $g^{j \delta R v / M}$ has order $M(p-1) \mid p^{d l}-1$ and g^{e} has order $f \mid p^{l}-1$, each trace

$$
y_{\alpha}=\operatorname{Tr} g^{j \delta R v / M+e \alpha}=\frac{a}{d l} \operatorname{Tr}_{\mathbb{F}_{p^{d l}} / \mathbb{F}_{p}} g^{j \delta R v / M+e \alpha} \quad(0 \leq \alpha<f)
$$

Thus to show each z_{α} in (13) is zero, one may assume without loss of generality that $a=d l$. Now choose any $0 \leq \alpha<f$. Note that in terms of r, s_{1} and x_{i},

$$
\begin{aligned}
z_{\alpha}= & g^{e \alpha}+t g^{r e \alpha}+\ldots+t^{1+s_{1}+\ldots+s_{1}^{l-2}} g^{r^{l-1} e \alpha}+t^{x_{1}} g^{r^{l} e \alpha}+t^{s_{1} x_{1}+1} g^{r^{l+1} e \alpha} \\
& +\ldots+t^{s_{1}^{l-1} x_{1}+1+s_{1}+\ldots+s_{1}^{l-2}} g^{r^{2 l-1} e \alpha}+\ldots+t^{x_{d-1}} g^{r^{l(d-1)} e \alpha} \\
& +t^{s_{1} x_{d-1}+1} g^{r^{l(d-1)+1} e \alpha}+\ldots+t^{s_{1}^{l-1} x_{d-1}+1+s_{1}+\ldots+s_{1}^{l-2}} g^{r^{l(d-1)+l-1} e \alpha} \\
= & g^{e \alpha}\left[1+t^{x_{1}}+\ldots+t^{x_{d-1}}\right] \\
& +g^{r e \alpha} t\left[1+t^{s_{1} x_{1}}+\ldots+t^{s_{1} x_{d-1}}\right]+g^{r^{2} e \alpha} t^{1+s_{1}}\left[1+t^{s_{1}^{2} x_{1}}+\ldots+t^{s_{1}^{2} x_{d-1}}\right] \\
& +\ldots+g^{r^{l-1} e \alpha} t^{1+s_{1}+\ldots+s_{1}^{l-2}}\left[1+t^{s_{1}^{l-1} x_{1}}+\ldots+t^{s_{1}^{l-1} x_{d-1}}\right]
\end{aligned}
$$

in (13), where $t=g^{j v(q-1) / M}$. Now each of the bracketed sums in the last expression has the form $1+\bar{g}^{s_{1}^{\lambda}}+\bar{g}^{2 s_{1}^{\lambda}}+\ldots+\bar{g}^{(d-1) s_{1}^{\lambda}}$ with $\bar{g}=t^{x_{1}}$ of order d. Since $d>1$ and $\operatorname{gcd}\left(s_{1}, M\right)=1$ each of those sums is zero, so $z_{\alpha}=0$ as claimed.

In view of the above proposition, I shall assume $d=1$ in (11) throughout the remainder of the paper (so $l=\operatorname{lcm}(b, c)=\operatorname{lcm}\left(b, c_{1}\right)$ as $c\left|c_{1}\right| l$). To generalize the results known for the middle and last factor $[5,7]$ here, it is necessary to find a suitable counting function $b_{j, m}(n)$ which coincides with $t_{j \delta / m}(n)$ for almost all primes $p \equiv r(\bmod f)$ and $p \equiv s_{1}(\bmod M)$ with $m \mid \delta$. To this end, define algebraic integers $\omega_{j, \alpha}$ in $\mathbb{Q}\left(\zeta_{M}, \zeta_{f}\right)$ by

$$
\begin{equation*}
\omega_{j, \alpha}=\zeta_{f}^{\alpha}+\zeta_{M}^{j} \zeta_{f}^{r \alpha}+\zeta_{M}^{j\left(1+s_{1}\right)} \zeta_{f}^{r^{2} \alpha}+\ldots+\zeta_{M}^{j\left(1+s_{1}+\ldots+s_{1}^{l-2}\right)} \zeta_{f}^{r^{l-1} \alpha} \tag{14}
\end{equation*}
$$

for $0 \leq \alpha<f$, and let $b_{j, m}(n)$ count the number of times one has

$$
\begin{equation*}
\omega_{j, \alpha_{1}}+\ldots+\omega_{j, \alpha_{n}}=0 \tag{15}
\end{equation*}
$$

for $0 \leq \alpha_{i}<f, 1 \leq i \leq n$. I find that $b_{j, m}(n)$ is the desired counting function.

Proposition 2. For all primes $p \equiv r(\bmod f)$ and $p \equiv s_{1}(\bmod M)$ with $m \mid \delta$

$$
b_{m, j}(n) \leq t_{j \delta / m}(n) \quad \text { for } n>0
$$

Equality holds for any such prime $p \nmid a$, except those lying in a computable finite set $\xi_{j, n}$.

Proof. Since $l=\operatorname{lcm}\left(b, c_{1}\right)$, one finds that $\operatorname{lcm}(f, M)$ divides $p^{l}-1$, so the elements g^{e} and $g^{(q-1) / M}$ lie in $\mathbb{F}_{p^{l}} \subseteq \mathbb{F}_{q}$. In particular, one may identify
$\mathbb{F}_{p^{l}} / \mathbb{F}_{p}$ as the residue field extension at p for the extension $L=\mathbb{Q}\left(\zeta_{f}, \zeta_{M}\right)$. By appropriately choosing the generator g, the identification can be made such that $g^{(q-1) / M}$ corresponds to $\zeta_{M}^{R_{1}}$ modulo P for some L-prime P lying above p. With respect to this identification g^{e} corresponds to a primitive f root of unity, say ζ_{f}^{μ}, for some integer μ prime to f. So z_{α} in (13) corresponds to $(a / l) \omega_{j, \alpha \mu}$ modulo P, since $R_{1} v \equiv 1(\bmod M)$. It follows that $t_{j \delta / m}(n)$ counts precisely the number of times one has

$$
\begin{equation*}
\frac{a}{l}\left(\omega_{j, \alpha_{1}}+\ldots+\omega_{j, \alpha_{n}}\right) \equiv 0(\bmod P) \tag{16}
\end{equation*}
$$

for a choice of $\omega_{j, \alpha}$ in (14) where $0 \leq \alpha_{1}, \ldots, \alpha_{n}<f$. In particular, $b_{m, j}(n) \leq t_{j \delta / m}(n)$ for $n>0$. Equality holds for any prime p not dividing a and for which P does not divide any of the non-zero right-hand sums in (16). If \widehat{p} is the k-prime lying between P and p, then the latter exception is equivalently expressed by requiring that $p \notin \xi_{j, n}$, where $\xi_{j, n}$ consists of all rational primes $p \equiv r(\bmod f)$ and $p \equiv s(\bmod m)$ for which \widehat{p} divides some non-zero norm $N_{L / k}\left(\omega_{j, \alpha_{1}}+\ldots+\omega_{j, \alpha_{n}}\right)$ for a choice of $\omega_{j, \alpha}$ in (14).

This completes the proof of the proposition.
Now let h be the smallest positive integer for which $b_{m, j}(h) \neq 0$. Using (8), (9) and the above proposition, one may obtain the following generalization of Theorem 1 of [5]. Since the argument is identical to that used in obtaining Theorem 1 of [5], I shall omit it here.

Theorem 1. For all primes $p \nmid a$ such that $p \equiv r(\bmod f), p \equiv s_{1}$ $(\bmod M)$ but $p \notin \xi_{j, n}(n \leq v)$, and $d=1$ in (11), the coefficient a_{v} for $\Phi^{(j \delta / m)}(x)$ in $(5)\left(\right.$ or $F^{(j \delta / m)}(X)$ in (6)) satisfies $a_{v}=\vartheta_{v}(p)$, where ϑ_{v} is a polynomial of degree $[v / h]$.

Now consider the rational power series

$$
\begin{equation*}
C_{m, j}(X)=\exp \left(-\frac{R}{f} \sum_{n=1}^{\infty} b_{m, j}(n) X^{n} / n\right) \tag{17}
\end{equation*}
$$

defined in terms of the counting function $b_{m, j}(n)$. The argument in the proof of Theorem 1 of [2] extends in a straightforward manner to yield

Theorem 2. For any $v>0$ and prime $p \nmid a$ such that $p \equiv r(\bmod f)$, $p \equiv s_{1}(\bmod M)$ but $p \notin \xi_{j, n}(n \leq v)$, and $d=1$ in (11), we have

$$
F^{(j \delta / m)}(X) \equiv \frac{C_{m, j}(X)^{p}}{(1-f X)^{R / f}}\left(\bmod X^{v+1}\right)
$$

in $\mathbb{Z}[[X]]$.
To illustrate Proposition 1 and Theorems 1 and 2 above, consider the following examples.

Example 1. Consider the case $f=m=4$ with $r=s=3$ so $K=k=\mathbb{Q}$. Here $l=b=c=2$ with $R=2, R_{1}=1$ and $m_{1}=2$. The possible choices for $s_{1}(\bmod M)$ with $s_{1} \equiv s(\bmod m)$ are 3 and $7(\bmod 8)$, each with $c_{1}=2$, but with $d=2$ and 1, respectively, in (11). By Proposition 1, $\Phi^{(\delta / 4)}(x)=\Phi^{(3 \delta / 4)}(x)=(x-4)^{(p-1) / 2}$ for the case $p \equiv 3(\bmod 8)$. For the other case $p \equiv 7(\bmod 8)$, I illustrate Theorems 1 and 2 with $q=p^{2}$. One finds $\omega_{j, 1}=-\omega_{j, 3}=i\left(1-\zeta_{8}^{j}\right)$ and $\omega_{j, 0}=-\omega_{j, 2}=1+\zeta_{8}^{j}$ in (14) for this case, where $L=\mathbb{Q}\left(\zeta_{8}\right)$ in the proof of Proposition 2 and $k^{\prime}=\mathbb{Q}(\sqrt{2})$. The corresponding counting functions $b_{4, j}(n)$ satisfy

$$
b_{4,1}(n)=b_{4,3}(n)= \begin{cases}\binom{n}{n / 2}^{2} & \text { if } n \text { is even } \\ 0 & \text { otherwise }\end{cases}
$$

so $C_{4,1}(X)=C_{4,3}(X)=1-X^{2}-4 X^{4}-29 X^{6}-265 X^{8}-\ldots$ in (17). The first few polynomial expressions for the beginning coefficients of $\Phi^{(\delta / 4)}(x)=$ $\Phi^{(3 \delta / 4)}(x)$ from Theorem 1 are found to be

$$
\begin{gathered}
\vartheta_{1}(p)=2, \quad \vartheta_{2}(p)=-p+6, \quad \vartheta_{3}(p)=-2 p+20, \\
\vartheta_{4}(p)=\frac{1}{2}\left(p^{2}-21 p+140\right), \quad \vartheta_{5}(p)=p^{2}-29 p+252, \quad \ldots
\end{gathered}
$$

The prime $p=7$ first appears in thei exceptional sets $\xi_{1, n}=\xi_{3, n}(n>0)$, when $n=3$. Incidentally, one finds that $3+\sqrt{2}$ divides $2 \omega_{1,1}+\omega_{1,0}$ and $2 \omega_{1,3}+\omega_{1,2}$ in L, while $3-\sqrt{2}$ divides $\omega_{1,3}+2 \omega_{1,0}$ and $\omega_{1,1}+2 \omega_{1,2}$. Specifically, for $p=7$ (where $\delta=4$) one may take $g=2+i$ to generate \mathbb{F}_{49}^{*} with $g^{(q-1) / M}=g^{6} \equiv 2 i+2 \equiv \zeta_{8}(\bmod (3+\sqrt{2}))$ and $g^{e}=g^{12} \equiv i(\bmod (3+$ $\sqrt{2})$), so $z_{\alpha} \equiv \omega_{j, \alpha}(\bmod (3+\sqrt{2}))$ in (13). One computes $t_{1}(1)=t_{3}(1)=0$, $t_{1}(2)=t_{3}(2)=4$ and $t_{1}(3)=t_{3}(3)=6$ so $\Phi^{(1)}(x)=\Phi^{(3)}(x)=x^{3}+2 x^{2}-x-$ $\underline{1}$ from (8) and (9). As expected, the underscored coefficient $a_{3} \neq \vartheta_{3}(7)=6$.

Example 2. Now consider the case $f=3$ and $m=5$ with $r=2$ and $s=4$ with $q=p^{2}$. Here $R=R_{1}=3, m_{1}=1, l=b=c=c_{1}=2$ and $\delta=(p+1) / 3$ with $p \equiv 14(\bmod 15)$. In addition, $L=\mathbb{Q}\left(\zeta_{15}\right), K=\mathbb{Q}$ and $k=k^{\prime}=\mathbb{Q}(\sqrt{5})$, with $d=1$ in (11) and $\omega_{j, \alpha}=\zeta_{3}^{\alpha}+\zeta_{5}^{j} \zeta_{3}^{2 \alpha}(1 \leq j \leq 4,0 \leq$ $\alpha \leq 2)$ in (14). One finds $\Phi^{(\delta / 5)}(x)=\Phi^{(4 \delta / 5)}(x)$ and $\Phi^{(2 \delta / 5)}(x)=\Phi^{(3 \delta / 5)}(x)$ here. The function $b_{m, j}(n)$ is seen to satisfy

$$
b_{m, j}(n)= \begin{cases}n!/((n / 3)!)^{3} & \text { if } 3 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

for $1 \leq j \leq 4$, so each $C_{m, j}(X)=1-2 X^{3}-9 X^{6}-158 X^{9}-\ldots$ in (17). The first few polynomial expressions for the beginning coefficients of $\Phi^{(j \delta / m)}(x)$ from Theorem 1 are found to be

$$
\vartheta_{1}(p)=3, \quad \vartheta_{2}(p)=9, \quad \vartheta_{3}(p)=-2 p+27, \quad \vartheta_{4}(p)=-6 p+81
$$

$\vartheta_{5}(p)=-18 p+243, \vartheta_{6}(p)=2 p^{2}+69 p+729, \vartheta_{7}(p)=6 p^{2}-207 p+2187, \ldots$

For $p=59$ one may choose $g=2+\zeta_{5}$ to generate $\mathbb{F}_{59^{2}}^{*}$, so $g^{(q-1) / m}=g^{696} \equiv$ ζ_{5}^{3} modulo $(8+\sqrt{5})$ in $\mathbb{Q}\left(\zeta_{5}\right)$. For an appropriate choice of an L-prime P lying above $(8+\sqrt{5})$ one has $g^{e}=g^{1160} \equiv \zeta_{3}(\bmod P)$, so $z_{\alpha} \equiv \omega_{j, \alpha}(\bmod P)$ in (13). The prime 59 first appears in the exceptional sets $\xi_{1, n}=\xi_{4, n}(n>0)$ when $n=4$, but not in $\xi_{2, n}=\xi_{3, n}(n>0)$ until $n=7$. In verifying this, one finds

$$
N_{L / k}\left(3 \omega_{1,1}+\omega_{1,2}\right)=N_{L / k}\left(3 \omega_{4,1}+\omega_{4,2}\right)=(8+\sqrt{5})^{2}((1-\sqrt{5}) / 2)^{2}
$$

and

$$
N_{L / k}\left(2 \omega_{2,0}+5 \omega_{2,2}\right)=N_{L / k}\left(2 \omega_{3,0}+5 \omega_{3,2}\right)=(8+\sqrt{5})^{2}((11+\sqrt{5}) / 2)^{2} .
$$

The relevant $t_{j \delta / m}(n)=t_{4 j}(n)$ are tabulated below:

$j \backslash n$	1	2	3	4	5	6	7
1	0	0	6	4	10	90	105
2	0	0	6	0	0	90	21
3	0	0	6	0	0	90	21
4	0	0	6	4	10	90	105

From (8) and (9) one now finds that $\Phi^{(4)}(x)=\Phi^{(16)}(x)$ equals

$$
x^{58}+3 x^{57}+9 x^{56}-91 x^{55}-\underline{332} x^{54}-\underline{1114} x^{53}+\underline{2735} x^{52}+\underline{14282} x^{51}+\ldots
$$

and $\Phi^{(8)}(x)=\Phi^{(12)}(x)$ equals

$$
x^{58}+3 x^{57}+9 x^{56}-91 x^{55}-273 x^{54}-819 x^{53}+3620 x^{52}+\underline{10683} x^{51}+\ldots
$$

The underscored coefficients deviate as expected from the pattern of the beginning coefficients given by $a_{v}=\vartheta_{v}(p)$. Incidentally, it is convenient to use the formula from Proposition 4 of [4] here. Further computation shows that η_{4} and η_{16} are both conjugates of $\zeta_{59}^{1}+\zeta_{59}^{2}+\zeta_{59}^{-3}$, while η_{8} and η_{12} are conjugates of $\zeta_{59}^{2}+\zeta_{59}^{3}+\zeta_{59}^{-5}$.

While Theorems 1 and 2 yield an elegant, formal way to obtain the beginning coefficients of a factor $\Phi^{(j \delta / m)}(x)$, the approach is impractical since the counting function $b_{m, j}(n)$ is difficult to compute in general. However, there are several special situations where $b_{m, j}(n)$ can be readily determined, which often lead to explicit formulas for $C_{m, j}(X)$ and expressions for the beginning coefficients of $\Phi^{(j \delta / m)}(x)$. In describing these situations, it is convenient to express

$$
\begin{equation*}
1+s_{1}+\ldots+s_{1}^{c_{1}-1}=\frac{u M}{t} \tag{18}
\end{equation*}
$$

where $\operatorname{gcd}(u, t)=1$ and $t \mid M$ with $t>0$. The expression (18) uniquely determines t. For the sake of brevity, the specific cases I investigate in the next sections are for $t=1$ and $t=M$. The intermediate cases when t is a proper divisor of M are less manageable, though they may be handled in a similar, albeit more tedious, fashion.
3. The case $t=1$. I retain the notation of the previous section, requiring again that $d=1$ in (11), but assume now that $t=1$ in (18). I shall assume here that $\operatorname{ord}_{M} s_{1}=c_{1}>1$ since $t=M$ in (18) if $c_{1}=1$. The results I describe primarily rely on some knowledge about the set $\left\{1, \zeta_{M}, \zeta_{M}^{1+s_{1}}, \ldots, \zeta_{M}^{1+s_{1}+\ldots+s_{1}^{c_{1}-2}}\right\}$ in $\mathbb{Q}\left(\zeta_{M}\right)$. The first is

ThEOREM 3. Let W be the subfield of $\mathbb{Q}\left(\zeta_{f}\right)$ fixed by the action $\zeta_{f} \rightarrow$ $\zeta_{f}^{r^{\operatorname{gcd}\left(b, c_{1}\right)}}$. Suppose $\left\{1, \zeta_{M}, \zeta_{M}^{1+s_{1}}, \ldots, \zeta_{M}^{1+s_{1}+\ldots+s_{1}^{c_{1}-2}}\right\}$ is linearly independent over W with $t=1$ in (18). Then $b_{m, j}(n)$ counts the number of times $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{f}\right) / W}\left(x_{1}+\ldots+x_{n}\right)$ is zero for a choice of f-roots of unity x_{1}, \ldots, x_{n} lying in $\mathbb{Q}\left(\zeta_{f}\right)$. (In particular, if $\operatorname{gcd}\left(b, c_{1}\right)=1$ then $b_{m, j}(n)=\beta_{K}(n)$, the counting function given for the last factor $\Phi^{(\delta)}(x)$ in [5].)

Proof. Put $d_{1}=\operatorname{gcd}\left(b, c_{1}\right)$. Without loss of generality, one may assume $a=l$. Then, in (14),

$$
\begin{aligned}
\omega_{j, \alpha}= & \left(\zeta_{f}^{\alpha}+\zeta_{f}^{r^{c_{1}} \alpha}+\ldots+\zeta_{f}^{r^{l-c_{1}} \alpha}\right)+\zeta_{M}^{j}\left(\zeta_{f}^{r \alpha}+\zeta_{f}^{r_{1}+1} \alpha\right. \\
& +\ldots+\zeta_{M}^{j\left(1+s_{1}+\ldots+s_{1}^{i-1}\right)}\left(\zeta_{f}^{r^{i} \alpha}+\zeta_{f}^{r^{c_{1}+i} \alpha}+\ldots+\zeta_{f}^{r^{l-c_{1}+1} \alpha}\right) \\
& +\ldots+\zeta_{M}^{j\left(1+s_{1}+\ldots+s_{1}^{c_{1}-1}\right)}\left(\zeta_{f}^{r_{1}^{c_{1}-1} \alpha}+\zeta_{f}^{r^{2 c_{1}-1} \alpha}+\ldots+\zeta_{f}^{r^{l-1} \alpha}\right)
\end{aligned}
$$

since $t=1$. Further, any sum $\zeta_{f}^{r^{i} \alpha}+\zeta_{f}^{r^{c_{1}+i} \alpha}+\ldots+\zeta_{f}^{r^{l-c_{1}+i} \alpha}$ which appears is the trace $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{f}\right) / W}\left(\zeta_{f}^{r^{i} \alpha}\right)$ since $\operatorname{ord}_{f} r^{c_{1}}=b / d_{1}=l / c_{1}$. By hypothesis $\left\{1, \zeta_{M}^{j}, \ldots, \zeta_{M}^{j\left(1+s_{1}+\ldots+s_{1}^{c_{1}-2}\right)}\right\}$ is linearly independent over W, so a sum $\omega_{j, \alpha_{1}}+\ldots+\omega_{j, \alpha_{n}}$ is zero if and only if the corresponding sum $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{f}\right) / W}\left(\zeta_{f}^{\alpha_{1}}+\ldots+\zeta_{f}^{\alpha_{n}}\right)$ is zero. This yields the theorem's assertion about the count $b_{m, j}(n)$. When $d_{1}=1, W=K$ so the last statement of the theorem readily follows.

The following corollary is immediate in view of Propositions 4 and 5 of [5].

Corollary 1. Suppose $\left\{1, \zeta_{M}, \zeta_{M}^{1+s_{1}}, \ldots, \zeta_{M}^{1+s_{1}+\ldots+s_{1}^{c_{1}-2}}\right\}$ is linearly independent over $\mathbb{Q}\left(\zeta_{f}\right)$ with $t=1$ in (18). Put $\lambda=b / \operatorname{gcd}\left(b, c_{1}\right)$. Then for $f=\ell$ a prime,

$$
b_{m, j}(n)= \begin{cases}\lambda^{n(\ell-1) / \ell} \frac{n!}{(n / \ell)!((\lambda n / \ell)!)^{(\ell-1) / \lambda}} & \text { if } \ell \mid n \\ 0 & \text { otherwise }\end{cases}
$$

For $f=4, b_{m, j}(n)=\binom{2 n}{n}$ if $\lambda=2$; otherwise if $\lambda=1$,

$$
b_{m, j}(n)= \begin{cases}\binom{n}{n / 2}^{2} & \text { if } 2 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

I note that Example 1 of the previous section illustrates the above corollary when $f=4$ and $\lambda=1$.

Consider again the prime P that appeared in the proof of Proposition 2 through which the finite field extension $\mathbb{F}_{p^{l}} / \mathbb{F}_{p}$ is identified as the residue field extension at p for the extension $L=\mathbb{Q}\left(\zeta_{f}, \zeta_{M}\right)$. Recall the identification was made in such a way that $g^{(q-1) / M}$ corresponds to $\zeta_{M}^{R_{1}}$ modulo P, with k-prime \widehat{p} lying between P and p.

The next result concerns the special case when $K=\mathbb{Q}$ or $K=\mathbb{Q}\left(\zeta_{f}\right)$.
Corollary 2. Suppose $\operatorname{ord}_{f} r=1$ or $\phi(f)$ with $\operatorname{gcd}\left(b, c_{1}\right)=1, p \nmid a$ and $t=1$ in (18). Then

$$
\begin{align*}
& \Phi^{(j \delta / m)}(x) \tag{19}\\
& = \begin{cases}\Phi^{(\delta)}(x) & \text { if } \widehat{p} \text { is prime to } 1+\zeta_{M}^{j}+\ldots+\zeta_{M}^{j\left(1+s_{1}+\ldots+s_{1}^{c_{1}-2}\right)} \\
(x-f)^{e / \delta} & \text { otherwise. }\end{cases}
\end{align*}
$$

The proof of the above corollary follows from that of Theorem 3, once one observes that the counting functions $t_{j \delta / m}(n)$ and $t_{\delta}(n)$ are identical here when \hat{p} is prime to $1+\zeta_{M}^{j}+\ldots+\zeta_{M}^{j\left(1+s_{1}+\ldots+s_{1}^{c_{1}-2}\right)}$. Formula (19) exactly determines the factor $\Phi^{(j \delta / m)}(x)$ when $f=2$ or $f=4$ with $r=3$, since in these cases closed form expressions are known [6] for the last factor $\Phi^{(\delta)}(x)$.

I also note that if $\operatorname{gcd}(s-1, m)=1$ then the condition in (19) can be checked working solely in k. One need only check if \widehat{p} divides the trace $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{M}\right) / k}\left(\zeta_{M}^{j u}\right)$, where u satisfies $u\left(s_{1}-1\right) \equiv 1(\bmod M)$. This is a consequence of the following observation.

Lemma 1. Suppose u is an integer satisfying $u\left(s_{1}-1\right) \equiv 1(\bmod M)$. Then

$$
\zeta_{M}^{1+s_{1}+\ldots+s_{1}^{i}+u}=\zeta_{M}^{u s_{1}^{i+1}} \quad \text { for } i \geq 0
$$

The proof of Lemma 1 involves a straightforward induction argument which I shall omit here. To illustrate Corollary 2 and the above remark consider the following example.

Example 3. Let $f=4$ and $m=11$ with $r=s=3$ and $q=p^{10}$. Here $R=2$ so $m_{1}=R_{1}=1$ and $s_{1}=s$. Also, $b=c_{1}=c=2, e / \delta=(p-1) / 2$, $K=\mathbb{Q}$ and $k^{\prime}=k=\mathbb{Q}(\sqrt{-11})$, and $t=1$ in (18). Then

$$
\begin{aligned}
\omega_{j, \alpha} & =\left(\zeta_{4}^{\alpha}+\zeta_{4}^{-\alpha}\right)\left(1+\zeta_{11}^{j}+\zeta_{11}^{4 j}+\zeta_{11}^{2 j}+\zeta_{11}^{7 j}\right) \\
& =\left(\zeta_{4}^{\alpha}+\zeta_{4}^{-\alpha}\right) \zeta_{11}^{-5 j} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{11}\right) / \mathbb{Q}(\sqrt{-11})}^{6 j} \zeta_{11}^{6 j} \\
& =\left(\zeta_{4}^{\alpha}+\zeta_{4}^{-\alpha}\right) \zeta_{11}^{-5 j}\left(\frac{-1 \pm \sqrt{-11}}{2}\right)
\end{aligned}
$$

according as j is a quadratic non-residue or residue modulo 11. By Corollary 2 and Proposition 6 of $[7]$, each finite field $\mathbb{F}_{p^{10}}$, where the prime $p \neq 3$ satisfies $p \equiv 3(\bmod 44)$, has a period polynomial $\Phi(x)$ in (3) with factors

$$
\Phi^{(j \delta / 11)}(x)=\sum_{v=0}^{(p-1) / 2}(-1)^{v}\binom{p-v-1}{v} x^{(p-1) / 2-v} \quad \text { for } 1 \leq j \leq 10 .
$$

For the exceptional prime $p=3$, the corresponding period polynomial has half of its factors $\Phi^{(j \delta / 11)}(x)(1 \leq j \leq 10)$ equal to $x-1$ and half equal to $x-4$.
4. The case $t=M$. Keeping the notation of the previous sections and requiring that $d=1$ in (11), I now assume $t=M$ in (18), or equivalently that $s_{1}=1$. Then $M \mid b$ from (11) since $l=b$.

I begin with a preliminary observation concerning the factorization of $\Phi^{(j \delta / m)}(x)$.

Proposition 3. $\Phi^{(j \delta / m)}(x)$ has at least $m / \operatorname{gcd}(r-1, f)$ identical factors when $s=1$.

Proof. I shall apply Proposition 5 of [4] to the situation here, where $e=\frac{p-1}{\operatorname{gcd}(p-1, f)} \delta$. Since $m \mid p-1$ and $\operatorname{gcd}(j, m)=1$, one finds that $\Phi^{(j \delta / m)}(x)$ has at least

$$
\begin{aligned}
\frac{e}{\operatorname{gcd}(e,(p-1) j \delta / m)} & =\frac{(p-1) \delta / \operatorname{gcd}(p-1, f)}{(p-1) \delta / m} \\
& =\frac{m}{\operatorname{gcd}(p-1, f)} \quad \text { or } \quad \frac{m}{\operatorname{gcd}(r-1, f)}
\end{aligned}
$$

factors.
For the most part, the results described in this section are seen to depend on facts concerning ordinary Gauss sums of order m defined modulo an odd prime $\ell \equiv 1(\bmod m)$. Such sums have the form

$$
\begin{equation*}
\tau_{\alpha}(\chi)=\sum_{x=1}^{\ell-1} \chi(x) \zeta_{\ell}^{\alpha x} \tag{20}
\end{equation*}
$$

for some integer α, where χ is a numerical character of order m modulo ℓ. Of particular interest here is the situation when r is a primitive root of f (so $b=\phi(f)$), or equivalently $K=\mathbb{Q}$, where the $\omega_{j, \alpha}$ in (14) are just integer multiples of the Gauss sums in (20) for some fixed character χ. Here and throughout the remainder of this section I assume $m>1$. The following lemma explicitly gives $\omega_{j, \alpha}$ for the cases $f=\ell^{\nu}$ and $2 \ell^{\nu}$, where ℓ is an odd prime. I note that since $p \equiv 1(\bmod M)$ and $l=\ell^{\nu-1}(\ell-1), M$ must actually divide $\ell-1$ from (11). (Otherwise if $\ell \mid M$ then $r \equiv p \equiv 1(\bmod \ell)$ is not a primitive root of f.) But then $\operatorname{gcd}(m, R)=1$ so $m_{1}=1$ and $R_{1}=R$.

Lemma 2. Suppose $K=\mathbb{Q}$ and $s=1$ with $m \mid \ell-1$. For $f=\ell^{\nu}$,

$$
\omega_{j, \alpha}= \begin{cases}\ell^{\nu-1} \tau_{\alpha}(\chi) & \text { if } \ell^{\nu-1} \| \alpha \\ 0 & \text { otherwise }\end{cases}
$$

For $f=2 \ell^{\nu}$,

$$
\omega_{j, \alpha}= \begin{cases}\ell^{\nu-1} \tau_{\alpha}(\chi) & \text { if } \ell^{\nu-1} \| \alpha \text { with } \alpha \text { even }, \\ -\ell^{\nu-1} \tau_{\left(\ell^{\nu}+1\right) \alpha / 2}(\chi) & \text { if } \ell^{\nu-1} \| \alpha \text { with } \alpha \text { odd }, \\ 0 & \text { otherwise }\end{cases}
$$

Here χ is the character induced by setting $\chi(r)=\zeta_{m}^{j}$.
The proof of the lemma involves routine manipulations with Gauss sums so I omit it here. Since $\tau_{r^{i}}(\chi)=\zeta_{m}^{-i j} \tau_{1}(\chi)$, the non-zero $\omega_{j, \alpha}$ in the lemma are equal up to multiplication by a root of unity. In fact, one readily sees that there are $(\ell-1) / m$ occurrences of each possible value $\ell^{\nu-1} \zeta_{m}^{w} \tau_{1}(\chi)(0 \leq$ $w<m)$, and also of $-\ell^{\nu-1} \zeta_{m}^{w} \tau_{1}(\chi)(0 \leq w<m)$ if $f=2 \ell^{\nu}$.

Now define a counting function $b_{m}(i)$ by setting $b_{m}(0)=1$, and for $i>0$, let $b_{m}(i)$ count the number of times a sum of $i m$ th roots of unity equals zero. One finds the following formulas for the counting function $b_{m, j}(n)$ in terms of the values $b_{m}(i)$.

Proposition 4. Suppose $K=\mathbb{Q}$ and $s=1$ with $m \mid \ell-1$. For $f=\ell^{\nu}$,

$$
b_{m, j}(n)=\sum_{i=0}^{n}\binom{n}{i} b_{m}(i)\left(\frac{\ell-1}{m}\right)^{i}\left(\ell^{\nu}-\ell+1\right)^{n-i} .
$$

For $f=2 \ell^{\nu}$,

$$
b_{m, j}(n)= \begin{cases}\sum_{i=0}^{n}\binom{n}{i} b_{2 m}(i)\left(\frac{\ell-1}{m}\right)^{i}\left(2\left(\ell^{\nu}-\ell+1\right)\right)^{n-i} & \text { if } m \text { odd }, \\ 2^{n} \sum_{i=0}^{n}\binom{n}{i} b_{m}(i)\left(\frac{\ell-1}{m}\right)^{i}\left(\ell^{\nu}-\ell+1\right)^{n-i} & \text { if } m \text { even } .\end{cases}
$$

Proof. In view of the remark prior to stating this proposition and the fact that $\tau_{1}(\chi) \neq 0$ here, the number of times a sum $\omega_{j, \alpha_{1}}+\ldots+\omega_{j, \alpha_{n}}$ equals zero for which i of the values $\omega_{j, \alpha}$ are non-zero and the remaining $n-i$ values are zero equals

$$
\binom{n}{i}\left(\frac{\ell-1}{m}\right)^{i} b_{m}(i)\left(\ell^{\nu}-\ell+1\right)^{n-i} \quad \text { if } f=\ell^{\nu}
$$

If $f=2 \ell^{\nu}$, then this number is

$$
\binom{n}{i}\left(\frac{\ell-1}{m}\right)^{i} b_{2 m}(i)\left(2\left(\ell^{\nu}-\ell+1\right)\right)^{n-i} \quad \text { when } m \text { is odd, }
$$

and

$$
\binom{n}{i}\left(\frac{2(\ell-1)}{m}\right)^{i} b_{m}(i)\left(2\left(\ell^{\nu}-\ell+1\right)\right)^{n-i} \quad \text { when } m \text { is even. }
$$

In each case, this yields the desired expressions for $b_{m, j}(n)$.
Now let $B_{m}(X)=\exp \left(-\sum_{n=1}^{\infty} b_{m}(n) X^{n} / n\right)$, which is the "integral" power series introduced by Gupta and Zagier in [2]. The formulas for the $b_{m, j}(n)$ in the above proposition yield explicit expressions for the corresponding power series (17) in terms of the series $B_{m}(X)$.

Proposition 5. Suppose $K=\mathbb{Q}$ and $s=1$ with $m \mid \ell-1$. For $f=\ell^{\nu}$,

$$
C_{m, j}(X)=\left(1-\left(\ell^{\nu}-\ell+1\right) X\right) B_{m}\left(\frac{(\ell-1) X / m}{1-\left(\ell^{\nu}-\ell+1\right) X}\right)
$$

For $f=2 \ell^{\nu}$,
$C_{m, j}(X)$

$$
= \begin{cases}\left(\left(1-2\left(\ell^{\nu}-\ell+1\right) X\right) B_{2 m}\left(\frac{(\ell-1) X / m}{1-2\left(\ell^{\nu}-\ell+1\right) X}\right)\right)^{1 / 2} & \text { if } m \text { odd } \\ \left(\left(1-2\left(\ell^{\nu}-\ell+1\right) X\right) B_{m}\left(\frac{2(\ell-1) X / m}{1-2\left(\ell^{\nu}-\ell+1\right) X}\right)\right)^{1 / 2} & \text { if } m \text { even }\end{cases}
$$

Proof. I consider only the case $f=\ell^{\nu}$ here, since the argument when $f=2 \ell^{\nu}$ is similar. For $f=\ell^{\nu}$, one obtains

$$
\frac{b_{j, m}(n)}{((\ell-1) / m)^{n}}=\sum_{i=0}^{n}\binom{n}{i} b_{m}(i)\left(\frac{\ell^{\nu}-\ell+1}{(\ell-1) / m}\right)^{n-i}
$$

from Proposition 4. Thus, from (17), $-\ln C_{m, j}\left(\frac{m X}{\ell-1}\right)$ equals

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{b_{m, j}(n)}{((\ell-1) / m)^{n}} X^{n} / n \\
& \quad=-\sum_{n=1}^{\infty} \sum_{i=0}^{n}\left(\frac{\ell^{\nu}-\ell+1}{(\ell-1) / m}\right)^{n-i}\binom{n}{i} b_{m}(i) X^{n} / n \\
& \quad=-\sum_{n=1}^{\infty}\left(\frac{\ell^{\nu}-\ell+1}{(\ell-1) / m} X\right)^{n} / n-\sum_{i=1}^{\infty} b_{m}(i) X^{i} \sum_{n=1}^{\infty}\left(\frac{\ell^{\nu}-\ell+1}{(\ell-1) / m} X\right)^{n-i}\binom{n}{i} / n \\
& \quad=\ln \left(1-\frac{\ell^{\nu}-\ell+1}{(\ell-1) / m} X\right)-\sum_{i=1}^{\infty} b_{m}(i) X^{i}\left(1-\frac{\ell^{\nu}-\ell+1}{(\ell-1) / m} X\right)^{-i} / i \\
& \quad=\ln \left(1-\frac{\ell^{\nu}-\ell+1}{(\ell-1) / m} X\right)+B_{m}\left(X /\left(1-m X\left(\ell^{\nu}-\ell+1\right) /(\ell-1)\right)\right)
\end{aligned}
$$

since $R / f=1$ here. Replacing X by $\frac{\ell-1}{m} X$ yields the desired formula.

For $d \mid p-1$, let $f_{d}(x)$ denote the minimal polynomial for the ordinary cyclotomic period $\zeta_{p}^{z}+\ldots+\zeta_{p}^{z^{d}}$, where z generates $\left(\mathbb{F}_{p}^{*}\right)^{(p-1) / d}$. Propositions 4 and 5 suggest that the factor $\Phi^{(j \delta / m)}(x)$ is related to the ordinary period polynomial $f_{m}(x)$ (or $f_{2 m}(x)$ when $f=2 \ell^{\nu}$ with m odd). Indeed this is seen to be the case.

Theorem 4. Suppose $K=\mathbb{Q}$ and $s=1$ with $m \mid \ell-1$ and $f=\ell^{\nu}$ or $2 \ell^{\nu}$. If $p \left\lvert\, \frac{a}{b}\right.$ then $\Phi^{(j \delta / m)}(x)=(x-f)^{e / \delta}$ else
$\Phi^{(j \delta / m)}$
$= \begin{cases}\left(\frac{\ell-1}{m}\right)^{p-1} f_{m}\left(\frac{m}{\ell-1}\left(X-\left(\ell^{v}-\ell+1\right)\right)\right)^{m} & \text { if } f=\ell^{\nu}, \\ \left(\frac{\ell-1}{m}\right)^{(p-1) / 2} f_{2 m}\left(\frac{m}{\ell-1}\left(X-2\left(\ell^{\nu}-\ell+1\right)\right)\right)^{m} & \text { if } f=2 \ell^{\nu}, m \text { odd }, \\ \left(\frac{2(\ell-1)}{m}\right)^{(p-1) / 2} f_{m}\left(\frac{m}{2(\ell-1)}\left(X-2\left(\ell^{\nu}-\ell+1\right)\right)\right)^{m / 2} \\ \text { if } f=2 \ell^{\nu}, m \text { even. }\end{cases}$
Proof. First note that the element $g^{\delta / m}$ has order $m R(p-1)$ dividing $p^{b}-1$ since $p \equiv 1(\bmod m), m|\ell-1| b$ and $R=\ell^{\nu}$ here. Thus each of the traces $\operatorname{Tr} g^{j \delta / m} x=0$ for $x \in C_{e}$ if $p \left\lvert\, \frac{a}{b}\right.$, so $t_{j \delta / m}(n)=f^{n}(n>$ $0)$ and hence $\Phi^{(j \delta / m)}(x)=(x-f)^{e / \delta}$ in that case. So suppose $p \nmid \frac{a}{b}$. In view of Proposition 3, it is enough to show in this case that $\eta_{j \delta / m}$ is a conjugate of $\left(\ell^{\nu}-\ell+1\right)+\frac{\ell-1}{m}\left(\zeta_{p}^{z}+\ldots+\zeta_{p}^{z^{m}}\right)$ if $f=\ell^{\nu}$ or a conjugate of $2\left(\ell^{\nu}-\ell+1\right)+\frac{\ell-1}{m}\left(\zeta_{p}^{z}+\ldots+\zeta_{p}^{z^{m}}+\zeta_{p}^{-z}+\ldots+\zeta_{p}^{-z^{m}}\right)$ if $f=2 \ell^{\nu}$, where z has order m modulo $p-1$.

For this purpose, I employ the formula from Proposition 4 of [4] to compute $\eta_{j \delta / m}$ here, based on certain counts concerning the non-zero values among the traces $\operatorname{Tr} g^{e y+j \delta / m}(1 \leq y \leq R)$. In particular, let N count the number of non-zero values among $\operatorname{Tr} g^{e y+j \delta / m}(1 \leq y \leq R)$ and n_{t} count the number of times $\operatorname{Tr} g^{e y+j \delta / m}$ for $1 \leq y \leq R$ lies in the $\operatorname{coset} G^{t}\left(\mathbb{F}_{p}^{*}\right)^{e / \delta}$ $(1 \leq t \leq e / \delta)$, where $G=g^{(q-1) /(p-1)}$. Then

$$
\begin{equation*}
\eta_{j \delta / m}=\delta(p-1)(R-N) / e+\sum_{t=1}^{e / \delta} n_{t} \psi_{t} \tag{21}
\end{equation*}
$$

where $\psi_{t}=\zeta_{p}^{G^{t}}+\zeta_{p}^{G^{t+e / \delta}}+\ldots+\zeta_{p}^{G^{t+p-1-e / \delta}}$ is an ordinary cyclotomic period of order e / δ. To determine the counts N and n_{t} for the situation at hand, first write $R v+(e / \delta) m u=1$ for integers u and v as in the remark preceding (13), recalling that $m_{1}=1$ and $R_{1}=R$ here. Then $\delta / m=e u+(\delta R / m) v$, so
that $g^{e y+j \delta / m}=g^{e y^{\prime}+j \delta R v / m}$ where $y^{\prime}=y+j u$. Without loss of generality one may use the traces $\operatorname{Tr} g^{j \delta R v / m+e y^{\prime}}\left(1 \leq y^{\prime} \leq R\right)$ instead to find N and n_{t}. Now $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p^{\ell-1}}} g^{j \delta R v / m+e y^{\prime}}=\frac{a}{b} G^{j v / m} \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p^{\ell-1}}} g^{e y^{\prime}}=0$ if $\ell^{\nu-1} \nmid y^{\prime}$, since $g^{j \delta R v / m}=G^{j v / m}$ lies in $\mathbb{F}_{p^{\ell-1}}$ and g^{e} is a primitive f-root of unity. In particular, the proof of the theorem when $p \nmid \frac{a}{b}$ is reduced to the case $\nu=1$ where $a=b=\ell-1$. For this case one has traces
$\operatorname{Tr}_{\mathbb{F}_{p^{\ell-1}} / \mathbb{F}_{p}} G^{j v / m} g^{e y^{\prime}}=G^{j v / m} g^{e y^{\prime}}+G^{j v p / m} g^{e p y^{\prime}}+\ldots+G^{j v p^{\ell-1} / m} g^{e p^{\ell-1} y^{\prime}}$ or

$$
\begin{equation*}
G^{j v / m}\left[g^{e y^{\prime}}+G^{\frac{p-1}{m} j v} g^{e p y^{\prime}}+\ldots+G^{\frac{p-1}{m} j v(\ell-1)} g^{e p^{\ell-1} y^{\prime}}\right] \tag{22}
\end{equation*}
$$

for $1 \leq y^{\prime} \leq \ell$ since $p \equiv 1(\bmod m)$. Taking g^{e} as ζ_{f}^{μ} and $G^{(p-1) / m}=$ $g^{(q-1) / m}$ as ζ_{m}^{R} modulo P in the residue field of $L=\mathbb{Q}\left(\zeta_{f}, \zeta_{m}\right)$ for some L-prime P lying above p as in the proof of Proposition 2, one identifies the bracketed expression in (22) as the Gauss sum

$$
\begin{equation*}
\zeta_{f}^{\mu y^{\prime}}+\zeta_{m}^{R j v} \zeta_{f}^{\mu p y^{\prime}}+\ldots+\zeta_{m}^{R j v(\ell-1)} \zeta_{f}^{\mu p^{\ell-1} y^{\prime}} \tag{23}
\end{equation*}
$$

If $f=\ell$, the sum (23) is just $\tau_{\mu y^{\prime}}\left(\chi^{j}\right)$ in (20), with χ determined by the condition $\chi(p)=\zeta_{m}^{R v}$. A routine calculation now shows that the trace values in (22) consist of one zero and $(\ell-1) / m$ repetitions of each of the non-zero values $G^{j v / m} \tau_{\mu}\left(\chi^{j}\right), G^{(j v-(p-1)) / m} \tau_{\mu}\left(\chi^{j}\right), \ldots, G^{(j v-(m-1)(p-1)) / m} \tau_{\mu}\left(\chi^{j}\right)$ in this case, so

$$
\eta_{j \delta / m}=1+\frac{\ell-1}{m}\left(\zeta_{p}^{\lambda}+\zeta_{p}^{\lambda G^{-(p-1) / m}}+\ldots+\zeta_{p}^{\lambda G^{-(m-1)(p-1) / m}}\right)
$$

in (21) where $\lambda=G^{j v / m} \tau_{\mu}\left(\chi^{j}\right)$ in \mathbb{F}_{p}. The conclusion of the theorem now follows when $f=\ell$ (and more generally when $f=\ell^{\nu}$).

For $f=2 \ell$, the sum (23) equals $\tau_{\mu y^{\prime} / 2}\left(\chi^{j}\right)$ in (20) if y^{\prime} is even, and $-\tau_{\mu\left(y^{\prime}+\ell\right) / 2}\left(\chi^{j}\right)$ if y^{\prime} is odd. A routine calculation shows that the trace values in (22) consist of one zero and $(\ell-1) / m$ repetitions from each of the cosets $\pm G^{j v / m} \tau_{\mu}\left(\chi^{j}\right), \pm G^{(j v-(p-1)) / m} \tau_{\mu}\left(\chi^{j}\right), \ldots, \pm G^{(j v-(m-1)(p-1)) / m} \tau_{\mu}\left(\chi^{j}\right)$ of $\mathbb{F}_{p}^{*} /(\pm 1)$. (Note that when m is even, each coset listed actually appears twice since $G^{(p-1) / 2}=-1$.) Since $e / \delta=(p-1) / 2, \psi_{t}=\zeta_{p}^{G^{t}}+\zeta_{p}^{-G^{t}}$ in (21) in this case, so

$$
\begin{aligned}
\eta_{j \delta / m}= & 2+\frac{\ell-1}{m}\left(\zeta_{p}^{\lambda}+\zeta_{p}^{-\lambda}+\zeta_{p}^{\lambda G^{-(p-1) / m}}+\zeta_{p}^{-\lambda G^{-(p-1) / m}}\right. \\
& \left.+\ldots+\zeta_{p}^{\lambda G^{-(m-1)(p-1) / m}}+\zeta_{p}^{-\lambda G^{-(m-1)(p-1) / m}}\right)
\end{aligned}
$$

from (21) where $\lambda=G^{j v / m} \tau_{\mu}\left(\chi^{j}\right)$ in \mathbb{F}_{p}. The conclusion of the theorem now holds when $f=2 \ell$ (and more generally when $f=2 \ell^{\nu}$), regardless of the parity of m.

The above result generalizes Corollary 1 of [7] where the case $m=2$ is considered. There the middle factor $\Phi^{(\delta / 2)}(x)$ is determined explicitly since $f_{2}(x)$ is given by (10).

References

[1] Z. Borevich and I. Shafarevich, Number Theory, Academic Press, New York, 1966.
[2] S. Gupta and D. Zagier, On the coefficients of the minimal polynomial of Gaussian periods, Math. Comp. 60 (1993), 385-398.
[3] S. Gurak, Minimal polynomials for Gauss circulants and cyclotomic units, Pacific J. Math. 102 (1982), 347-353.
[4] -, Factors of period polynomials for finite fields, II, in: Contemp. Math. 168, Amer. Math. Soc., 1994, 127-138.
[5] -, On the last factor of the period polynomial for finite fields, Acta Arith. 71 (1995), 391-400.
[6] -, On the minimal polynomials for certain Gauss periods over finite fields, in: Finite Fields and their Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, 1996, 85-96.
[7] -, On the middle factor of the period polynomial for finite fields, CMR Proceedings and Lecture Notes 19 (1999), 121-131.
[8] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith. 39 (1981), 251-264.

Department of Mathematics and Computer Science
University of San Diego
San Diego, CA 92110-2492, U.S.A.
E-mail: gurak@pwa.acusd.edu

