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1. Introduction. Let q = pa be a power of a prime, and e and f
positive integers such that ef +1 = q. Let Fq denote the field of q elements,
F∗q its multiplicative group and g a fixed generator of F∗q . Let Tr : Fq → Fp

be the usual trace map and set ζm = exp(2πi/m) for any positive integer
m. Put

δ = gcd
(
q − 1
p− 1

, e

)
and R =

q − 1
δ(p− 1)

=
f

gcd(p− 1, f)
,

and let Ce denote the group of eth powers in F∗q . The Gauss periods are

(1) ηj =
∑

x∈Ce

ζTr gjx
p (1 ≤ j ≤ e)

and satisfy the period polynomial

(2) Φ(x) =
e∏

j=1

(x− ηj).

G. Myerson [8] showed that Φ(x) splits over Q into δ factors

(3) Φ(x) =
δ∏

w=1

Φ(w)(x),

where

(4) Φ(w)(x) =
e/δ−1∏
k=0

(x− ηw+kδ) (1 ≤ w ≤ δ).

The coefficients ar = ar(w) of the factor

(5) Φ(w)(x) = xe/δ + a1x
e/δ−1 + . . .+ ae/δ,
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or equivalently of

(6) F (w)(X) = Xe/δΦ(w)(X−1) = 1 + a1X + . . .+ ae/δX
e/δ,

are expressed in terms of the symmetric power sums

(7) Sn = Sn(w) =
e/δ−1∑
k=0

(ηw+kδ)n (n ≥ 0)

through Newton’s identities

(8) Sr + a1Sr−1 + . . .+ ar−1S1 + rar = 0 (1 ≤ r ≤ e/δ).

If tw(n) counts the number of n-tuples (x1, . . . , xn) with xi ∈ Ce (1 ≤ i ≤ n)
for which Tr(gw(x1 + . . .+ xn)) = 0, then Sn(w) can be computed using

(9) Sn(w) = (ptw(n)− fn)/gcd(p− 1, f).

In the classical case q = p (so δ = 1), Gauss showed that Φ(x) is irre-
ducible over Q and determined the polynomial for small values of e and f .
For f = 2, he showed (see [3]) that the coefficients of Φ(x) = Φ(δ)(x) in (5)
are given by

(10) av = (−1)[v/2]

(
[(p− 1− v)/2]

[v/2]

)
(1 ≤ v ≤ e = (p− 1)/2).

In 1982 I determined [3] how to compute the beginning coefficients for the
classical case when f > 2 is fixed. (See also [2].) In later work [5] I studied
the last factor Φ(δ)(x) when f is fixed, and showed that the beginning coef-
ficients of the factor Φ(δ)(x) can be computed in a fashion similar to those
of the period polynomial in the classical case q = p. Recently [7] I found
similar results for the middle factor Φ(δ/2)(x) when δ is even. The goal of
this current paper is to describe analogous results concerning the factors
Φ(w)(x), where w = jδ/m for m | δ, 1 ≤ j ≤ m and gcd(j,m) = 1. This
is done in the next section. Later in Sections 3 and 4, I give some explicit
formulas for the factors Φ(jδ/m)(x) and certain related counting functions.

2. The factors Φ(jδ/m)(x). Throughout the paper f > 1 is fixed with
specified odd reduced residue r modulo f , say with ordf r = b. Also fix
an integer m > 0, together with a specified reduced residue s modulo m
satisfying s ≡ r (mod gcd(f,m)), say with ordm s = c. In addition to
considering primes p ≡ r (mod f) and finite fields Fq with q = pa, I shall
also require that p ≡ s (mod m) and m | δ. All such primes p have common
decomposition fields K in Q(ζf ) and k in Q(ζm). (The field K is that
subfield of Q(ζf ) fixed by the action ζf → ζr

f ; similarly the field k is that
subfield of Q(ζm) fixed by the action ζm → ζs

m.) My goal here is to study
the factors Φ(jδ/m)(x) of the period polynomial Φ(x) in (3) with 1 ≤ j ≤ m
and gcd(j,m) = 1. While the relative order of the factors Φ(w)(x) in (3)
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depends on the choice of a generator g for F∗q , a different choice always
permutes the factors Φ(jδ/m)(x) among themselves. In addition, certain
duplication among the factors is predicted by Proposition 5 of [4]; namely,
Φ(sjδ/m)(x) = Φ(jδ/m)(x) since pjδ/m ≡ sjδ/m (mod δ). (Here I identify
Φ(w)(x) with Φ(w)(x) where w ≡ w (mod δ) for 1 ≤ w ≤ δ.)

Now write R = R1m1 where gcd(R1,m) = 1 and m1 |mn for sufficiently
large n. The factor R1 is the largest factor of R which is prime to m. There
are m1 distinct reduced residues s1 modulo M , where M = mm1, satisfying
s1 ≡ s (mod m). Select one such s1, say with ordM s1 = c1, and let k′

be the subfield of Q(ζM ) fixed by the action ζM → ζs1
M . Fixing j, with

1 ≤ j ≤ m and gcd(j,m) = 1, I now consider the factor Φ(jδ/m)(x) (relative
to the ordering determined by the chosen generator g for F∗q) for the finite
fields Fq with q = pa, p ≡ r (mod f), p ≡ s1 (mod M) and m | δ. First note
that δR = 1 + p+ . . .+ pa−1 ≡ 0 (mod M), so l = lcm(b, c) must divide a.
(In fact, lcm(b, c1) | a.) Since 1+p+ . . .+pb−1 ≡ 0 (mod R), one may write

(11) 1 + s1 + . . .+ sl−1
1 = µmm1/d,

where gcd(µ, d) = 1 and d |m with d > 0. Then set

(12) xi =
sli
1 − 1
s1 − 1

=
sl
1 − 1
s1 − 1

(1 + sl
1 + . . .+ s

l(i−1)
1 ) (i > 0).

The expression (11) uniquely determines d. Since sl
1 ≡ 1 (mod m), from

(11) one sees that xi ≡ ix1 ≡ iµm1m/d ≡ 0 (mod M) if and only if d | i. In
particular, as M | δR one finds that ld | a.

Next note that since R1 is relatively prime to both e/δ and M , one can
express R1v+(e/δ)Mu=1 for integers v and u. Thus gjδ/m=gjδRv/M+ejum1 ,
so the values Tr gjδ/mx (x ∈ Ce) have the form

yα = Tr gjδRv/M+eα

= gjδRv/M+eα + gjδRvp/M+peα + . . .+ gjδRvpa−1/M+pa−1eα

= hδR/M (geα + hδR(p−1)/Mgpeα + . . .+ hδR(pa−1−1)/Mgpa−1eα)

= hδR/M (geα + h(q−1)/Mgpeα + h(q−1)(1+p)/Mgp2eα

+ . . .+ h(q−1)(1+p+...+pa−2)/Mgpa−1eα)

for 0 ≤ α < f , where h = gjv. Since hδR/M 6= 0, the function tjδ/m(n) in
(9) also counts the number of times a sum zα1 + . . . + zαn equals zero for
0 ≤ αi < f , where

(13) zα = geα + gjv(q−1)/Mgpeα + . . .+ gjv(q−1)(1+p+...+pa−2)/Mgpa−1eα.

The following proposition completely determines Φ(jδ/m)(x) when d > 1,
and generalizes the result of Proposition 1 of [7].

Proposition 1. If d > 1 then Φ(jδ/m)(x) = (x− f)e/δ.
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P r o o f. I assert that each zα is 0 in (13) so that tjδ/m(n) = fn for any
n > 0, and hence Φ(jδ/m)(x) = (x− f)e/δ from relations (8) and (9). Since
gjδRv/M has order M(p− 1) | pdl − 1 and ge has order f | pl − 1, each trace

yα = Tr gjδRv/M+eα =
a

dl
TrF

pdl/Fp
gjδRv/M+eα (0 ≤ α < f).

Thus to show each zα in (13) is zero, one may assume without loss of gen-
erality that a = dl. Now choose any 0 ≤ α < f . Note that in terms of r, s1
and xi,

zα = geα + tgreα + . . .+ t1+s1+...+sl−2
1 grl−1eα + tx1grleα + ts1x1+1grl+1eα

+ . . .+ ts
l−1
1 x1+1+s1+...+sl−2

1 gr2l−1eα + . . .+ txd−1grl(d−1)eα

+ ts1xd−1+1grl(d−1)+1eα + . . .+ ts
l−1
1 xd−1+1+s1+...+sl−2

1 grl(d−1)+l−1eα

= geα[1 + tx1 + . . .+ txd−1 ]

+ greαt[1+ ts1x1 + . . .+ ts1xd−1 ] + gr2eαt1+s1 [1 + ts
2
1x1 + . . .+ ts

2
1xd−1 ]

+ . . .+ grl−1eαt1+s1+...+sl−2
1 [1 + ts

l−1
1 x1 + . . .+ ts

l−1
1 xd−1 ]

in (13), where t = gjv(q−1)/M . Now each of the bracketed sums in the last
expression has the form 1 + gsλ

1 + g2sλ
1 + . . .+ g(d−1)sλ

1 with g = tx1 of order
d. Since d > 1 and gcd(s1,M) = 1 each of those sums is zero, so zα = 0 as
claimed.

In view of the above proposition, I shall assume d = 1 in (11) throughout
the remainder of the paper (so l = lcm(b, c) = lcm(b, c1) as c | c1 | l). To
generalize the results known for the middle and last factor [5, 7] here, it is
necessary to find a suitable counting function bj,m(n) which coincides with
tjδ/m(n) for almost all primes p ≡ r (mod f) and p ≡ s1 (mod M) with
m | δ. To this end, define algebraic integers ωj,α in Q(ζM , ζf ) by

(14) ωj,α = ζα
f + ζj

Mζrα
f + ζ

j(1+s1)
M ζr2α

f + . . .+ ζ
j(1+s1+...+sl−2

1 )

M ζrl−1α
f

for 0 ≤ α < f , and let bj,m(n) count the number of times one has

(15) ωj,α1 + . . .+ ωj,αn = 0

for 0 ≤ αi < f , 1 ≤ i ≤ n. I find that bj,m(n) is the desired counting
function.

Proposition 2. For all primes p ≡ r (mod f) and p ≡ s1 (mod M)
with m | δ

bm,j(n) ≤ tjδ/m(n) for n > 0.
Equality holds for any such prime p - a, except those lying in a computable
finite set ξj,n.

P r o o f. Since l = lcm(b, c1), one finds that lcm(f,M) divides pl − 1, so
the elements ge and g(q−1)/M lie in Fpl ⊆ Fq. In particular, one may identify
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Fpl/Fp as the residue field extension at p for the extension L = Q(ζf , ζM ).
By appropriately choosing the generator g, the identification can be made
such that g(q−1)/M corresponds to ζR1

M modulo P for some L-prime P lying
above p. With respect to this identification ge corresponds to a primitive f -
root of unity, say ζµ

f , for some integer µ prime to f . So zα in (13) corresponds
to (a/l)ωj,αµ modulo P , since R1v ≡ 1 (mod M). It follows that tjδ/m(n)
counts precisely the number of times one has

(16)
a

l
(ωj,α1 + . . .+ ωj,αn

) ≡ 0 (mod P )

for a choice of ωj,α in (14) where 0 ≤ α1, . . . , αn < f . In particular,
bm,j(n) ≤ tjδ/m(n) for n > 0. Equality holds for any prime p not divid-
ing a and for which P does not divide any of the non-zero right-hand sums
in (16). If p̂ is the k-prime lying between P and p, then the latter exception
is equivalently expressed by requiring that p 6∈ ξj,n, where ξj,n consists of
all rational primes p ≡ r (mod f) and p ≡ s (mod m) for which p̂ divides
some non-zero norm NL/k(ωj,α1 + . . .+ ωj,αn

) for a choice of ωj,α in (14).
This completes the proof of the proposition.

Now let h be the smallest positive integer for which bm,j(h) 6= 0. Using
(8), (9) and the above proposition, one may obtain the following general-
ization of Theorem 1 of [5]. Since the argument is identical to that used in
obtaining Theorem 1 of [5], I shall omit it here.

Theorem 1. For all primes p - a such that p ≡ r (mod f), p ≡ s1
(mod M) but p 6∈ ξj,n (n ≤ v), and d = 1 in (11), the coefficient av for
Φ(jδ/m)(x) in (5) (or F (jδ/m)(X) in (6)) satisfies av = ϑv(p), where ϑv is a
polynomial of degree [v/h].

Now consider the rational power series

(17) Cm,j(X) = exp
(
−R
f

∞∑
n=1

bm,j(n)Xn/n

)
defined in terms of the counting function bm,j(n). The argument in the
proof of Theorem 1 of [2] extends in a straightforward manner to yield

Theorem 2. For any v > 0 and prime p - a such that p ≡ r (mod f),
p ≡ s1 (mod M) but p 6∈ ξj,n (n ≤ v), and d = 1 in (11), we have

F (jδ/m)(X) ≡ Cm,j(X)p

(1− fX)R/f
(mod Xv+1)

in Z[[X]].

To illustrate Proposition 1 and Theorems 1 and 2 above, consider the
following examples.
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Example 1. Consider the case f = m = 4 with r = s = 3 so K = k = Q.
Here l = b = c = 2 with R = 2, R1 = 1 and m1 = 2. The possible choices
for s1 (mod M) with s1 ≡ s (mod m) are 3 and 7 (mod 8), each with
c1 = 2, but with d = 2 and 1, respectively, in (11). By Proposition 1,
Φ(δ/4)(x) = Φ(3δ/4)(x) = (x− 4)(p−1)/2 for the case p ≡ 3 (mod 8). For the
other case p ≡ 7 (mod 8), I illustrate Theorems 1 and 2 with q = p2. One
finds ωj,1 = −ωj,3 = i(1 − ζj

8) and ωj,0 = −ωj,2 = 1 + ζj
8 in (14) for this

case, where L = Q(ζ8) in the proof of Proposition 2 and k′ = Q(
√

2). The
corresponding counting functions b4,j(n) satisfy

b4,1(n) = b4,3(n) =


(
n

n/2

)2

if n is even,

0 otherwise,

so C4,1(X) = C4,3(X) = 1−X2 − 4X4 − 29X6 − 265X8 − . . . in (17). The
first few polynomial expressions for the beginning coefficients of Φ(δ/4)(x) =
Φ(3δ/4)(x) from Theorem 1 are found to be

ϑ1(p) = 2, ϑ2(p) = −p+ 6, ϑ3(p) = −2p+ 20,
ϑ4(p) = 1

2 (p2 − 21p+ 140), ϑ5(p) = p2 − 29p+ 252, . . .

The prime p = 7 first appears in thei exceptional sets ξ1,n = ξ3,n (n > 0),
when n = 3. Incidentally, one finds that 3 +

√
2 divides 2ω1,1 + ω1,0 and

2ω1,3+ω1,2 in L, while 3−
√

2 divides ω1,3+2ω1,0 and ω1,1+2ω1,2. Specifically,
for p = 7 (where δ = 4) one may take g = 2 + i to generate F∗49 with
g(q−1)/M = g6 ≡ 2i + 2 ≡ ζ8 (mod (3 +

√
2)) and ge = g12 ≡ i (mod (3 +√

2)), so zα ≡ ωj,α (mod (3+
√

2)) in (13). One computes t1(1) = t3(1) = 0,
t1(2) = t3(2) = 4 and t1(3) = t3(3) = 6 so Φ(1)(x) = Φ(3)(x) = x3+2x2−x−
1 from (8) and (9). As expected, the underscored coefficient a3 6= ϑ3(7) = 6.

Example 2. Now consider the case f = 3 and m = 5 with r = 2 and
s = 4 with q = p2. Here R = R1 = 3, m1 = 1, l = b = c = c1 = 2 and
δ = (p + 1)/3 with p ≡ 14 (mod 15). In addition, L = Q(ζ15), K = Q and
k = k′ = Q(

√
5), with d = 1 in (11) and ωj,α = ζα

3 + ζj
5ζ

2α
3 (1 ≤ j ≤ 4, 0 ≤

α ≤ 2) in (14). One finds Φ(δ/5)(x) = Φ(4δ/5)(x) and Φ(2δ/5)(x) = Φ(3δ/5)(x)
here. The function bm,j(n) is seen to satisfy

bm,j(n) =
{
n!/((n/3)!)3 if 3 |n,
0 otherwise,

for 1 ≤ j ≤ 4, so each Cm,j(X) = 1−2X3−9X6−158X9− . . . in (17). The
first few polynomial expressions for the beginning coefficients of Φ(jδ/m)(x)
from Theorem 1 are found to be

ϑ1(p) = 3, ϑ2(p) = 9, ϑ3(p) = −2p+ 27, ϑ4(p) = −6p+ 81,
ϑ5(p) = −18p+243, ϑ6(p) = 2p2+69p+729, ϑ7(p) = 6p2−207p+2187, . . .
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For p = 59 one may choose g = 2+ζ5 to generate F∗592 , so g(q−1)/m = g696 ≡
ζ3
5 modulo (8+

√
5) in Q(ζ5). For an appropriate choice of an L-prime P lying

above (8 +
√

5) one has ge = g1160 ≡ ζ3 (mod P ), so zα ≡ ωj,α (mod P ) in
(13). The prime 59 first appears in the exceptional sets ξ1,n = ξ4,n (n > 0)
when n = 4, but not in ξ2,n = ξ3,n (n > 0) until n = 7. In verifying this,
one finds

NL/k(3ω1,1 + ω1,2) = NL/k(3ω4,1 + ω4,2) = (8 +
√

5)2((1−
√

5)/2)2

and

NL/k(2ω2,0 + 5ω2,2) = NL/k(2ω3,0 + 5ω3,2) = (8 +
√

5)2((11 +
√

5)/2)2.

The relevant tjδ/m(n) = t4j(n) are tabulated below:

j\n 1 2 3 4 5 6 7
1 0 0 6 4 10 90 105
2 0 0 6 0 0 90 21
3 0 0 6 0 0 90 21
4 0 0 6 4 10 90 105

From (8) and (9) one now finds that Φ(4)(x) = Φ(16)(x) equals

x58 + 3x57 + 9x56 − 91x55 − 332x54 − 1114x53 + 2735x52 + 14282x51 + . . .

and Φ(8)(x) = Φ(12)(x) equals

x58 + 3x57 + 9x56 − 91x55 − 273x54 − 819x53 + 3620x52 + 10683x51 + . . .

The underscored coefficients deviate as expected from the pattern of the
beginning coefficients given by av = ϑv(p). Incidentally, it is convenient to
use the formula from Proposition 4 of [4] here. Further computation shows
that η4 and η16 are both conjugates of ζ1

59 + ζ2
59 + ζ−3

59 , while η8 and η12 are
conjugates of ζ2

59 + ζ3
59 + ζ−5

59 .

While Theorems 1 and 2 yield an elegant, formal way to obtain the be-
ginning coefficients of a factor Φ(jδ/m)(x), the approach is impractical since
the counting function bm,j(n) is difficult to compute in general. However,
there are several special situations where bm,j(n) can be readily determined,
which often lead to explicit formulas for Cm,j(X) and expressions for the
beginning coefficients of Φ(jδ/m)(x). In describing these situations, it is
convenient to express

(18) 1 + s1 + . . .+ sc1−1
1 =

uM

t

where gcd(u, t) = 1 and t |M with t > 0. The expression (18) uniquely
determines t. For the sake of brevity, the specific cases I investigate in the
next sections are for t = 1 and t = M . The intermediate cases when t is a
proper divisor of M are less manageable, though they may be handled in a
similar, albeit more tedious, fashion.
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3. The case t = 1. I retain the notation of the previous section,
requiring again that d = 1 in (11), but assume now that t = 1 in (18).
I shall assume here that ordM s1 = c1 > 1 since t = M in (18) if c1 = 1.
The results I describe primarily rely on some knowledge about the set

{1, ζM , ζ1+s1
M , . . . , ζ

1+s1+...+s
c1−2
1

M } in Q(ζM ). The first is

Theorem 3. Let W be the subfield of Q(ζf ) fixed by the action ζf →
ζrgcd(b,c1)

f . Suppose {1, ζM , ζ1+s1
M , . . . , ζ

1+s1+...+s
c1−2
1

M } is linearly independent
over W with t = 1 in (18). Then bm,j(n) counts the number of times
TrQ(ζf )/W (x1 + . . . + xn) is zero for a choice of f-roots of unity x1, . . . , xn

lying in Q(ζf ). (In particular , if gcd(b, c1) = 1 then bm,j(n) = βK(n), the
counting function given for the last factor Φ(δ)(x) in [5].)

P r o o f. Put d1 = gcd(b, c1). Without loss of generality, one may assume
a = l. Then, in (14),

ωj,α = (ζα
f + ζrc1α

f + . . .+ ζrl−c1α
f ) + ζj

M (ζrα
f + ζrc1+1α

f + . . .+ ζrl−c1+1α
f )

+ . . .+ ζ
j(1+s1+...+si−1

1 )

M (ζriα
f + ζrc1+iα

f + . . .+ ζrl−c1+iα
f )

+ . . .+ ζ
j(1+s1+...+s

c1−1
1 )

M (ζrc1−1α
f + ζr2c1−1α

f + . . .+ ζrl−1α
f )

since t = 1. Further, any sum ζriα
f + ζrc1+iα

f + . . . + ζrl−c1+iα
f which ap-

pears is the trace TrQ(ζf )/W (ζriα
f ) since ordf r

c1 = b/d1 = l/c1. By hy-

pothesis {1, ζj
M , . . . , ζ

j(1+s1+...+s
c1−2
1 )

M } is linearly independent over W , so
a sum ωj,α1 + . . . + ωj,αn

is zero if and only if the corresponding sum
TrQ(ζf )/W (ζα1

f + . . . + ζαn

f ) is zero. This yields the theorem’s assertion
about the count bm,j(n). When d1 = 1, W = K so the last statement
of the theorem readily follows.

The following corollary is immediate in view of Propositions 4 and 5
of [5].

Corollary 1. Suppose {1, ζM , ζ1+s1
M , . . . , ζ

1+s1+...+s
c1−2
1

M } is linearly in-
dependent over Q(ζf ) with t = 1 in (18). Put λ = b/gcd(b, c1). Then for
f = ` a prime,

bm,j(n) =

λn(`−1)/` n!
(n/`)!((λn/`)!)(`−1)/λ

if ` |n,

0 otherwise.
For f = 4, bm,j(n) =

(
2n
n

)
if λ = 2; otherwise if λ = 1,

bm,j(n) =


(
n

n/2

)2

if 2 |n,

0 otherwise.
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I note that Example 1 of the previous section illustrates the above corol-
lary when f = 4 and λ = 1.

Consider again the prime P that appeared in the proof of Proposition 2
through which the finite field extension Fpl/Fp is identified as the residue
field extension at p for the extension L = Q(ζf , ζM ). Recall the identification
was made in such a way that g(q−1)/M corresponds to ζR1

M modulo P , with
k-prime p̂ lying between P and p.

The next result concerns the special case when K = Q or K = Q(ζf ).

Corollary 2. Suppose ordf r = 1 or φ(f) with gcd(b, c1) = 1, p - a and
t = 1 in (18). Then

(19) Φ(jδ/m)(x)

=

{
Φ(δ)(x) if p̂ is prime to 1 + ζj

M + . . .+ ζ
j(1+s1+...+s

c1−2
1 )

M ,
(x− f)e/δ otherwise.

The proof of the above corollary follows from that of Theorem 3, once
one observes that the counting functions tjδ/m(n) and tδ(n) are identical

here when p̂ is prime to 1 + ζj
M + . . . + ζ

j(1+s1+...+s
c1−2
1 )

M . Formula (19)

exactly determines the factor Φ(jδ/m)(x) when f = 2 or f = 4 with r = 3,
since in these cases closed form expressions are known [6] for the last factor
Φ(δ)(x).

I also note that if gcd(s − 1,m) = 1 then the condition in (19) can be
checked working solely in k. One need only check if p̂ divides the trace
TrQ(ζM )/k(ζju

M ), where u satisfies u(s1 − 1) ≡ 1 (mod M). This is a conse-
quence of the following observation.

Lemma 1. Suppose u is an integer satisfying u(s1 − 1) ≡ 1 (mod M).
Then

ζ
1+s1+...+si

1+u
M = ζ

usi+1
1

M for i ≥ 0.

The proof of Lemma 1 involves a straightforward induction argument
which I shall omit here. To illustrate Corollary 2 and the above remark
consider the following example.

Example 3. Let f = 4 and m = 11 with r = s = 3 and q = p10. Here
R = 2 so m1 = R1 = 1 and s1 = s. Also, b = c1 = c = 2, e/δ = (p − 1)/2,
K = Q and k′ = k = Q(

√
−11), and t = 1 in (18). Then

ωj,α = (ζα
4 + ζ−α

4 )(1 + ζj
11 + ζ4j

11 + ζ2j
11 + ζ7j

11)

= (ζα
4 + ζ−α

4 )ζ−5j
11 TrQ(ζ11)/Q(

√
−11) ζ

6j
11

= (ζα
4 + ζ−α

4 )ζ−5j
11

(
−1±

√
−11

2

)
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according as j is a quadratic non-residue or residue modulo 11. By Corol-
lary 2 and Proposition 6 of [7], each finite field Fp10 , where the prime p 6= 3
satisfies p ≡ 3 (mod 44), has a period polynomial Φ(x) in (3) with factors

Φ(jδ/11)(x) =
(p−1)/2∑

v=0

(−1)v

(
p− v − 1

v

)
x(p−1)/2−v for 1 ≤ j ≤ 10.

For the exceptional prime p = 3, the corresponding period polynomial has
half of its factors Φ(jδ/11)(x) (1 ≤ j ≤ 10) equal to x − 1 and half equal to
x− 4.

4. The case t = M . Keeping the notation of the previous sections and
requiring that d = 1 in (11), I now assume t = M in (18), or equivalently
that s1 = 1. Then M | b from (11) since l = b.

I begin with a preliminary observation concerning the factorization of
Φ(jδ/m)(x).

Proposition 3. Φ(jδ/m)(x) has at least m/gcd(r−1, f) identical factors
when s = 1.

P r o o f. I shall apply Proposition 5 of [4] to the situation here, where
e = p−1

gcd(p−1,f)δ. Since m | p− 1 and gcd(j,m) = 1, one finds that Φ(jδ/m)(x)
has at least

e

gcd(e, (p− 1)jδ/m)
=

(p− 1)δ/gcd(p− 1, f)
(p− 1)δ/m

=
m

gcd(p− 1, f)
or

m

gcd(r − 1, f)
factors.

For the most part, the results described in this section are seen to depend
on facts concerning ordinary Gauss sums of order m defined modulo an odd
prime ` ≡ 1 (mod m). Such sums have the form

(20) τα(χ) =
`−1∑
x=1

χ(x)ζαx
`

for some integer α, where χ is a numerical character of order m modulo `.
Of particular interest here is the situation when r is a primitive root of f
(so b = φ(f)), or equivalently K = Q, where the ωj,α in (14) are just integer
multiples of the Gauss sums in (20) for some fixed character χ. Here and
throughout the remainder of this section I assume m > 1. The following
lemma explicitly gives ωj,α for the cases f = `ν and 2`ν , where ` is an odd
prime. I note that since p ≡ 1 (mod M) and l = `ν−1(` − 1), M must
actually divide `− 1 from (11). (Otherwise if ` |M then r ≡ p ≡ 1 (mod `)
is not a primitive root of f .) But then gcd(m,R) = 1 som1 = 1 and R1 = R.
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Lemma 2. Suppose K = Q and s = 1 with m | `− 1. For f = `ν ,

ωj,α =
{
`ν−1τα(χ) if `ν−1 ‖α,
0 otherwise.

For f = 2`ν ,

ωj,α =

{
`ν−1τα(χ) if `ν−1 ‖α with α even,
−`ν−1τ(`ν+1)α/2(χ) if `ν−1 ‖α with α odd ,
0 otherwise.

Here χ is the character induced by setting χ(r) = ζj
m.

The proof of the lemma involves routine manipulations with Gauss sums
so I omit it here. Since τri(χ) = ζ−ij

m τ1(χ), the non-zero ωj,α in the lemma
are equal up to multiplication by a root of unity. In fact, one readily sees
that there are (`−1)/m occurrences of each possible value `ν−1ζw

mτ1(χ) (0 ≤
w < m), and also of −`ν−1ζw

mτ1(χ) (0 ≤ w < m) if f = 2`ν .
Now define a counting function bm(i) by setting bm(0) = 1, and for i > 0,

let bm(i) count the number of times a sum of i mth roots of unity equals
zero. One finds the following formulas for the counting function bm,j(n) in
terms of the values bm(i).

Proposition 4. Suppose K = Q and s = 1 with m | `− 1. For f = `ν ,

bm,j(n) =
n∑

i=0

(
n

i

)
bm(i)

(
`− 1
m

)i

(`ν − `+ 1)n−i.

For f = 2`ν ,

bm,j(n) =



n∑
i=0

(
n

i

)
b2m(i)

(
`− 1
m

)i

(2(`ν − `+ 1))n−i if m odd,

2n

n∑
i=0

(
n

i

)
bm(i)

(
`− 1
m

)i

(`ν − `+ 1)n−i if m even.

P r o o f. In view of the remark prior to stating this proposition and the
fact that τ1(χ) 6= 0 here, the number of times a sum ωj,α1 + . . . + ωj,αn

equals zero for which i of the values ωj,α are non-zero and the remaining
n− i values are zero equals(

n

i

)(
`− 1
m

)i

bm(i)(`ν − `+ 1)n−i if f = `ν .

If f = 2`ν , then this number is(
n

i

)(
`− 1
m

)i

b2m(i)(2(`ν − `+ 1))n−i when m is odd,
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and (
n

i

)(
2(`− 1)
m

)i

bm(i)(2(`ν − `+ 1))n−i when m is even.

In each case, this yields the desired expressions for bm,j(n).
Now let Bm(X) = exp(−

∑∞
n=1 bm(n)Xn/n), which is the “integral”

power series introduced by Gupta and Zagier in [2]. The formulas for the
bm,j(n) in the above proposition yield explicit expressions for the corre-
sponding power series (17) in terms of the series Bm(X).

Proposition 5. Suppose K = Q and s = 1 with m | `− 1. For f = `ν ,

Cm,j(X) = (1− (`ν − `+ 1)X)Bm

(
(`− 1)X/m

1− (`ν − `+ 1)X

)
.

For f = 2`ν ,

Cm,j(X)

=


(

(1− 2(`ν − `+ 1)X)B2m

(
(`− 1)X/m

1− 2(`ν − `+ 1)X

))1/2

if m odd,(
(1− 2(`ν − `+ 1)X)Bm

(
2(`− 1)X/m

1− 2(`ν − `+ 1)X

))1/2

if m even.

P r o o f. I consider only the case f = `ν here, since the argument when
f = 2`ν is similar. For f = `ν , one obtains

bj,m(n)
((`− 1)/m)n

=
n∑

i=0

(
n

i

)
bm(i)

(
`ν − `+ 1
(`− 1)/m

)n−i

from Proposition 4. Thus, from (17), − lnCm,j

(
mX
`−1

)
equals

∞∑
n=1

bm,j(n)
((`− 1)/m)n

Xn/n

= −
∞∑

n=1

n∑
i=0

(
`ν − `+ 1
(`− 1)/m

)n−i(
n

i

)
bm(i)Xn/n

= −
∞∑

n=1

(
`ν − `+ 1
(`− 1)/m

X

)n

/n−
∞∑

i=1

bm(i)Xi
∞∑

n=1

(
`ν − `+ 1
(`− 1)/m

X

)n−i(
n

i

)
/n

= ln
(

1− `ν − `+ 1
(`− 1)/m

X

)
−

∞∑
i=1

bm(i)Xi

(
1− `ν − `+ 1

(`− 1)/m
X

)−i

/i

= ln
(

1− `ν − `+ 1
(`− 1)/m

X

)
+Bm(X/(1−mX(`ν − `+ 1)/(`− 1))),

since R/f = 1 here. Replacing X by `−1
m X yields the desired formula.
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For d | p − 1, let fd(x) denote the minimal polynomial for the ordinary
cyclotomic period ζz

p + . . . + ζzd

p , where z generates (F∗p)(p−1)/d. Proposi-
tions 4 and 5 suggest that the factor Φ(jδ/m)(x) is related to the ordinary
period polynomial fm(x) (or f2m(x) when f = 2`ν with m odd). Indeed
this is seen to be the case.

Theorem 4. Suppose K = Q and s = 1 with m | ` − 1 and f = `ν or
2`ν . If p | a

b then Φ(jδ/m)(x) = (x− f)e/δ else

Φ(jδ/m)

=



(
`− 1
m

)p−1

fm

(
m

`− 1
(X − (`v − `+ 1))

)m

if f = `ν ,

(
`− 1
m

)(p−1)/2

f2m

(
m

`− 1
(X − 2(`ν − `+ 1))

)m

if f = 2`ν , m odd,

(
2(`− 1)
m

)(p−1)/2

fm

(
m

2(`− 1)
(X − 2(`ν − `+ 1))

)m/2

if f = 2`ν , m even.

P r o o f. First note that the element gδ/m has order mR(p− 1) dividing
pb − 1 since p ≡ 1 (mod m), m | ` − 1 | b and R = `ν here. Thus each
of the traces Tr gjδ/mx = 0 for x ∈ Ce if p | a

b , so tjδ/m(n) = fn (n >

0) and hence Φ(jδ/m)(x) = (x − f)e/δ in that case. So suppose p - a
b . In

view of Proposition 3, it is enough to show in this case that ηjδ/m is a
conjugate of (`ν − ` + 1) + `−1

m (ζz
p + . . . + ζzm

p ) if f = `ν or a conjugate of
2(`ν − `+ 1) + `−1

m (ζz
p + . . .+ ζzm

p + ζ−z
p + . . .+ ζ−zm

p ) if f = 2`ν , where z
has order m modulo p− 1.

For this purpose, I employ the formula from Proposition 4 of [4] to
compute ηjδ/m here, based on certain counts concerning the non-zero values
among the traces Tr gey+jδ/m (1 ≤ y ≤ R). In particular, let N count the
number of non-zero values among Tr gey+jδ/m (1 ≤ y ≤ R) and nt count
the number of times Tr gey+jδ/m for 1 ≤ y ≤ R lies in the coset Gt(F∗p)e/δ

(1 ≤ t ≤ e/δ), where G = g(q−1)/(p−1). Then

(21) ηjδ/m = δ(p− 1)(R−N)/e+
e/δ∑
t=1

ntψt,

where ψt = ζGt

p +ζGt+e/δ

p + . . .+ζGt+p−1−e/δ

p is an ordinary cyclotomic period
of order e/δ. To determine the counts N and nt for the situation at hand,
first write Rv+(e/δ)mu = 1 for integers u and v as in the remark preceding
(13), recalling thatm1 = 1 and R1 = R here. Then δ/m = eu+(δR/m)v , so
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that gey+jδ/m = gey′+jδRv/m where y′ = y + ju. Without loss of generality
one may use the traces Tr gjδRv/m+ey′ (1 ≤ y′ ≤ R) instead to find N and
nt. Now TrFq/F

p`−1 g
jδRv/m+ey′ = a

bG
jv/m TrFq/F

p`−1 g
ey′ = 0 if `ν−1 - y′,

since gjδRv/m = Gjv/m lies in Fp`−1 and ge is a primitive f -root of unity. In
particular, the proof of the theorem when p - a

b is reduced to the case ν = 1
where a = b = `− 1. For this case one has traces

TrF
p`−1/Fp

Gjv/mgey′ = Gjv/mgey′ +Gjvp/mgepy′ + . . .+Gjvp`−1/mgep`−1y′

or

(22) Gjv/m[gey′ +G
p−1
m jvgepy′ + . . .+G

p−1
m jv(`−1)gep`−1y′ ]

for 1 ≤ y′ ≤ ` since p ≡ 1 (mod m). Taking ge as ζµ
f and G(p−1)/m =

g(q−1)/m as ζR
m modulo P in the residue field of L = Q(ζf , ζm) for some

L-prime P lying above p as in the proof of Proposition 2, one identifies the
bracketed expression in (22) as the Gauss sum

(23) ζµy′

f + ζRjv
m ζµpy′

f + . . .+ ζRjv(`−1)
m ζµp`−1y′

f .

If f = `, the sum (23) is just τµy′(χj) in (20), with χ determined by the
condition χ(p) = ζRv

m . A routine calculation now shows that the trace values
in (22) consist of one zero and (`− 1)/m repetitions of each of the non-zero
values Gjv/mτµ(χj), G(jv−(p−1))/mτµ(χj), . . . , G(jv−(m−1)(p−1))/mτµ(χj) in
this case, so

ηjδ/m = 1 +
`− 1
m

(ζλ
p + ζλG−(p−1)/m

p + . . .+ ζλG−(m−1)(p−1)/m

p )

in (21) where λ = Gjv/mτµ(χj) in Fp. The conclusion of the theorem now
follows when f = ` (and more generally when f = `ν).

For f = 2`, the sum (23) equals τµy′/2(χj) in (20) if y′ is even, and
−τµ(y′+`)/2(χj) if y′ is odd. A routine calculation shows that the trace values
in (22) consist of one zero and (`− 1)/m repetitions from each of the cosets
±Gjv/mτµ(χj), ±G(jv−(p−1))/mτµ(χj), . . . , ±G(jv−(m−1)(p−1))/mτµ(χj) of
F∗p/(±1). (Note that when m is even, each coset listed actually appears
twice since G(p−1)/2 = −1.) Since e/δ = (p− 1)/2, ψt = ζGt

p + ζ−Gt

p in (21)
in this case, so

ηjδ/m = 2 +
`− 1
m

(ζλ
p + ζ−λ

p + ζλG−(p−1)/m

p + ζ−λG−(p−1)/m

p

+ . . .+ ζλG−(m−1)(p−1)/m

p + ζ−λG−(m−1)(p−1)/m

p )

from (21) where λ = Gjv/mτµ(χj) in Fp. The conclusion of the theorem
now holds when f = 2` (and more generally when f = 2`ν), regardless of
the parity of m.



Factors of the period polynomial 167

The above result generalizes Corollary 1 of [7] where the case m = 2 is
considered. There the middle factor Φ(δ/2)(x) is determined explicitly since
f2(x) is given by (10).
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