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Magic p-dimensional cubes of order n 6≡ 2 (mod 4)
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A magic p-dimensional cube of order n is a p-dimensional matrix

Mp
n = |m(i1, . . . , ip) : 1 ≤ i1, . . . , ip ≤ n|,

containing natural numbers 1, . . . , np such that the sum of the numbers along
every row and every diagonal is the same, i.e. n(np + 1)/2. (Note. A magic
1-dimensional cube M1

n of order n is given by an arbitrary permutation of
the natural numbers 1, . . . , n.)

By a row of Mp
n we mean an n-tuple of elements m(i1, . . . , ip) which

have identical coordinates at p− 1 places. A magic p-dimensional cube Mp
n

contains pnp−1 rows. A diagonal of Mp
n is an n-tuple {m(x, i2, . . . , ip) :

x = 1, . . . , n, ij = x or ij = x for all 2 ≤ j ≤ p}. The symbol x denotes the
number n+1−x, and bxc denotes the integer part of x. Every p-dimensional
cube has exactly 2p−1 great diagonals.

Figure 1 depicts a magic cube M3
3.

Fig. 1. Magic cube M3
3

A special case, for p = 2, of a magic p-dimensional cube Mp
n is a magic

square. The first references to magic squares can be found in ancient Chinese
and Indian literature. They have been the object of study of many math-
ematicians (e.g. Pierre de Fermat, Leonard Euler), but not only of them
(also e.g. Arabian astrologers, Benjamin Franklin). A very famous magic
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square is in the painting Melancholy ([2, p. 147]) made by Albrecht Dürer in
1514. The construction of a magic square of order 3 appears in the tragedy
Faust by J. W. Göthe. Probably, the first magic cube appeared in a letter
of P. Fermat from 1640.

There is a lot of information and results about magic squares and cubes
in the 1917 book by W. S. Andrews. A revised and enlarged edition [2]
was published in 1960. More up-to-date information and references can be
found in a paper by Allan Adler [1]. Knowledge of magic p-dimensional
cubes can find its use not only in recreational mathematics, but also in
many fields of mathematics and physics (see [1]). Although many papers
have been published concerning magic squares and cubes, relatively little is
known about magic p-dimensional cubes for p ≥ 4. A universal algorithm for
their construction has probably not been published yet. The construction
of an M3

n for every n 6= 2 is in [4]. In [3] there is a construction of “magic
p-dimensional cubes” without the constant sum on diagonals.

46 8 69 17 78 28 60 37 26
62 42 19 51 1 71 10 80 33
15 73 35 55 44 24 53 6 64
59 39 25 48 7 68 16 77 30
12 79 32 61 41 21 50 3 70
52 5 66 14 75 34 57 43 23
18 76 29 58 38 27 47 9 67
49 2 72 11 81 31 63 40 20
56 45 22 54 4 65 13 74 36

Fig. 2. Magic cube M4
3

Figure 2 shows the nine layers of an M4
3. The element m(1, 1, 1, 1) = 46

is in four rows containing the triplets {46, 8, 69}, {46, 62, 15}, {46, 17, 60}
and {46, 59, 18}. On the eight diagonals there are the triplets

{m(1, 1, 1, 1) = 46, 41, 36}, {m(1, 1, 1, 3) = 69, 41, 13},
{m(1, 1, 3, 1) = 15, 41, 67}, {m(1, 1, 3, 3) = 35, 41, 47},
{m(1, 3, 1, 1) = 60, 41, 22}, {m(1, 3, 1, 3) = 26, 41, 56},
{m(1, 3, 3, 1) = 53, 41, 29}, {m(1, 3, 3, 3) = 64, 41, 18}.

(Note. This picture is a magic square of order 9 with some special propri-
eties.) This magic 4-dimensional cube was constructed using the following
formula (from Theorem 1):

m(i1, i2, i3, i4) =
[(
i1 − i2 + i3 − i4 +

n+ 1
2
− 1
)

(mod n)
]
n3

+
[(
i1 − i2 + i3 + i4 − n+ 1

2
− 1
)

(mod n)
]
n2
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+
[(
i1 − i2 − i3 − i4 + 3

n+ 1
2
− 1
)

(mod n)
]
n

+
[(
i1 + i2 + i3 + i4 − 3

n+ 1
2
− 1
)

(mod n)
]

+ 1.

This paper is concerned with the construction of a magic p-dimensional
cube of order n for every n 6≡ 2 (mod 4) and p ≥ 1.

Theorem 1. A magic p-dimensional cube Mp
n of order n exists for every

odd natural number n and every natural number p.

P r o o f. We define a magic p-dimensional cube Mp
n = |m(i1, . . . , ip)| of

odd order n by

m(i1, . . . , ip) =
p−1∑

k=0

mk(i1, . . . , ip)nk + 1,

where

mk(i1, . . . , ip) =
[ k∑
x=1

(−1)x−1ix + (−1)k
p∑

x=k+1

ix + Ck

]
(mod n)

(note
∑0
x=1(−1)x−1 = 0) and

Ck = (−1)k+1[p− k − (k + 1) (mod 2)]
n+ 1

2
− 1.

The constant Ck is chosen so that

mk

(
n+ 1

2
,
n+ 1

2
, . . . ,

n+ 1
2

)
=
n− 1

2
for all 0 ≤ k ≤ p− 1.

The proof consists of four steps. First, we prove that each element of Mp
n

is in {1, . . . , np}; second, no two elements of Mp
n with different coordinates

are equal; third, the sums of elements in all rows are the same; fourth, the
sums of elements on the diagonals are also the same.

1. Because 0 ≤ mk(i1, . . . , ip) ≤ n − 1 for all 0 ≤ k ≤ p − 1 we get
1 ≤m(i1, . . . , in) ≤ np for every element of Mp

n.

2. Suppose that m(i′1, . . . , i
′
p) = m(i1, . . . , ip). The definition of Mp

n gives

p−1∑

k=0

mk(i′1, . . . , i
′
p)n

k + 1 =
p−1∑

k=0

mk(i1, . . . , ip)nk + 1.

Hence
p−1∑

k=0

[mk(i′1, . . . , i
′
p)−mk(i1, . . . , ip)]nk = 0.
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Because the differences in brackets are less than n we get p equations

mk(i′1, . . . , i
′
p) = mk(i1, . . . , ip) for all 0 ≤ k ≤ p− 1.

By rearranging them according to the definition of Mp
n we get

(E0) (i′1 + i′2 + i′3 + . . .+ i′p + C0) (mod n)

= (i1 + i2 + i3 + . . .+ ip + C0) (mod n),

(E1) (i′1 − i′2 − i′3 − . . .− i′p + C1) (mod n)

= (i1 − i2 − i3 − . . .− ip + C1) (mod n),

(E2) (i′1 − i′2 + i′3 − . . .+ i′p + C2) (mod n)

= (i1 − i2 + i3 − . . .+ ip + C2) (mod n),

(E3) (i′1 − i′2 + i′3 − . . .− i′p + C3) (mod n)

= (i1 − i2 + i3 − . . .− ip + C3) (mod n),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Ep−1) (i′1 − i′2 + . . .+ (−1)p−1i′p + Cp−1) (mod n)

= (i1 − i2 + . . .+ (−1)p−1ip + Cp−1) (mod n).

By adding (E0) and (E1) we get either 2i′1 = 2i1 or 2i′1 = 2i1 + n or
2i′1 = 2i1 − n. Because i′1 ≤ n and n is odd we get i′1 = i1. Replace i′1 by
i1 in (E1), (E2), . . . , (Ep−1). From the relations rearranged in this way, by
adding (E1) and (E2) we get i′2 = i2. Continuing in this manner, we get
i′3 = i3, i′4 = i4, . . . , i

′
p = ip.

3. For every k = 0, 1, . . . , p− 1 the set {mk(i1, . . . , ij−1, ij , ij+1, . . . , ip) :
ij = 1, . . . , n} is equal to {0, 1, . . . , n− 1} and therefore

n∑

ij=1

mk(i1, . . . , ip) =
n(n− 1)

2
for all 1 ≤ j ≤ p.

This implies that every row sum is

n∑

ij=1

m(i1, . . . , ip) =
n∑

ij=1

p−1∑

k=0

[mk(i1, . . . , ip)nk + 1]

=
p−1∑

k=0

n(n− 1)
2

nk + n =
np+1 − n

2
+ n =

n(np + 1)
2

.

4. From the definition of Mp
n it follows that for every p-tuple (i1, . . . , ip),

mk(i1, . . . , ip) +mk(i1, . . . , ip) = n− 1;
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hence

m(i1, . . . , ip) + m(i1, . . . , ip) =
p−1∑

k=0

(n− 1)nk + 2 = np + 1.

There are (n− 1)/2 pairs of elements on each diagonal whose sum is np + 1,
and in the center of Mp

n there is the element

m
(
n+ 1

2
,
n+ 1

2
, . . . ,

n+ 1
2

)
=
np + 1

2
.

Each diagonal sum is
n− 1

2
(np + 1) +

np + 1
2

=
n(np + 1)

2
.

This completes the proof.

Theorem 2. A magic p-dimensional cube Mp
n of order n exists for every

natural number n ≡ 0 (mod 4) and for every natural number p.

We define a magic p-dimensional cube Mp
n = |m(i1, . . . , ip)| of order

n ≡ 0 (mod 4) by

m(i1, . . . , ip) =





p∑

k=1

(ik − 1)nk−1 + 1 if
n∑

j=1

(
ij +

⌊
2(ij − 1)

n

⌋)
is odd,

p∑

k=1

(ik − 1)nk−1 + 1 in the opposite case.

The assertion of Theorem 2 follows from the following three facts:

1. No two elements with different coordinates are equal because∑n
j=1(ij + b2(ij − 1)/nc) is odd if and only if

∑n
j=1(ij + b2(ij − 1)/nc)

is odd.
2. The row sums are equal because for every odd coordinate ij ,

m(i1, . . . , ij−1, ij , ij+1, . . . , ip) + m(i1, . . . , ij−1, ij + 1, ij+1, . . . , ip)

= np − nj−1 + 1 or np + nj−1 + 1.

In every row there are n/4 pairs of elements with sum np − nj−1 + 1 and
the same number of pairs with sum np + nj−1 + 1.

3. The diagonal sums are the same because for every p-tuple (i1, . . . , ip),

m(i1, . . . , ip) + m(i1, . . . , ip) = np + 1.
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