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Introduction. Let A be a strictly increasing sequence of positive in-
tegers. The set of all the subset sums of A will be denoted by P (A), i.e.
P (A) = {∑ εiai : ai ∈ A; εi = 0 or 1}. A is said to be subcomplete
if P (A) contains an infinite arithmetic progression. A natural question of
P. Erdős asked how dense a sequence A which is subcomplete has to be.
He conjectured that an+1/an → 1 implies the subcompleteness. But in 1960
J. W. S. Cassels (cf. [1]) showed that for every ε > 0 there exists a sequence
A for which an+1−an = o(a1/2+ε

n ) and A is not subcomplete. In 1962 Erdős
[2] proved that if A(n) > Cn(

√
5−1)/2 (C > 0) then A is subcomplete, where

A(n) is the counting function of A, i.e. A(n) =
∑
ai≤n 1. In 1966 J. Folkman

[4] improved this result showing that A(n) > n1/2+ε (ε > 0) implies the
subcompleteness.

In this note we improve this result. In Section 3 we prove

Theorem 1. Let A = {0 < a1 < a2 < . . .} be an infinite sequence of
integers. Assume that A(n) > 300

√
n log n for n > n0. Then A is subcom-

plete.

We mention here that 300
√
n log n cannot be replaced by

√
2n; it is easy

to construct a sequence A for which A(n) >
√

2n and A is not subcomplete.
The main tool for the proof of Theorem 1 is a remarkable theorem of

G. Freiman and A. Sárközy (they proved it independently, see [5] and [7]).
We are going to use it as Lemma 3.

We use the following notations. The cardinality of the finite set S is
denoted by |S|. The set of positive integers is denoted by N. A+B denotes
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the set of integers that can be represented in the form a + b with a ∈ A,
b ∈ B. We write X1 + . . .+Xn = (X1 + . . .+Xn−1) +Xn, n = 3, 4, . . .

Acknowledgements. I would like to express my thanks to Prof. G. Frei-
man for his helpful comments and suggestions.

1. Preliminaries. First we prove

Proposition. Let A = {0 < a1 < a2 < . . .} be an infinite sequence of
integers. Assume that A(n) > 2

√
n logn for n > n0. Then for every d there

exists an L > 0 and an infinite sequence {y1 < y2 < . . .} in P (A) for which
d | yi and yi+1 − yi < L, i = 1, 2, . . .

P r o o f. A(n) > 2
√
n log n implies

(1.1) an <
n2

logn
.

Let Ui = {a(i−1)d+1 < . . . < aid}. We need some lemmas.

Lemma 1. If d ∈ N and u1, . . . , ud are integers, then there is a sum of
the form

ui1 + . . .+ uit (1 ≤ i1 < . . . < it ≤ d)

such that d |ui1 + . . .+ uit .

P r o o f. Either there is a k, 1 ≤ k ≤ d, such that d |u1 + . . .+uk or there
are k,m with k < m and u1 + . . . + uk ≡ u1 + . . . + um (mod d) so that
d |uk+1 + . . .+ um.

By Lemma 1, for every i there exists yi such that d | yi = ai1 + . . .+ ait ,
ai1 < . . . < ait and {ai1 , . . . , ait} ⊆ Ui. Furthermore by (1.1) we get

yi < daid < d
(id)2

log i
= d3 i2

log i

or equivalently

Y (n) >
√
n log n
d3 , where Y = {y1, y2, . . .}.

Now if ym = ai1 +. . .+ait = aj1 +. . .+aju , {ai1 , . . . , ait} ⊆ Ur, {aj1 , . . . , aju}
⊆ Us for some m and r < s then clearly u < t ≤ d. This implies that if we
renumber the elements y1, y2, . . . so that y1 ≤ y2 ≤ . . . and yi = yi+v for
some i then v ≤ d. Thus we conclude that there is a sequence Y ∗ = {y1 <
y2 < . . .} in P (A) for which d | yi and Y ∗(n) ≥ Y (n)/d ≥ √n logn/d4 or
yi < d9i2/ log i (i = 1, 2, . . .).

Lemma 2. Let Y = {y1 < y2 < . . .} be a sequence of positive integers
and let P (Y ) = {s1 < s2 < . . .}. Assume that there exists n∗ such that for
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n > n∗ we have

yn+1 ≤
n∑

i=1

yi.

Then there is L > 0 such that si+1 − si < L for every i.

We omit the easy proof (see [6]).

By Lemma 2 the proof of the Proposition will be complete if we check
that the sequence Y ∗ defined in Lemma 1 satisfies the condition yn+1 ≤∑n
i=1 yi for large n.
Assume contrary to the assertion that there are infinitely many n for

which yn+1 >
∑n
i=1 yi. Then

d9 (n+ 1)2

log(n+ 1)
> yn+1 >

n∑

i=1

yi ≥
n∑

i=1

i >
n2

2
,

which is impossible if n is large enough. This proves the Proposition.

2. Arithmetic progressions

Definition. Let A(d, l) = {a + kd : 0 ≤ k ≤ l} be an arithmetic
progression.

In this section we prove

Theorem 2. Let A be an infinite sequence of positive integers. Assume
that A(n) > 200

√
n log n for n > n0. Then there exists a ∆ > 0 such that

for every l ∈ N there is an arithmetic progression A(d, l) = {u + kd : 0 ≤
k ≤ l} ⊂ P (A) and d < ∆.

To prove Theorem 2 we shall use the following important lemma:

Lemma 3. Let 0 < a1 < . . . < ak ≤ n be an increasing sequence of
integers. Assume that n > 2500 and k > 100

√
n log n. Then there exist

integers d, b, z such that 1 ≤ d ≤ 100
√
n/ log n, z > 1

7n logn, b < 7z/ log n
and

{sd : b ≤ s ≤ z} ⊆ P ({a1, . . . , ak}).
Lemma 3 is a special case of Theorem 4 in [7].

Now we prove the following

Lemma 4. Let Ai := A(Di,Hi) = {ai + tDi : 0 ≤ t ≤ Hi} (i = 1, 2, . . .)
be an infinite sequence of arithmetic progressions. Assume that limi→∞Hi

=∞ and

(2.1) Hi > D1 +Di+1

for every i ≥ 1. Then for every T there is an n for which A1 + . . . + An
contains an arithmetic progression A(d, h) with d ≤ D1 and h > T .
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Thus we are led to construct a long arithmetic progression with bounded
difference.

P r o o f. We shall prove that for every n, A1+. . .+An contains an A(d, h),
where

(2.2) d ≤ D1, h ≥ Hn −D1.

By the condition limi→∞Hi =∞, (2.2) completes the proof.
We show (2.2) by induction on n. For n = 1, (2.2) is trivial. Assume now

that n ≥ 2 and the assertion holds with 1, . . . , n− 1 in place of n.
By the inductive hypothesis there exists A(d′, h′) ⊆ A1 + . . .+An−1 with

d′ ≤ D1, h
′ ≥ Hn−1 −D1. Since

A1 + . . .+An = (A1 + . . .+An−1) +An ⊇ A(d′, h′) +An

it is enough to show that there exists A(d, h) with

A(d, h) ⊆ A(d′, h′) +An and d ≤ D1, h ≥ Hn −D1.

Let d = (d′, Dn) and u = d′/d,w = Dn/d. Now (u,w) = 1. Then

A(d′, h′) +An = {a+ td′ : 0 ≤ t ≤ h′}+ {an + sDn : 0 ≤ s ≤ Hn}
= {a+ an + d(tu+ sw) : 0 ≤ t ≤ h′, 0 ≤ s ≤ Hn}.

It follows from a result of Frobenius (cf. [3]) that if (u,w) = 1 and if t ≥ w
then every integer in the interval [(u−1)(w−1)+1,Hnw] can be represented
in the form

tu+ sw, 0 ≤ t ≤ w, 0 ≤ s ≤ Hn.

By (2.1) we infer h′ ≥ Hn−1 > Dn + D1 ≥ Dn/d = w. Thus by Frobenius’
result we get

A(d′, h′) +An ⊃ A(d, h) := {(a+ an + duw) + rd : 0 ≤ r ≤ Hnw − uw},
where h = Hnw − uw = (Hn − u)w ≥ Hn − u ≥ Hn − d′/d ≥ Hn −D1 and
d ≤ d′ ≤ D1.

This completes the proof of the lemma.

Now define the infinite sequence of integers [e20] + 1 = n0 < n1 < . . .
where

ni = n2
i−1, i = 1, 2, . . .

Let Bi := (ni−1, ni]∩A. Now |Bi| = A(ni)−A(ni−1) > 200
√
ni logni −

ni−1 > 200
√
ni logni − √ni > 100

√
ni logni since ni ≥ n0 = [e20] + 1. By

Lemma 2 there are arithmetic progressions

A(Di,Hi) = {ai + kDi : 0 ≤ k ≤ Hi} ⊆ P (Bi),

where

(2.3) Di | ai, Di ≤ 100
√

ni
log ni

,
1
8
ni logni < Hi



Representation of integers as sums 103

if ni is large enough. Since Bi ∩Bj = ∅, for i 6= j we get A(D1,H1) + . . .+
A(Dn,Hn) ⊂ P (A) for every n ∈ N.

Proof of Theorem 2. In view of Lemma 4 taking the arithmetic pro-
gressions A(D1,H1), A(D2, H2), . . . given above we have to show that for
i = 1, 2, . . . ,

Hi > D1 +Di+1.

By (2.3),

Hi >
1
8
ni logni ≥ 20e10 + 100

ni√
log ni

≥ D1 +Di+1.

Thus for every l there is an arithmetic progression A(Dn,Hn) ⊂ P (A) where
Hn > l and Dn < D1.

Theorem 2 is proved.

3. Proof of Theorem 1. Let B = {a2n−1 : n = 1, 2, . . .} ⊂ A, C =
A \B. Now if n > n0 then

B(n) ≥ 300

√
n

2
log

n

2
≥ 200

√
n logn and C(n) ≥ 200

√
n log n.

By Theorem 2 there is a ∆ such that for every l there is an arithmetic
progression A(d, l) = {u + kd : 0 ≤ k ≤ l} ⊆ P (B) and d ≤ ∆. Let
D = l.c.m.[1, 2, . . . , [∆]]. By the Proposition there are an L and an infinite
sequence {x1 < x2 < . . .} in P (C) for which D |xi and xi+1 − xi < L
(i = 1, 2, . . .). Now choose an arithmetic progression A(d, l) contained in
P (B), l > L. Here d < ∆, thus d |D and d |xi, i ∈ N, as well.

We claim {kd : (x1 + u)/d ≤ k} ⊂ P (A). Indeed, let pd ∈ [xj , xj+1),
xj > x1 + u. This yields that there exists an i ≤ j for which x1 + u <
pd− xi < u+ Ld.

Now d |xi so pd−xi = u+td, t < L. This means pd = xi+u+td ∈ P (A).
Theorem 1 is proved.

Addendum (December 8, 1999). I have learned that T. Łuczak and T. Schoen proved
a theorem essentially equivalent to my Theorem 1. They obtained their result indepen-
dently and later.
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[7] A. S á rk özy, Finite addition theorems II, J. Number Theory 48 (1994), 197–218.

ELTE TFK
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